椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
扩展资料
椭圆周长公式推导
椭圆a与b的关系。定义:椭圆向心率为f,f=b/a 。根据椭圆第一定义,椭圆向心率f,有0<f<1的范围。
K1+f<K2的数学关系正是椭圆周长计算时存在的数学关系。
定义:T=K1+f,将此等式代入等式
则有:
L=(2πa-4a)T=2(π-2)a(K1+f)=2(π-2)a(2/(π-2)+b/a)=2πb+4(a-b)
椭圆周长计算公式: L=2πb+4(a-b)
1、椭圆面积公式S=πab。公式描述:公式中a,b分别是椭圆的长半轴、短半轴的长。
2、椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
椭圆周长公式:L=2πb+4(a-b)
根据椭圆第一定义,用a表示椭圆长半轴的长,b表示椭圆短半轴的长,且a>b>0。
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
扩展资料:
a为椭圆长半轴,e 为椭圆的离心率
椭圆周长理论公式是存在的不过它不能用初等函数表示,它是一个与离心率有关的无穷收敛级数,本公式已经把正圆周长纳入其中,在某种意义上讲正圆是特殊的椭圆,也就是说正圆是长短轴相等的椭圆。
公式推导是要利用到曲线长度积分,同时关键的一步是,要把椭圆积分利用牛顿二项式定理 展开为以sinθ 为变量的级数再通过积分求解。
先建立椭圆参数方程:
x=a SINθ
Y=bcosθ
根据曲线长度积分方程:u=y′
将椭圆方程代入上式得:
(1) L=4a 而
得出将(1)式用牛顿二项式定理展开再逐项积分得
求解完毕(这个公式把a=b带进去以后为圆周长公式,e=1时,L= a)
由此我们可以得到圆周率的另一个公式了:
椭圆的长半轴a,短半轴b, 椭圆的面积有精确公式S=abπ, 但周长的积分公式是不可积的,所以没有精确的简单公式, 椭圆周长的近似公式 C=π(a+b),和 C=2πb+4(a-b)。
C=2πb+4(a-b)。这个近似公式很简单、巧妙而独特, 把椭圆看成两半圆与一长方形两边。两半圆的半径是b, 长方形的两外边是 2(a-b), 所以,椭圆周长的近似公式C= 2πb+4(a-b),
我们验证这个公式的极端情况:
1当 a==b时,椭圆是个圆, 套公式C=2πb,正确。
2当 b=0时 ,椭圆退化成两线段, 长2a, 套公式 C=4a, 正确。
最精确的椭圆周长公式是 拉马努金公式,可以精确到10位小数
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)