钻石的独有特性

钻石的独有特性,第1张

钻石具有以下独有特性:1 极高硬度:钻石是自然界中最坚硬的物质,仅次于硬金刚和纳米线等合成的材料。2 耐磨性强:钻石表面极为平整光滑,不易被磨损和划伤。3 高折射率:钻石具有高折射率,使得钻石闪闪发光,成为高档珠宝的首选材料。4 高热导率:钻石具有高热导率,使其具有优异的散热性能,被广泛应用于电子领域。5 容易形成单晶体:钻石容易形成单晶体,这是制造高品质切削工具和半导体材料的重要材料。以上就是钻石的独有特性。

4311 辽宁钻石的异常双折射特征

利用偏光显微镜在正交偏光下对42个辽宁地区钻石薄片进行观察,结果表明:857%的金刚石样品具不同程度的异常双折射现象,主要呈现花瓣、放射状消光图案(389%,与钻石中的裂隙和包裹体有关),复合叠加消光图案(278%,反映了该类样品在生长过程和生长期后经历了多期次不同形式的应力作用),平直消光条带图案(194%),无固定形态的消光图案(111%,可能是由于样品内部应力作用和切片厚度原因共同作用的结果),见图471,图472。而由典型的塑性变形所致滑移线而形成的细小格子状消光图案(“榻榻米”结构)不太常见,仅占28%。

图471 花瓣、放射状消光图案

(LN-50-001)

Figure 471 Petal-like and radial birefringence patterns

(sample LN-50-001)

图472 复合叠加消光图案

(3-LW)

Figure 472 Composite and superimposed birefringence patterns

(sample 3-LW)

4312 辽宁钻石的阴极发光图像(CL)和DiamondView荧光图像(DV)特征

陈美华等 (1999;2000)曾利用阴极发光图像归纳了辽宁瓦房店钻石的内部结构具有3 种主要类型:简单的生长环带结构;多期生长复杂环带结构;稀少的似玛瑙状结构。这些特点反映了辽宁钻石生长过程的复杂性。本项目对12颗钻石样品进行了阴极发光测试,对43个钻石切片进行了DV观察,结果如下:

(1)辽宁瓦房店地区样品主要出现四种发光模式:均匀发光、两期生长结构、多期复杂生长结构及斑块状发光样式(图473~图478)。部分样品的彩色阴极发光颜色为蓝色和黄绿色,发光强度不一。

(2)大多数钻石显示蓝色荧光(674%),小部分钻石显示蓝、绿两种荧光(326%),表明辽宁钻石虽然I型钻石的比例高,但部分钻石以混合型为主。

(3)均匀发光,无条带或环带的占326%,简单层状生长环带占326%(图479),表明辽宁金刚石的生长环境较为稳定。

(4)多周期生长环带的样品占278%,表明仍有部分钻石是在复杂生长环境中形成的。图480中样品比较特殊,中间呈蓝色不连续的四边形斑块,边缘呈绿色条带。

(5)三角形的斑块状发光式样,占70%。

图473 均匀发光模式

(2-LW-01)

Figure 473 Homogeneous luminescence pattern

(sample 2-LW-01)

图474 主体黄绿色,复杂生长环带结构

(LN-50-267)

Figure 474 Complicated growth zones,with the main color being yellowish gREE

(sample LN-50-267)

图475 主体蓝白色,发光现象不明显

(LN-50-265)

Figure 475 Inconspicuous luminescence,with the main color being bluish white

(sample LN-50-265)

图476 主体蓝色,“似玛瑙状”生长环带

(LN-50-266)

Figure 476 Agate-like growth zones,with the main color being blue

(sample LN-50-266)

图477 主体为绿色,模糊的斑块状发光

(LN-50-287)

Figure 477 Obscure luminescence pattern with patches,the main color being green

(sample LN-50-287)

图478 斑块状发光

(3-LW-01)

Figure 478 Luminescence pattern with patches

(sample 3-LW-01)

