肌肉收缩时是等长收缩还是等张收缩?

肌肉收缩时是等长收缩还是等张收缩?,第1张

等长收缩:  

所谓等长收缩,是指肌肉在收缩过程中肌肉长度不变,不产生关节运动,但肌肉内部的张力增加。特点是张力等于外加阻力,肌长度不变。作用是支持、固定、维持某种身体姿势。其固定功能还可为其他关节的运动创造适宜条件。  

例如:站立、悬垂、支撑等动作。

等张收缩:  

和等长收缩相对应的就是等张收缩。可以把上面的定义反转过来,就是肌肉收缩的过程中张力保持不变,但长度缩短(或者延长),引起关节活动。最大等长收缩时,只有在“顶点”即骨杠杆效率最差的关节角度下,肌肉才有可能达到最大收缩。而在其他关节角度下,肌肉收缩均小于自身最大力量。

例如:推举杠铃, 关节角度在120°时肱二头肌收缩张力最大,关节角度在30°时肱二头肌收缩张力最小。

扩展资料

等长收缩和等张收缩

等长收缩和等张收缩肌肉承受的负荷有两种:一种是前负荷,它是肌肉收缩前就加在肌肉上的负荷;另一种是后负荷,它是肌肉开始收缩时才遇到的负荷或阻力。

后负荷能阻碍肌肉收缩时的长度缩短。在有后负荷的情况下,肌肉开始收缩时的首先表现总是张力增加而长度不变,此即等长收缩;而后当肌肉张力增加到等于或稍大于后负荷时,肌肉则表现出长度缩短而张力不再增加,此称等张收缩。等长收缩利于机体维持姿势,等张收缩可移动负荷作功。人体内经常是这两种收缩形式不同程度的复合。

前负荷使肌肉收缩前处于某种被拉长的状态,即使肌肉具有一定的初长。在一定范围内,前负荷增加即肌肉初长增加,肌肉等长收缩产生的张力也增加。最适前负荷时肌肉的初长为最适初长,此时进行收缩,可产生最佳的收缩效果:产生的张力最大、缩短的速度最快。

参考资料:

-等长收缩和等张收缩

随着刺激强度的增加,肌肉收缩强度逐渐增强。具体变化如下:

单根神经纤维或肌纤维对刺激的反应是“全或无”式的。单在神经肌肉标本中,则表现为一定范围内肌肉收缩的幅度同刺激神经的强度成正比。

因为坐骨神经干中含有数十条粗细不等的神经纤维,其兴奋性也不相同。弱刺激只能使其中少量兴奋性高的神经纤维先兴奋,并引起它所支配的少量肌纤维收缩。

随着刺激强度增大,发生兴奋的神经纤维数目增多,结果肌肉收缩幅度随刺激强度的增加而增加。当刺激达到一定程度,神经干中全部神经纤维兴奋,其所支配的全部肌纤维也都发生兴奋和收缩,从而引起肌肉的最大收缩。此后,若再增加刺激强度,肌肉收缩幅度不再增加。

扩展资料:

Huxley(1969)提倡了一套微丝滑行学说(sliding filament theory),作为肌肉收缩原理的解释。根据这套学说,肌肉收缩是由于肌动蛋白微丝(细丝)在肌球蛋白微丝(粗丝)之上滑行所致。在整个收缩的过程之中,肌球蛋白微丝和肌动蛋白微丝本身的长度则没有改变。

微丝滑行的实际情况仍需等待进一步的阐释,但相信肌球蛋白微丝的突起部分(称作横桥或交叉桥,cross bridges)与肌动蛋白微丝上的一些特殊位置形成了一种称作肌动肌球蛋白(actomyosin)的复合蛋白,在ATP的作用之下,就能促使肌肉产生收缩的现象。

