4月26日12点42分,我国在酒泉卫星发射中心使用长征十一号固体运载火箭,以“一箭五星”的方式,成功将 “珠海一号”五颗卫星准确送入预定轨道。西安航天领域硬科技代表之一——航天科技四院,为该型火箭提供了主动力,全部四级主发动机表现完美,全力推举火箭升空。
此次发射是长征十一号固体运载火箭继2015年“一箭四星”、2016年“一箭五星”和今年1月“一箭六星”连续发射成功之后,又一次一箭多星发射任务。长征十一号固体运载火箭连续4次发射成功,均做到飞行过程零问题、入轨精度高,体现了该火箭的高性能与高可靠性。
发展航天,动力先行。作为我国固体火箭发动机研制的重点单位,从2008年开始,四院就以固体动力在运载领域工程化应用为目标,以固体运载火箭需求为导向,率先开展了120吨整体式大推力固体发动机关键技术研究。随后以加强总体能力建设为契机,创新组织管理模式,成立了专门的固体动力技术运载研究室;以集成演示验证试验为途径,在借鉴原有成熟技术基础上,集中优势资源,加快突破关键技术及产品研发,相继取得了120吨大推力整体式固体火箭发动机、分段对接发动机等演示验证试验的圆满成功,填补了我国在该领域的技术空白。
2012年, 长征十一号火箭正式立项启动研制。火箭一级采用的是120吨整体式大推力固体发动机,技术难度大、研制时间紧,四院研制队伍遵循“独立自主、开拓创新、勇于探索、刻苦攻关”的思路,在两年内实现了首台全尺寸发动机地面热试车,成功突破了多项关键技术,在3年内全面完成了方案和初样研制工作,实现了该发动机多台次地面大型联试的成功,从正式立项到实现工程化应用仅用了短短五年时间。发动机性能接近国际先进水平,刷新了我国固体发动机研制史上多项纪录。
此次发射是长征十一号固体运载火箭首次为商业卫星客户提供“专车”服务,是国内开展的首次同一轨道面五颗卫星的组网发射,大大降低了客户组网成本。这些卫星主要用于遥感成像,为国土、农林、环保、规划、交通、海洋等领域提供卫星大数据服务。
长征十一号运载火箭拓展了我国航天运载系统新领域,是航天固体动力向宇航运载领域拓展的重要里程碑。未来,四院将研制直径更大、推力更强、实用程度更高的固体发动机,进一步提高固体火箭运载能力,为中国人探索浩瀚宇宙,实现“发展航天事业,建设航天强国”的梦想而不懈努力。
当运载火箭的速度固定时,发射场的纬度越低,地球的旋转速度就越大,从而使发射卫星的轨道速度达到。如果卫星从赤道向East发射,地球的旋转能量可以最大程度地利用,这实质上是借助地球的旋转力来提高卫星的飞行速度。
另外,当地球静止轨道卫星从赤道或赤道附近的发射场向东发射时,卫星的飞行轨道和最终轨道可以在同一平面内或接近同一平面,这样可以节省卫星侧向机动到地球静止轨道位置所需的大量能量大大延长了卫星的使用寿命。
因此,在选择发射场时,应尽量选择低纬度地区,最好靠近赤道,这样才能借力,省力。例如,从法属圭亚那库鲁航天中心以52°n的速度发射相同质量的地球静止轨道卫星,与从美国卡纳维拉尔角以282°n的速度发射相比,将节省15%的推进剂。另一种方法是建立海平面发射。海上发射的优点是可以避免火箭飞过居民区。海上发射平台可根据需要移动,可灵活选择发射位置。它能有效降低火箭发射成本,节约火箭燃料,增加火箭有效载荷。因为离赤道越近,地球自转产生的线速度越大,就越能利用地球自转力来增加运载能力,轨道角也就越好,从而延长卫星的运行寿命。
因为海上发射场可以移动,所以在陆地上具有一定的机动性优势。卫星在赤道附近发射时,可以直接进入地球静止轨道,无需燃料消耗。此外,它可以最大限度地利用地球自转带来的额外推力,减少火箭升空所需的燃料,进而提高火箭的运载能力。
一、固体火箭发动机
固体火箭发动机为使用固体推进剂的化学火箭发动机。固体推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。
固体火箭发动机由药柱、燃烧室、喷管组件和点火装置等组成。药柱是由推进剂与少量添加剂制成的中空圆柱体(中空部分为燃烧面,其横截面形状有圆形、星形等)。药柱置于燃烧室(一般即为发动机壳体)中。在推进剂燃烧时,燃烧室须承受25O0~35O0度的高温和102~2×107帕的高压力,所以须用高强度合金钢、钛合金或复合材料制造,并在药柱与燃烧内壁间装备隔热衬。
点火装置用于点燃药柱,通常由电发火管和火药盒(装黑火药或烟火剂)组成。通电后由电热丝点燃黑火药,再由黑火药点火燃药拄。
喷管除使燃气膨胀加速产生推力外,为了控制推力方向,常与推力向量控制系统组成喷管组件。该系统能改变燃气喷射角度,从而实现推力方向的改变。