图479 八面体生长环带

Figure 479 Octahedral growth zones

图480 多期复杂生长结构

Figure 480 Multi-stage complicated growth zones

一、包裹体按形成时间分类

天然宝石中的包裹体按其与宿主宝石形成时间的先后关系可划分为原生、同生和后生的三类。

1原生包裹体

原生包裹体指先于宿主晶体形成而后被宿主晶体包裹的矿物颗粒。原生包裹体总是固相的。在岩浆冷凝过程中和岩石变质过程中均可形成。在岩浆冷凝过程中,矿物按一定的结晶顺序析出,先期析出的矿物可成为后期析出的矿物的包裹体,例如某些岩浆成因宝石晶体中所见的锆石和磷灰石包裹体。这些包裹体常具有良好的晶体形态,但也可能被后期形成的矿物溶蚀或交代,因而晶体形态遭到破坏。在岩石变质过程中,原生矿物被新生矿物交代,未被交代完全的原生矿物留在新生矿物中成为包裹体,例如某些变质成因宝石中的闪石类矿物和和云母包裹体。这些包裹体多具有被侵蚀的不规则的晶体形态。

2同生包裹体

同生包裹体是与宿主晶体同时形成并被包裹的,可以是固体,也可以是固体、液体和气体呈各种组合关系的孔洞。

(1)固体包裹体:与宿主晶体同时生长,属同一种地球化学条件的伴生矿物。如宝石中的磷灰石、黑云母、方解石、铬透辉石、橄榄石、黄铁矿、金红石、锆石等。

出溶(脱溶)是同生包裹体的一种重要成因。某些宿主矿物晶体中可能含有相当多的溶解的杂质,在晶体冷却固化过程中,随温度下降,晶体结构能容纳杂质的能力降低。如果冷却的速度缓慢,杂质将析出成为包裹体,多为小的片状或针状晶体,而且它们的定向与宿主晶体的结构方向平行。例如从刚玉中出溶的金红石结晶成三组成120°相交的细针状晶体。钛化合物如金红石、榍石和钛铁矿是宝石中最常见的出溶矿物。这是因为钛元素的丰度大,并易于为宿主晶体所容纳和从晶格中出溶。大量的出溶针状物可在刚玉、石榴子石和尖晶石等宝石中产生猫眼和星光效应。如果温度变化的速度不适合于形成正确的定向,这些针状物将产生丝光效应。属于出溶成因的同生包裹体还有绿柱石、堇青石和日光石中的赤铁矿,月光石中的钠长石等。

纤维状矿物的生长速度可和宿主晶体的生长速度一样快或甚至更快些,因而可形成长丝状的包裹体,如钙铁榴石中的石棉,水晶中的金红石针状包裹体。

宿主晶体生长过程中可能由于各种原因而暂时中断。这时某些矿物质可聚集和生长在晶体的表面。当晶体重新生长时会覆盖这些生长在表面上的矿物,使之成为包裹体。这些包裹体常显示与晶面平行的取向,有些可显示分带性,构成所谓的“幻晶”(幻影)。如果这种过程重复多次,可出现多层幻晶。

(2)液体包裹体和两相、三相包裹体:总体上都可称为流体包裹体,有各种组合情况,但以气液包裹体居多。宿主晶体在生长过程中可能破裂并有成晶溶液灌入,随后裂缝愈合,将溶液封在晶体内。宿主晶体生长过程中也可能有暂时的间断或生长速度不均匀,这时的晶体表面会有些坑凹不平处,当晶体重新恢复生长时,会覆盖坑凹处聚集的溶液,成为液体包裹体。这两种情况下的流体包裹体最初是均一的液相,但随温度等条件的变化,会分离出气体、固体或其他的液体,成为两相或三相的包裹体。

孔洞和裂缝的形状在愈合过程中可能有改变。一些地方发生溶解,另一些地方又在生长并使通道缩小,出现“颈缩”或叫“卡脖子”现象,有时可将一个三相包裹体分隔成两个,一个是液体中含晶体的,另一个是液体中有气泡的。也有时一个气液包裹体被卡断成2个或3个气液比不同的包裹体。

有时因晶格位错等缺陷产生的空穴被高温溶液充填后又继续按原晶格方向生长,形成与宿主晶形相似的体腔。这种由气液充填的形态与宿主矿物晶形相似的孔洞称为负晶形包裹体或空晶。也有人认为空晶应专指无气液充填的负晶形(气液流失)。

