弯矩与应变的关系公式

弯矩与应变的关系公式,第1张

弯矩与应变的关系公式ε=ΔL/L。

电阻应变片式传感器测弯矩、扭矩一般就半桥和全桥两种方式。除非弹性体位置有限,建议采用全桥方式测应变值。将应变片按斜45度方向贴在弹性体上。

半桥贴两组,全桥贴四组,每组一片或两片。将应变片接线引出到应变仪,由应变仪提供供桥电源和接受应变信号,应变仪负责将应变信号放大后输出到显示屏。

静力学关系

上面虽已得到正应力分布规律,但还不能用所给公式直接计算梁纯弯曲时横截面上的正应力。至此有两个问题尚未解决:一是中性层的曲率半径ρ仍未知;二是中性轴位置未知,故式中之y还无从确定。解决这两个问题,需要借助于静力学关系。

应力是物体内部的力的表现形式,通常用于描述物体受力后的反应或变形情况。它是单位面积上作用的力,可以通过将力除以受力面积来计算。

应力可以分为三种类型:拉应力、压应力和剪应力。

1拉应力

当一个物体被外部力拉伸时,在受力方向上产生的内部应力称为拉应力。拉应力使物体在受力方向上发生变长。

2 压应力

当一个物体被外部力压缩时,在受力方向上产生的内部应力称为压应力。压应力使物体在受力方向上发生变短。

3 剪应力

当一个物体受到共面两个相对方向的外部力时,在平行于力的平面上产生的内部应力称为剪应力。剪应力使物体在剪切平面上发生形变。

应力的大小可以通过施加的力以及受力面积来计算。一般来说,单位面积上的应力越大,物体受力越强烈。

应力是材料力学中重要的概念,对于研究材料的强度、变形性能以及结构的稳定性等方面具有重要意义。

扭力是指作用在物体上使其绕轴线旋转的力,也称为转矩。它是一个矢量量值,具有大小和方向。

当一个物体受到扭转或者转动时,外部施加的力会产生扭力。扭力的大小取决于施加力的大小和与轴线的距离,以及力的作用方向和旋转轴线的方向。

扭力可以通过扭矩公式来计算:

扭矩 = 力 × 距离 × sin(θ)

其中,力表示施加的力的大小,距离表示力作用点到旋转轴线的距离,θ表示力的作用角度与旋转轴线的夹角。

单位国际制中,扭力的单位是牛顿米(N·m)或者提诺(Nm)。

扭力在物理学和工程中有广泛应用,例如在机械传动系统中,扭力用于传递能量和控制旋转运动;在车辆的驱动系统中,引擎产生的扭力用于驱动车轮;在建筑结构中,扭力用于分析和设计梁柱的承载能力等。

应力和扭力的关系

应力和扭力是两个不同的概念,但它们之间存在某种联系。应力是描述物体内部受力状态的量,而扭力是作用于物体上使其绕轴线旋转的力。

在弹性材料力学中,当一个物体受到扭转时,会产生剪应力。剪应力是一种类型的应力,它描述了物体内部由于受到扭转而产生的剪切变形。

剪应力和扭力之间的关系可以用下面的公式表示:

扭力 = 剪应力 × 截面积 × 距离

其中,剪应力表示沿垂直平面上的单位面积上作用的力,截面积表示垂直于扭转轴的截面的面积,距离表示力的作用点到扭转轴的距离。

这个公式表明,在一个材料上施加的剪应力越大,截面积越大,距离越大,相应的扭力也会增加。

所以,扭力与剪应力之间存在一定的关系,但请注意,这仅仅适用于受到扭转的材料或物体。其他情况下的应力和扭力之间可能没有直接的关系。

应力和扭力的实际应用

1结构设计与工程

在建筑结构设计中,需要考虑各种受力情况,如压应力、拉应力和剪应力,以确保结构的稳定性和安全性。扭力在桥梁、塔楼等结构中也是重要考虑因素,用于评估结构的承载能力和防止变形。

2 机械工程

在机械设计和制造中,应力和扭力的分析对于确定零件的强度和耐久性非常重要。例如,在轴承、齿轮、传动系统等机械装置中,需要对扭矩和剪应力进行计算和控制,以确保它们可以承受预期的负荷和工作条件。