药柱燃烧完毕,发动机便停止工作。
固体火箭发动机与液体火箭发动机相比较,具有结构简单,推进剂密度大,推进剂可以储存在燃烧到中常备待用和操纵方便可靠等优点。缺点是“比冲”小(也叫比推力,是发动机推力与每秒消耗推进剂重量的比值,单位为秒)。固体火箭发动机比冲在25O~300秒,工作时间短,加速度大导致推力不易控制,重复起动困难,从而不利于载人飞行。
固体火箭发动机主要用作火箭弹、导弹和探空火箭的发动机,以及航天器发射和飞机起飞的助推发动机。
二、液体火箭发动机
液体火箭发动机是指液体推进剂的化学火箭发动机。常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。
液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。
推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(25O0一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达2O0大气压(约20OMPa)、温度300O~400O℃,故需要冷却。
推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。
发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作。关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。
液体火箭发动机的优点是比冲高(25O~5OO秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。
冲压喷气发动机
冲压喷气发动机是一种利用迎面气流进入发动机后减速,使空气提高静压的一种空气喷气发动机。它通常由进气道(又称扩压器)、燃烧室、推进喷管三部组成。冲压发动机没有压气机(也就不需要燃气涡轮),所以又称为不带压气机的空气喷气发动机。
这种发动机压缩空气的方法,是靠飞行器高速飞行时的相对气流进入发动机进气道中减速,将动能转变成压力能(例如进气速度为3倍音速时,理论上可使空气压力提高37倍)。冲压发动机的工作时,高速气流迎面向发动机吹来,在进气道内扩张减速,气压和温度升高后进入燃烧室与燃油(一般为煤油)混合燃烧,将温度提高到2000一2200℃甚至更高,高温燃气随后经推进喷管膨胀加速,由喷口高速排出而产生推力。冲压发动机的推力与进气速度有关,如进气速度为3倍音速时,在地面产生的静推力可以超过2OO千牛。
冲压发动机的构造简单、重量轻、推重比大、成本低。但因没有压气机,不能在静止的条件下起动,所以不宜作为普通飞机的动力装置,而常与别的发动机配合使用,成为组合式动力装置。如冲压发动机与火箭发动机组合,冲压发动机与涡喷发动机或涡扇发动机组合等。安装组合式动力装置的飞行器,在起飞时开动火箭发动机、涡喷或涡扇发动机,待飞行速度足够使冲压发动机正常工作的时,再使用冲压发动机而关闭与之配合工作的发动机;在着陆阶段,当飞行器的飞行速度降低至冲压发动机不能正常工作时,又重新起动与之配合的发动机。如果冲压发动机作为飞行器的动力装置单独使用时,则这种飞行器必须由其他飞行器携带至空中并具有一定速度时,才能将冲压发动机起动后投放。冲压发动机或组合式冲压发动机一般用于导弹和超音速或亚音速靶机上。按应用范围划分,冲压发动机分为亚音速、超音速、高超音速三类。
1、亚音速冲压发动机
亚音速冲压发动机使用扩散形进气道和收敛形喷管,以航空煤油为燃料。飞行时增压比不超过 189,飞行马赫数小于 O5时一般不能正常工作。亚音速冲压发动机用在亚音速航空器上,如亚音速靶机。
2、超音速冲压发动机
超音速冲压发动机采用超音速进气道(燃烧室入口为亚音速气流)和收敛形或收敛扩散形喷管,用航空煤油或烃类燃料。超音速冲压发动机的推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹(一般与固体火箭发动机相配合)。
3、高超音速冲压发动机
这种发动机燃烧在超音速下进行,使用碳氢燃料或液氢燃料,飞行马赫数高达5~16,目前高超音速冲压发动机正处于研制之中。 由于超音速冲压发动机的燃烧室入口为亚音速气流,也有将前两类发动机统称为亚音速冲压发动机,而将第三种发动机称为超音速冲压发动机。
脉动喷气发动机