3后生包裹体

宿主晶体停止生长后发育的包裹体。

裂隙结晶化是后生包裹体的成因。晶体停止生长后可能有外来物质渗入裂隙并在其中沉淀。最常见的是铁和锰的氧化物,它们总是形成黑色或褐色的树枝状包裹体。

二、包裹体按相态分类

包裹体物质可以是固态、液态和气态的。包裹体体系中均匀一致的部分是一个单独的相,故一个孔洞中若含有两种分离的液体(不混溶液体),它应算是两相包裹体,若一个孔洞中含一种液体和两种不同矿物的晶体,它应算是三相的。

1单相包裹体

可以是固体包裹体、液体包裹体或气体包裹体。

(1)固体包裹体:主要是矿物晶体包裹体,也有熔体玻璃态包裹体,还有琥珀中的植物碎屑和昆虫包裹体。矿物晶体包裹体包括多种非金属矿物和金属矿物。宝石中最常见的矿物包裹体有金红石、锆石、磷灰石、各种闪石、长石、云母、方解石、电气石、石榴子石、黄铁矿、赤铁矿、针铁矿和铬铁矿等(见图6-3-1)。它们有些具完整或较完整的晶体形态如八面体、立方体,也有呈片状、纤维状、针状、针点状、粒状和不规则状的。可单独分布,也可密集成群。大量近无色的微小晶体包裹体集合到一起,可产生朦胧状外观,称为云状物。大量浑圆形晶体包裹体有时可产生糖浆状的外观。

多晶质玉石中某些虽含量少但特征明显的矿物颗粒,例如软玉中的磁铁矿和青金岩中的黄铁矿以及砂金石英中的绿色云母片等,虽从矿物学角度不能视为包裹体,但在宝石学中常作为包裹体来描述。

(2)液体包裹体:主要是含各种溶解盐,有时有含碳酸的水。在洞穴冷水碳酸盐晶体中常见。

图6-3-1 矿物晶体包裹体

(3)气体包裹体:主要成分是水蒸气或二氧化碳,偶有甲烷。天然玻璃中的气泡除二氧化碳外还含氢和氮。气体包裹体的形状为圆形、椭圆形和不规则形。可单独分布,也可密集成群。

2两相包裹体

绝大多数是气液两相包裹体,也有少量的气固两相包裹体。

气液两相包裹体即液体包裹体中含有气泡(见图6-3-2)。其成因主要是当液体包裹体冷却时,水溶液的体积变得小于孔洞的体积,水蒸气就占据了腾出的空间,呈圆形气泡,液体包裹体就变成了气液两相包裹体。但更多的是充填于宝石裂缝和孔洞中的微小液滴的集合体,因外观像昆虫的薄羽翼,故称为羽状体。在富含水溶液的环境中生成的宝石,如在绿柱石中,这种羽状体特别常见。假若原生裂缝是沿解理或裂开方向形成的,愈合的羽状体可呈扁平状,其他情况下趋向于成弯曲状、指纹状、面纱状、花边状和网状。仔细放大检查前述的羽状体会发现其中常有小的气泡与液滴共生,因而这些羽状体实际上是气液两相包裹体(见图6-3-3)。

气固两相包裹体多为气—熔体相包裹体。高温下形成的矿物如橄榄石、辉石等结晶时所捕获的熔体,当温度下降时冷凝成玻璃态,剩余空间为气泡占据,成为两相包裹体。助熔剂法等方法合成的宝石中也有类似的包裹体。

图6-3-2 气液两相包裹体

图6-3-3 羽状体

3三相和多相包裹体

均一流体被捕获后随温度的下降而发生变化,分离出气体、固体和液体,成为气固液三相包裹体(见图6-3-4)。通常一个孔洞中只有一个晶体,但也可更多。水溶液中盐的溶解度与温度有关。由于温度的变化,液体中所溶解的盐可结晶出。主要的晶体是钠、钾、钙、镁的氟化物、氯化物、碳酸盐或硫酸盐,其中最常见的有石盐、钾盐和石膏。气体、液体和一颗或多颗相同品种的晶体组成的包裹体,或气体和两种不混溶液体组成的包裹体都称为三相包裹体,有气体、液体和一种以上晶体组成的包裹体则是多相包裹体。

图6-3-4 气固液三相包裹体

三、其他内部特征

1生长带和颜色分带

晶体生长过程中生长环境诸如压力、温度和成矿物质化学成分包括杂质和致色离子浓度的变化。可导致宽窄不等的生长带和生长条纹。它们多通过颜色深浅的变化反映出来,成为色带(见图6-3-5)或颜色条纹。因为这些生长带和生长条纹的分布都与晶体结构有关,因而大都是直的和角状的,如在刚玉、紫晶、祖母绿中所见。但颜色分布也有呈斑状、团块状和絮状的,与晶体结构无明显的联系。紫晶和黄晶中还有由颜色深浅、明暗差异而表现出的“虎纹”或“斑马纹”,这是沿菱面体方向发生双晶或部分愈合的结果。