3 材料科学与工艺

研究材料的应力和扭力特性有助于理解材料的强度、刚度和变形行为。这对于选择合适的材料、优化材料的加工工艺以及预测材料在特定条件下的性能非常重要。

4 汽车工程

在汽车设计中,引擎的扭力输出是一个重要考虑因素。通过扭力的传递和转化,驱动轮可以提供足够的牵引力,实现车辆的加速和运动。

5 电子设备

在电子设备和芯片封装中,应力分析用于评估材料的可靠性和热膨胀匹配。通过对应力的管理,可以减少裂纹和断裂的风险,提高设备的性能和寿命。

应力和扭力的例题

1 一个长为2米,宽为05米,厚度为01米的矩形板材,受到垂直于板面方向的拉力为5000牛顿,计算该板材受到的拉应力。

答案:拉应力 = 拉力 / 截面积 = 5000 N / (2 m × 05 m) = 5000 Pa = 5 kPa

2 一个圆柱体的直径为10厘米,长度为20厘米,承受着沿轴线方向的扭力为100牛顿·米,计算该圆柱体受到的剪应力。

答案:剪应力 = 扭力 / (截面积×距离) = 100 N·m / (π×(5 cm)^2×20 cm) ≈ 0127 MPa

3 一个轴承承受着径向力1500牛顿和切向力800牛顿,轴承的外径为20厘米,内径为12厘米,求轴承上的最大法向和剪应力。

答案:最大法向应力等于最大径向力除以柱体截面积,最大径向应力 = 1500 N / (π×((20 cm)^2 - (12 cm)^2)) ≈ 209 MPa

最大剪应力等于切向力除以柱体截面积,最大剪应力 = 800 N / (π×(20 cm)×(12 cm)) ≈ 034 MPa

这些例题展示了应力和扭力的计算方法,根据具体情况,你可以应用不同的公式来解决各种应力和扭力相关问题。

应力是零件截面分布的内力反映(或换算到)单位面积上所受到的力,正应力是法向方向的,切应力是垂直于法向方向的。轴力即轴向力,对轴受到轴线上的拉力或压力,除以轴截面面积,即为正应力,无切应力。

若轴的一端或任何一点受到垂直于轴线的力(如悬臂量,一端固定,另一端或中间悬挂重物),则承受剪切力和弯曲应力,切应力即某截面单位面积的剪切力。

承受弯矩的梁(广义的)一定伴随着剪切力。

有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。材料在交变应力作用下发生的破坏称为疲劳破坏。

通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。

扩展资料:

将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。

应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。

通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。

--法向应力

--应力

--轴力

--切应力

影响齿面接触应力和弯曲疲劳强度的因素有很多,齿轮材料、热处理,载荷的大小、形式,润滑情况,等。但是,从齿轮参数设计上来讲,影响齿面接触应力的因素是,齿廓的曲率的大小,曲率越大曲率半径越小,齿面的接触强度就越低。

影响弯曲疲劳强度的因素是齿厚,尤其是齿根厚。所以,一般小齿轮都采用正变位,以提高曲率半径、增加齿厚。当然,还可以减小齿根的滑动率。

扩展资料:

在机械设计中,可采用提高接触强度的措施来提高零件的使用寿命。例如,提高表面光洁度,在两滚动体接触表面间加润滑剂,用各种热处理工艺提高滚动体接触表面的硬度等。

滚动轴承、齿轮和凸轮等零件,在较高的接触应力的反复作用下,会在接触表面的局部区域产生小块或小片金属剥落,形成麻点和凹坑,使零件运转噪声增大,振动加剧,温度升高,磨损加快,最后导致零件失效。因此设计这类零件时,必须考虑接触强度,包括接触静强度和接触疲劳强度。

两弹性物体接触时,最大接触切应力出现在接触点下方某一深度处与接触面成45°角的平面上。在该平面上的切应力分布,随表层向下而增大,达到最大值后又随离表层距离增大而减小。当两物体滚动接触时,切应力由最大值变到零,再由零到最大值,形成脉动循环应力,使物体产生接触疲劳破坏,其裂纹方向与接触表面成45°角。

这种理论广泛应用在传统的齿轮接触疲劳强度计算中。在滚动轴承的接触疲劳计算中,认为裂纹源是由于在ZY平面内,一定深度处的切应力对称循环作用引起的。数值也随离表面的深度而变化接触疲劳裂纹主要达到最大值处产生。然后裂纹平行于表面扩展直到局部表层突然断裂。

——接触应力

——弯曲强度

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10486502.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-07
下一篇2023-11-07

发表评论

登录后才能评论

评论列表(0条)

    保存