脉动喷气发动机是喷气发动机的一种,可用于靶机,导弹或航空模型上。德国纳粹在第二次世界大战的后期,曾用它来推动V-1导弹,轰炸过伦敦。这种发动机的结构如图所示,它的前部装有单向活门,之后是含有燃油喷嘴和火花塞的燃烧室,最后是特殊设计的长长的尾喷管。
脉动喷气发动机工作时,首先把压缩空气打入单向活门,或使发动机在空中运动,这时便有气流进入燃烧室,然后油咀喷油,火花塞点火燃烧。这时长尾喷管在燃气喷出后,由于燃气流的惯性作用,虽然燃烧室内的压强同外面大气的压强相等,仍会继续向外喷,所以在燃烧室内造成空气稀薄的现象,使压强显著降低到小于大气压,于是空气再次打开单向活门流入燃烧室,喷油点火燃烧,开始第二个循环。这样周而复始,发动机便可不断地工作了。这种发动机由进气到燃烧、排气的循环过程进行得很快,一秒钟大约可达40~50次。
脉动式发动机在原地可以起动,构造简单,重量轻,造价便宜。这些都是它的优点。但它只适于低速飞行(速度极限约为每小时64O~8O0公里),飞行高度也有限,单向活门的工作寿命短,加上振动剧烈,燃油消耗率大等缺点,使得它的应用受到限制。
涡轮喷气发动机
现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。
空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。
进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。
从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。
从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。
一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至15倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。
涡轮风扇发动机
自从惠特尔发明了第一台涡轮喷气发动机以后,涡轮喷气发动机很快便以其强大的动力、优异的高速性能取代了活塞式发动机,成为战斗机的首选动力装置,并开始在其他飞机中开始得到应用。
但是,随着喷气技术的发展,涡轮喷气发动机的缺点也越来越突出,那就是在低速下耗油量大,效率较低,使飞机的航程变得很短。尽管这对于执行防空任务的高速战斗机还并不十分严重,但若用在对经济性有严格要求的亚音速民用运输机上却是不可接受的。
那么,如何才能同时提高喷气发动机的热效率和推进效率,也就是怎样才能既提高涡轮前温度又至少不增加排气速度呢?答案就是采用涡轮风扇发动机。这种发动机在涡轮喷气发动机的的基础上增加了几级涡轮,并由这些涡轮带动一排或几排风扇,风扇后的气流分为两部分,一部分进入压气机(内涵道),另一部分则不经过燃烧,直接排到空气中(外涵道)。由于涡轮风扇发动机一部分的燃气能量被用来带动前端的风扇,因此降低了排气速度,提高了推进效率,而且,如果为提高热效率而提高涡轮前温度后,可以通过调整涡轮结构参数和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,就不会增加排气速度。这样,对于涡轮风扇发动机来讲,热效率和推进效率不再矛盾,只要结构和材料允许,提高涡轮前温度总是有利的。
目前航空用涡轮风扇发动机主要分两类,即不加力式涡轮风扇发动机和加力式涡轮风扇发动机。前者主要用于高亚音速运输机,后者主要用于歼击机,由于用途不同,这两类发动机的结构参数也大不相同。
不加力式涡轮风扇发动机不仅涡轮前温度较高,而且风扇直径较大,涵道比可达8以上,这种发动机的经济性优于涡轮喷气发动机,而可用飞行速度又比活塞式发动机高,在现代大型干线客机、军用运输机等最大速度为M09左右的飞机中得到广泛的应用。根据热机的原理,当发动机的功率一定时,参加推进的工质越多,所获得的推力就越大,不加力式涡轮风扇发动机由于风扇直径大,空气流量就大,因而推力也较大。同时由于排气速度较低,这种发动机的噪音也较小。
加力式涡轮风扇发动机在飞机巡航中是不开加力的,这时它相当于一台不加力式涡轮风扇发动机,但为了追求高的推重比和减小阻力,这种发动机的涵道比一般在10以下。在高速飞行时,发动机的加力打开,外涵道的空气和涡轮后的燃气一同进入加力燃烧室喷油后再次燃烧,使推力可大幅度增加,甚至超过了加力式涡轮喷气发动机,而且随着速度的增加,这种发动机的加力比还会上升,并且耗油率有所下降。加力式涡轮风扇发动机由于具有这种低速时较油耗低,开加力时推重比大的特点,目前已在新一代歼击机上得到广泛应用。