图6-3-5 蓝宝石中的色带

多晶质和隐晶质玉石材料中有因矿物组成、颜色和颗粒度大小的规则和不规则变化而呈现的层状构造以及色带、色团和色斑。天然玻璃中可见到漩涡纹。

2双晶

刚玉、金绿宝石及某些较少见的宝石中都可见到聚片双晶。早先双晶曾被看成是天然成因的证据,但现在在焰熔法和助熔剂法生长的合成宝石中也已见到双晶。矿物中的双晶可以是同生的或后生的。例如方解石中的聚片双晶可以是在晶体停止生长后因形变而形成。刚玉中也可能有同样的效应。

钻石形成过程中因双晶或生长缺陷等不规则性而产生的生长线或面称为纹理、结节,从10倍放大镜下只轻微可见到肉眼明显可见。

3解理和裂缝

一些解理发育的宝石中沿解理面方向出现的解理缝称为初始解理,表现为宝石内部的平坦的面。相交的解理缝可形成特殊的图案,例如月光石中的“蜈蚣状”包裹体(见图6-3-6)。也有不规则的或波状的初始解理,通常垂直于c轴,如碧玺中所见。裂缝可在宝石内部的任何方向发生,包括环绕晶体包裹体的放射状和盘状的应力裂缝。有些裂缝在形成过程中或随后可被气液包裹体充填并愈合。橄榄石中的睡莲叶(水百合)包裹体是典型的实例。一些宝石中有锆石包裹体,有些锆石包裹体含放射性元素,它能破坏锆石的晶格。锆石的体积增大,由此产生的应力导致生成向外呈放射状长入宿主晶体中的裂缝,称为锆石晕。

图6-3-6 月光石中的应力裂缝

4321 山东钻石的异常双折射特征

利用偏光显微镜在正交偏光下对山东地区46个钻石薄片进行观察,结果表明891%的金刚石具不同程度的异常双折射现象。主要呈现为:花瓣、放射状消光图案(363%),复合叠加消光图案(317%),平直消光(146%),无固定形态的消光图案(73%)等,见图481,图482;由典型的塑性变形所致滑移线而形成的细小格子状消光图案(“榻榻米”结构)不太常见,仅占49%。

4322 山东钻石的阴极发光图像(CL)和DiamondView荧光图像(DV)特征

本项目对11颗钻石进行了阴极发光图案观察,对71个钻石切片进行了DV观察,结果显示:

(1)绝大多数钻石显示蓝色荧光(80%),表明I型钻石的比例相当高;

(2)多数晶体显示八面体生长环带,无清晰生长条带的约为17%;

(3)部分晶体显示明显的两期生长或多期生长结构,如图483所示,为“闭形”的八面体环带结构,环带平直,宽窄均匀,界限清晰,先是由中心区域均匀生长无环带结构出现,说明早期生长成分均一;之后的第二个生长区为以规则的八面体环带形式生长,说明后期流体成分变化均一,该晶体的整体生长过程比较连续,没有中断。图484为“开形”的八面体生长环带结构,晶体中心区域可见平直密集的两组塑性变形滑移线呈网格状交错,之后的生长过程中八面体生长环带密集平直,界限清晰,说明在一个相对稳定的环境中生长,并且没有经受较大的溶蚀作用,晶体在一个相对稳定的环境中匀速生长,生长过程没有间断。

图481 平直消光带

(16-SD)

Figure 481 Birefringence pattern with straight strips

(sample 16-SD)

图482 十字状消光

(248-SD)

Figure 482 Birefringence pattern with a cross

(sample 248-SD)

图483 “闭形”八面体环带结构

(SD01303,CL)

Figure 483 Closed octahedral growth zones

(sample SD01303,CL)

图484 “开形”的八面体生长环带结构

(SD02301,CL)

Figure 484 Open octahedral growth zones

(sample SD02301,CL)