——肌肉收缩

法国思想家伏尔泰曾说“生命在于运 动”,运动是生命的基础,而肌肉又是运动的基础。肌肉包括心肌,骨骼肌和平滑肌,本文章主要解释骨骼肌是如何收缩的。每一个动作的完成都需要肌肉的收缩,那么肌肉又是如何来收缩的呢?这个过程既复杂,又简单,它的简单在于一气呵成,肌肉瞬间收缩,复杂性又在于其中的具体过程。

要想理解骨骼肌收缩的原理,就必须先了解骨骼肌的结构,以下分别从光镜结构和电镜结构来解释。

首先,一块肌外面有一层肌外膜,而一块肌由很多被肌束膜包裹的肌束组成,每一个肌束又由许多肌细胞(也叫肌纤维)组成,这些肌纤维之间有肌内膜相连,肌细胞的细胞膜也叫做肌膜。

肌纤维是长条状的细胞,一个肌纤维里有很多个细胞核。在光镜下可以看到肌纤维有明暗相间的条纹,分别称为明带(I带)和暗带(A带),在暗带中又有一个颜色稍浅的H带,在H带中间又有一条M线,在明带中间有一条Z线。而肌肉收缩的最小单位是肌节,一个肌节是由一个暗带和两个1/2明带组成。肌肉的收缩就是靠明带的缩短来完成的,为了进一步了解这些不同的带是如何形成的以及肌肉收缩原理就必须知道骨骼肌的电子镜下结构。

在电镜下,肌纤维是由粗肌丝和细肌丝构成。粗肌丝构成了暗带,由M线固定,细肌丝构成了明带,细肌丝中间由Z线固定,因为两种肌丝在暗带不完全重合,所以就形成了H带。粗肌丝是由肌球蛋白组成,肌球蛋白形状就像豆芽菜,分为头部和杆部,头部具有ATP酶活性可以产生动力,有趣的一点是头部是可以向内屈一定角度的。细肌丝是由三种蛋白构成,分别是肌动蛋白,肌钙蛋白和原肌球蛋白。肌动蛋白相应位点可以与肌球蛋白的头部结合,两者结合后就会激活肌球蛋白头部的酶活性提供动力使得肌球蛋白的头部向内摆,从而使得肌丝滑动达到了肌肉收缩的目的。由于肌肉的收缩与舒张处于不断变换更替状态,所以肌钙蛋白(上图中的肌原蛋白)和原肌球蛋白作为开关的作用就显示出来了。当肌肉处于舒张状态时,原肌球蛋白会结合在肌动蛋白上,掩盖住肌动蛋白与肌球蛋白的结合位点,使得两者无法结合。肌钙蛋白连接在肌动蛋白和原肌球蛋白上,当肌钙蛋白与钙离子结合后会导致原肌球蛋白构象改变,从而肌动蛋白与肌球蛋白的结合位点暴露。

那么骨骼肌究竟是如何进行收缩的呢?首先大脑传来的电信号到达神经末梢,动作电位传至神经末梢的细胞膜上,膜上的钙离子电压门控通道开放,神经与肌肉之间间隙的钙离子内流,激活突触小泡里神经递质乙酰胆碱的释放,这些乙酰胆碱与骨骼肌细胞膜上N2型受体阳离子通道(化学门控通道)相结合,钠离子经通道内流后骨骼肌细胞膜产生动作电位,随着横小管传至肌细胞内部(横小管是肌膜向细胞内凹陷形成),接着细胞内的钙离子储存库终池上电压门控钙离子通道打开,大量钙离子流入细胞质,然后与肌钙蛋白结合使得原肌球蛋白的构象改变,暴露出肌动蛋白与肌球蛋白的结合位点,肌球蛋白头部激活,产生动力,头部向内摆动,细肌丝向肌小节内部滑动从而完成了骨骼肌的收缩这一过程。

肌肉的收缩原理解释了很多有趣的现象。南美印第安人从植物中提取出了筒箭毒碱,并用于捕猎中,使得猎物肌肉麻痹无法动弹。后来科学家才发现这种物质阻断了骨骼肌膜上的N2型乙酰胆碱受体阳离子通道,也就是阻断了骨骼肌的兴奋所以肌肉也就麻痹了。