(4)有的金刚石为多周期多阶段的复杂层状生长环带,这种多期多阶段生长的晶体出现的结构形式是各种各样的,有规则的,也有不规则的,其复杂程度也不尽相同。

如图485所示,早期为晶核生长,晶核发光不均匀,说明在这个阶段生长过程不均匀,晶核周围被一圈不规则形状的生长结构所包围,说明晶核生长形成后经历了一定的溶蚀,生长过程一度间断,在这之后出现了“开形”的八面体生长环带,之后是一段均匀发光的部分,说明经历了一段时间的均匀生长,然后再次出现“开形”的八面体形平直细密的生长环带,界限清晰,说明这部分生长过程较为连续,但是在后期的八面体环带出现弯曲,形状不规则,边缘出现锯齿状的样式,说明在晶体生长后期遭遇了强烈的溶蚀作用,生长过程一度中断。

如图486所示,该晶体具有左上、右下两个生长核心区,生长核心区的外围都出现了变形弯曲的生长环带,说明晶核形成后遭受了一定的溶蚀作用;之后出现均匀发光的部分,说明这段时间生长较为稳定;第3个生长期为多边形不规则的生长环带,环带密集平直,说明后期生长简单一致,两晶核融合后,生长为一个完整的晶体。

图485 具有晶核的多阶段的复杂层状生长环带

(SD01301-1,CL)

Figure 485 Multi-stage complicated growth zones with crystal nucleus

(sample SD01301-1,CL)

图486 两个生长核心区及复杂层状生长环带

(SD2402,CL)

Figure 486 Complicated growth zones with two crystal nucleation region

(sample SD2402,CL)

(5)约有12%的晶体具有“似玛瑙状”、圆弧形同心环带、斑块状等特殊的生长结构。

金刚石晶体中观察到玛瑙状的分带现象最早是20世纪70年代苏联的奥尔洛夫提出的(奥尔洛夫,1977)。Bulanova等(1995)在俄罗斯雅库特的金刚石中也发现了这种结构,认为这种复杂的生长环带是由不同的生长机制所致。八面体环带区受层状生长机制控制,立方体或圆形环带区的生长受螺旋生长机制控制,少见的具有复杂的“似玛瑙状”结构或圆环形结构的金刚石是在特定的生长条件下,由多中心发展而成。早期的多中心相邻或聚集,形成较复杂的种晶形态;后续的结晶过程是在这种复杂形态的种晶基础上进行的,并且受层状和螺旋式的混合生长机制控制。这种结构反映了金刚石结晶于粘性大、碳过饱和的环境中。另外,金刚石在高温下的变形亦是产生“似玛瑙状”生长结构的因素之一。陈美华等(1999,2000)在研究辽宁瓦房店金刚石时,在一颗样品边部也发现“似玛瑙状”生长结构。

本项目利用阴极发光测试,在山东蒙阴的金刚石样品中也发现了这种多期多阶段的复杂生长环带形成的“似玛瑙状”发光结构。

如图487所示,晶核部分先是经历了一段时间的均匀生长,说明这段时间流体均一稳定;而在晶核外部出现了弯曲不平的环带,似玛瑙状,表明这段时间晶体遭受了较为强烈的溶蚀作用,生长过程一度中断;第三个生长期为平直的六边形环带,环带细密平直,说明这一阶段生长较稳定连续;六边形之后又是一段均匀发光的部分,说明晶体继续稳定生长,流体组分没有发生明显的变化;最外边再次出现玛瑙状的生长环带,环带宽窄不一,高低起伏不平,发光强度也不尽相同,说明该晶体生长后期遭受了强烈的溶蚀作用,生长过程不连续,一度中断。

图488所示为一中心缺失发光而形成极不规则斑块状的发光样式。该晶体本身为完整的晶体切片,但在阴极发光下中心缺失发光显示,黑色边缘起伏不平,弯曲变形很大,说明在钻石晶体生长的初期就遭受了强烈的熔蚀作用,生长过程曾一度中断,导致晶核变形;之后继续生长,但是生长环境不稳定,流体成分变化较大,且不均匀,生长过程不连续,生长具有一定的间歇性并遭受了熔蚀作用,由此推断可能在这个时期多处地带发生了较为强烈的地质变化。

上述结果和尹作为等(2005)对15颗蒙阴金刚石样品阴极发光的研究结果有所不同,尹作为等研究的蒙阴金刚石样品显示平直色带,说明形成金刚石的物质供给是比较连续的(即生长是连续的),整个结晶过程未发生明显的长期停顿产生的熔蚀。