有机磷农药可以使得骨骼肌细胞膜上的胆碱酯酶失活,从而乙酰胆碱无法被代谢掉,这就导致了肌肉的束颤。同时,乙酰胆碱不只是存在于神经肌接头处的N2受体,它也是作用于M受体的递质,所以中毒后也产生促副交感作用,如唾液分泌增加、视野模糊(睫状肌收缩加强,睫状小带松弛,晶状体变凸,屈光度变大产生近视样改变)、汗液分泌增加、瞳孔缩小等症状。

新斯的明作为重症肌无力的首选药是通过抑制胆碱酯酶的活性来增强肌肉收缩的。

由特殊分化的肌细胞构成的动物的基本组织。肌细胞间有少量结缔组织,并有毛细血管和神经纤维等。肌细胞外形细长因此又称肌纤维。肌细胞的细胞膜叫做肌膜,其细胞质叫肌浆。肌浆中含有肌丝,它是肌细胞收缩的物质基础。根据肌细胞的形态与分布的不同可将肌肉组织分为3类:即骨骼肌、心肌与平滑肌。骨骼肌一般通过腱附于骨骼上,但也有例外,如食管上部的肌层及面部表情肌并不附于骨骼上 。心肌分布于心脏,构成心房、心室壁上的心肌层,也见于靠近心脏的大血管壁上。平滑肌分布于内脏和血管壁。骨骼肌与心肌的肌纤维均有横纹,又称横纹肌。平滑肌纤维无横纹。肌肉组织具有收缩特性,是躯体和四肢运动,以及体内消化、呼吸、循环和排泄等生理过程的动力来源。骨骼肌的收缩受意志支配属于随意肌。心肌与平滑肌受自主性神经支配属于不随意肌。 骨骼肌纤维一般为长圆柱形,长约1~40毫米,直径10~100 微米。每条肌纤维周围均有一薄层结缔组织称为肌内膜。由数条至数十条肌纤维集合成肌束,肌束外有较厚的结缔组织称为肌束膜,由许多肌束组成一块肌肉,其表面的结缔组织称肌外膜,即深筋膜。各结缔组织中均有丰富的血管,肌内膜中有毛细血管网包绕于肌纤维周围。肌肉的结缔组织中有传入、传出神经纤维,均为有髓神经纤维。分布于肌肉内血管壁上的神经为自主性神经是无髓神经纤维。 平滑肌纤维一般为梭形,长约20~300 微米,直径约6微米,妊娠期子宫的平滑肌长可达500微米,核为长椭圆形位于肌纤维的中央基膜附于肌膜之外。平滑肌常排列成束或排列成层。按其神经末梢分布方式可分为两类 :一类为少数,肌细胞的表面有神经末梢分布,其末梢呈念珠状膨大,而其他多数平滑肌细胞没有神经末梢,这些细胞则通过平滑肌细胞的缝管连接传递信息,使神经冲动扩散,机体内多数平滑肌如分布于消化管、子宫壁的平滑肌均属此类。另一类是多数,每个肌细胞表面都有神经末梢分布,各细胞直接受神经的控制,如眼的瞳孔括约肌与开大肌属于此类。此外,还有中间型的。平滑肌除具有收缩功能外,还有产生细胞间质的功能。 心肌纤维呈圆柱形,直径约为15~20微米。心肌纤维有分支,互相连接成网,因此心肌可同时收缩 。心肌的生理特点是能够自动地有节律地收缩。

采纳哦

您好,肌肉在运动的时候,会处于伸拉收缩的状态,用专业术语说这叫顶峰收缩,长期锻炼保持这个状态,会使肌肉形成肌肉记忆,从而令肌肉生长,这是中阶健身爱好者使用的健身方法,不推荐初级者使用。

希望能帮到您,谢谢!

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10175349.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-30
下一篇2023-10-30

发表评论

登录后才能评论

评论列表(0条)

    保存