图489~图492列出了典型的山东金刚石DV图像。

图487 弯曲不平似玛瑙状环带

(SD03002-2,CL)

Figure 487 Agate-like curved growth zones

(sample 03002-2,CL)

图488 生长初期就遭受强烈溶蚀形成核心复杂环带

(SD05202-1,CL)

Figure 488 Growth zones with complicated core areas,due to strong corrosion at the initial stage

(sample 05202-1,CL)

图489 两期生长结构,中间存在种晶核和特殊的发光区域

Figure 489 Growth structure of two stages,with crystal nucleus and a special luminescence area at the core

图490 存在生长核的似玛瑙状生长结构

Figure 490 Agate-like growth structure with crystal nucleus

图491 颜色斑驳的似玛瑙状生长结构

Figure 491 Agate-like growth structure with color patches

图492 四边形生长结构

Figure 492 Quadrilateral growth structure

4331 湖南钻石的异常双折射特征

本项目对75片湖南钻石薄片在正交偏光下进行了观察,结果显示:有16片为全消光(占213%),其余为异常双折射。异常双折射图像主要分为:

(1)复杂叠加的消光图案(共15片,占254%)。如样品126-HN的晶体外部区域为反映晶体结构的规则分层的环带状消光图案,中心区域的包裹体则导致了花瓣放射状的消光图案,并覆盖在与生长有关的环带状消光图案之上(图493);样品182-HN整体具有微弱的格子状的消光图案,表明钻石在生长过程中经历了轻微的塑性变形作用,生长后期钻石受到的应力作用以及包裹体对钻石的应力释放,叠加有明显的等倾线式和包裹体周围的花瓣、放射状消光图案(图494)。这些不同消光图案的叠加反映了部分湖南钻石在生长过程和生长期后经历了多期次不同形式的应力作用。

图493 环带状(边缘)+ 花瓣放射状消光组合

(126-HN)

Figure 493 Birefringence pattern with zonal fringes and radial petals

(sample 126-HN)

图494 格子状(微弱)+ 等倾线式 + 花瓣放射状消光组合

(182-HN)

Figure 494 Birefringence pattern with lattices (faint) + isoclines + radial petals

(sample 182-HN)

(2)花瓣、放射状消光图案(共20片,占339%)。这是由钻石内部的包裹体或裂隙引起的(奥尔洛夫,1977;苑执中等,2001),这种消光样式局限在包裹体或裂隙的周围,当钻石中有矿物包裹体存在时,应力产生不均匀释放而导致晶格畸变,同时包裹体热胀冷缩差异也会破坏钻石晶体的正常生长,而裂隙则是晶体内晶格过度应变而以碎裂方式释放应力的结果,以上情况都会在包裹体和裂隙周围区域形成各种缺陷,最终导致异常消光样式。

(3)格子状消光图案及其他(约40%)。由典型的塑性变形所致“榻榻米”图案占102%,较山东的多。

4332 湖南钻石的阴极发光图像(CL)和DiamondView荧光图像(DV)特征

对湖南沅江15颗金刚石做阴极发光测试,对104个钻石切片进行DV观察,结果显示:

(1)47%样品显示蓝色调荧光(图495),14%显示绿色调荧光(图496)。绿色荧光通常与H3 (503nm)中心有关,指示了晶体天然热处理或辐照(Collins,1982)。

图495 不规则图案,蓝色荧光

Figure 495 Irregular pattern and blue fluorescence

图496 网格状发光,绿色荧光

Figure 496 Web-like pattern and green fluorescence

(2)64%样品未见明显的生长条带结构(图497),显示晶体在生长过程中条件相对稳定。

(3)部分晶体(约为18%)具多期复杂生长环带结构,如图498所示。

如图499所示,晶体本身较为均匀的发光,在晶体表面发育两组各自平行的细密的塑性滑移变形线,两组滑移线交叉形成菱格状的样式,说明晶体生长虽然较为稳定,但在生长过程中遭受了应力的作用而产生了塑性变形。在晶体外部有一层黑色斑点的图案,推测为在晶体生长结束后遭受溶蚀作用所致。

如图4100所示,晶体中心部分均匀发光,说明在生长初期流体化学成分没有发生明显的变化,生长过程均一;之后形成了简单平直的八面体环带结构,说明流体均匀变化,生长过程依然稳定。从图中可以明显看到,在晶体外部形成一个死“外壳”的“皮”,表面呈斑驳状,且有黑色斑点分布,说明在晶体形成后遭受了一定的外力作用,可能是外部溶蚀作用或是搬运作用产生。整个晶体为简单八面体闭形,显示两期生长结构。

图4101为另一种无环带闭形两期生长结构。首先晶体匀速生长,外部环境稳定,生长过程持续,表面有两组塑性滑移变形线形成网格状构造,说明一度遭受应力作用产生塑性变形,生长后期生长边界发生强烈变形弯曲,边界起伏不平,闭形生长线外部为另一“皮壳”式的结构特征,表面极度不均匀,黑色斑点密布,说明晶体生长后遭受了外部强烈的溶蚀作用。

图4102与前一种生长模式接近,不同的是该晶体的闭形结构完好无弯曲,说明整个晶体一直处于稳定的环境中均匀生长,生长过程持续没有间断,外部同样具有“皮壳”的结构,可能是后期经搬运及溶蚀作用影响所致。

图497 未见明显生长条带,蓝、绿荧光

Figure 497 Inconspicuous growth zones and blue,green fluorescence

图498 多期环带结构,蓝、绿荧光

Figure 498 Multi-stage growth zones and blue,green fluorescence

图499 阴极发光斑驳的样式

(HN13801-1,CL)

Figure 499 Mottled pattern of cathodoluminescence

(sample HN13801-1,CL)

图4100 “皮壳”结构

(HN18603-1,CL)

Figure 4100 Cathodoluminescence pattern with a outer coat

(sample HN18603-1,CL)

图4101 无环带闭形两期生长结构

(HN09601-1,CL)

Figure 4101 Two-stage growth structure with closed form and no zones

(sample HN09601-1,CL)

图4102 “皮壳”结构

(HN22101-1,CL)

Figure 4102 Cathodoluminescence pattern with a outer coat

(sample HN22101-1,CL)

钻石(diamond)

1、成份:主要是碳c(含量占9995%) 以及其它微量元素。

2、物理性质:

(1)硬度:H=10, 自然界最坚硬的物质,是九级红蓝宝硬度的150倍。

(2)颜色:以无色白色为主还有黄、棕、粉、蓝、绿、红、褐、黑等彩色钻石,非常珍贵罕见。

(3)色散:色散高(0044),加工打磨后出火反射出五颜六色光芒。

(4)光泽透明度:金刚光泽、透明到不透明。

(5)热导性:自然界中高热导率,热导仪可鉴定。

3、鉴定方法:

(1)光泽:特有的金刚光泽。

(2)密度:595g/cm3 主要是裸钻鉴定,用手掂重,比同等大小其他宝石重。

(3)火彩:切工完美的钻石火彩有跳动感五光十色,亮但比较柔和,仿钻如合成立方氧化锆等也有火彩但是比较呆板单调。

(4)亲油疏水性:用油笔可在钻石表面画出一条线而用水笔画出的线断断续续,一般手摸后可留下很清楚的手印。

(5)棱线:天然钻石硬度大刻面之间的棱线平直而锐利,仿制品棱线成圆滑状有磕碰痕迹。

4、产地:

澳大利亚、安哥拉、扎伊尔、南非、博茨瓦纳、纳米比亚、俄罗斯、加拿大、印度、中国。

澳大利亚产量最大、中国产地有山东、辽宁、湖南等。

5、4c评价:

(1)颜色(color)

D 100 极白

E 99 极白

F 98 优白

G 97 优白

H 96 白

I 95 微黄白

J 94 微黄白(褐灰)

K 93 浅黄白

L 92 浅黄白

M 91 浅黄

N 90 浅黄

(2)净度(clarity)

钻石的所有缺陷称为瑕疵,可分为内部瑕疵和外部瑕疵,在销售过程中瑕疵要称为内含物或包体。

A、内部瑕疵:结晶包体、云状物、点群状包体、羽状纹、内部生长纹、裂理、内部原始晶面、空洞、缺口、击痕、激光孔、须状腰。

B、外部瑕疵:原始晶面、外部生长纹、刮伤、抛光纹、烧痕、额外刻面、棱线磨损。

C、分级

a) 完全无暇级(FL):在10倍镜放大条件下,钻石内外部均无瑕疵。

b) 内部无瑕级(LC):10倍放大条件下钻石内部无瑕,外部可有轻微瑕疵。

c) 极微瑕级(VVS):钻石具极其微小瑕疵10倍镜下几乎观察不到,细小的点状包体、云状包体、生长纹,分为VVS1和VVS2。

d) 微瑕级(VS):具有较小瑕疵,10倍镜下较难观察到,分为VS1和VS2微瑕级以上为肉眼不可见级。

e) 瑕疵级(SI):钻石具有小瑕疵,10倍镜下很容易发现,分为SI1和SI2, 肉眼较难发现。

f)瑕级(I):10倍镜下一目了然肉眼可见分为I1不影响亮度、I2影响亮度、I3影响亮度和透明度。

(3)切工(cut)

a)标准切工可以使钻石璀璨夺目,反之切割比例不当,会极大的影响钻石的亮度和火彩使钻石黯淡无色,标准圆钻切割57到58个刻面。

b)切割形状圆形、椭圆形、橄榄形、水滴形、心形、公主形、祖母绿形。

c)四大切割中心:比利时/安特卫普、美国/纽约、以色列/特拉维夫、印度/孟买。

d)评价标准:比例合适太薄出现鱼眼效应、太厚出现黑底。

(4)克拉重(carat)

1克=5克拉 1克拉=02克 1克拉=100分

钻石的价格和重量的比例是成平方增长。

鉴别钻石的简单方法

一、钻石的单折射

钻石的单折射是由钻石的本质特性决定的。而其他天然宝石或人造宝石大多是双折射的。在10倍放大镜的观察下,很容易看到钻石的棱角出现重叠的影像,同时呈现两个底光。如果双折射的差异较小,比如锆石,也可以看到底光重叠的图像。

B钻石的吸附

对钻石油脂和污垢有一定的亲和力,即油污容易被钻石吸附。所以用手指摸钻石会有黏黏的感觉,手指好像也有黏黏的感觉。这是任何宝石都没有的。这种方法需要训练才能掌握其中的细微差别。

c、直线的特性。

这颗钻石有一个光滑的抛光表面。用钢笔蘸墨水,在钻石上画一圈。如果是真钻石,表面会留下光滑连续的线条,特点是直线。假冒产品会留下一行点。你应该用放大镜用这种方法观察。

d、独特的钻石光泽

在100度左右的白炽灯光下,与赝品对比,很容易看出哪颗钻石有钻石光泽。这种方法不应在太暗或强光下进行。

净度是决定钻石价值的四项质量因素(4C 标准)之一从定义上看,净度指的是钻石不含内含物和表面特征的程度内含物和表面特征位于不同位置内含物在钻石内部,而表面特征位于钻石的外部尽管有些内含物和表面特征微小到肉眼不可见,但它们都可能会影响钻石的明亮度

内含物和表面特征生成于不同的阶段内含物可能在钻石形成时就存在了,而表面特征则可能在切磨、镶嵌甚至是佩戴的过程产生

内含物的种类很多,也被称为内部净度特征钻石是在极高温和高压下形成的,可能会包覆进细小的结晶体结晶体是常见的一种内含物被包覆进来的结晶体通常要在钻石被放大10倍的情况下才可见如果钻石的原子结构不规则,则会有另一种净度特征叫做孪晶纹,看起来就像是晕染的线条或者条纹钻石也可能会有内部的破裂,这些破裂发生于钻石的形成过程中或者形成后,因其酷似羽毛的外观通常被称为羽裂纹

表面特征发生在钻石形成之后的切磨、镶嵌或者佩戴过程中在钻石的打磨过程中,额外刻面、抛光线(通常是一些互相平行的槽线或者脊线)或者由抛光轮过热造成的灼伤都有可能造成表面特征在钻石的处理、镶嵌以及佩戴中有可能会发生小缺口、刮痕、缺口或者磨损痕,也会造成表面特征缺口通常指的是在腰围处发生的部分钻石崩缺后形成的浅浅的开口

很多内含物和表面特征都微小到只有受过专业训练的钻石鉴定人员才能看出来有些钻石达到无瑕级,即没有任何内含物和表面特征钻石的价值与其稀有程度相关,因此,无瑕级的钻石是非常罕见的,因而也是最具价值的

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/7806554.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存