涡轮螺旋桨发动机
一般来说,现代不加力涡轮风扇发动机的涵道比是有着不断加大的趋势的。因为对于涡轮风扇发动机来说,若飞行速度一定,要提高飞机的推进效率,也就是要降低排气速度和飞行速度的差值,需要加大涵道比;而同时随着发动机材料和结构工艺的提高,许用的涡轮前温度也不断提高,这也要求相应地增大涵道比。对于一架低速(500~600km/h)的飞机来说,在一定的涡轮前温度下,其适当的涵道比应为50以上,这显然是发动机的结构所无法承受的。
为了提高效率,人们索性便抛去了风扇的外涵壳体,用螺旋桨代替了风扇,便形成了涡轮螺旋桨发动机,简称涡桨发动机。涡轮螺旋桨发动机由螺旋桨和燃气发生器组成,螺旋桨由涡轮带动。由于螺旋桨的直径较大,转速要远比涡轮低,只有大约1000转/分,为使涡轮和螺旋桨都工作在正常的范围内,需要在它们之间安装一个减速器,将涡轮转速降至十分之一左右后,才可驱动螺旋桨。这种减速器的负荷重,结构复杂,制造成本高,它的重量一般相当于压气机和涡轮的总重,作为发动机整体的一个部件,减速器在设计、制造和试验中占有相当重要的地位。
涡轮螺旋桨发动机的螺旋桨后的空气流就相当于涡轮风扇发动机的外涵道,由于螺旋桨的直径比发动机大很多,气流量也远大于内涵道,因此这种发动机实际上相当于一台超大涵道比的涡轮风扇发动机。
尽管工作原理近似,但涡轮螺旋桨发动机和涡轮风扇发动机在产生动力方面却有着很大的不同,涡轮螺旋桨发动机的主要功率输出方式为螺旋桨的轴功率,而尾喷管喷出的燃气推力极小,只占总推力的5%左右,为了驱动大功率的螺旋桨,涡轮级数也比涡轮风扇发动机要多,一般为2~6级。
同活塞式发动机+螺旋桨相比,涡轮螺旋桨发动机有很多优点。首先,它的功率大,功重比(功率/重量)也大,最大功率可超过10000马力,功重比为4以上;而活塞式发动机最大不过三四千马力,功重比2左右。其次,由于减少了运动部件,尤其是没有做往复运动的活塞,涡轮螺旋桨发动机运转稳定性好,噪音小,工作寿命长,维修费用也较低。而且,由于核心部分采用燃气发生器,涡轮螺旋桨发动机的适用高度和速度范围都要比活塞式发动机高很多。在耗油率方面,二者相差不多,但涡轮螺旋桨发动机所使用的煤油要比活塞式发动机的汽油便宜。
由于涵道比大,涡轮螺旋桨发动机在低速下效率要高于涡轮风扇发动机,但受到螺旋桨效率的影响,它的适用速度不能太高,一般要小于900km/h。目前在中低速飞机或对低速性能有严格要求的巡逻、反潜或灭火等类型飞机中的到广泛应用。
涡轮轴发动机
在带有压气机的涡轮发动机这一类型中,涡轮轴发动机出现得较晚,但已在直升机和垂直/短距起落飞机上得到了广泛的应用。
涡轮轴发动机于1951年12月开始装在直升机上,作第一次飞行。那时它属于涡轮螺桨发动机,并没有自成体系。以后随着直升机在军事和国民经济上使用越来越普遍,涡轮轴发动机才获得独立的地位。
在工作和构造上,涡轮轴发动机同涡轮螺桨发动机根相近。它们都是由涡轮风扇发动机的原理演变而来,只不过后者将风扇变成了螺旋桨,而前者将风扇变成了直升机的旋翼。除此之外,涡轮轴发动机也有自己的特点:它一般装有自由涡轮(即不带动压气机,专为输出功率用的涡轮),而且主要用在直升机和垂直/短距起落飞机上。
在构造上,涡轮轴发动机也有进气道、压气机、燃烧室和尾喷管等燃气发生器基本构造,但它一般都装有自由涡轮,如图所示,前面的是两级普通涡轮,它带动压气机,维持发动机工作,后面的二级是自由涡轮,燃气在其中作功,通过传动轴专门用来带动直升机的旋翼旋转,使它升空飞行。此外,从涡轮流出来的燃气,经过尾喷管喷出,可产生一定的推力,由于喷速不大,这种推力很小,如折合为功率,大约仅占总功率的十分之一左右。有时喷速过小,甚至不产生什么推力。为了合理地安排直升机的结构,涡轮轴发动机的喷口,可以向上,向下或向两侧,不象涡轮喷气发动机那样非向后不可。这有利于直升机设计时的总体安排。
涡轮轴发动机是用于直升机的,它与旋翼配合,构成了直升机的动力装置。按照涡轮风扇发动机的理论,从理论上讲,旋翼的直径愈大愈好。同样的核心发动机,产生同样的循环功率,所配合的旋翼直径愈大,则在旋翼上所产生的升力愈大。事实上,由于在能量转换过程中有损失,旋翼也不可能制成无限大,所以,旋翼的直径是有限制的。——般说,通过旋翼的空气流量是通过涡轮轴发动机的空气流量的500-1000倍。
同涡轮轴发动机和直升机常用的另一种动力装置——活塞发动机采相比,涡轮轴发动机的功率重量比要大得多,在25以上。而且就发动机所产生的功率来说,涡轮轴发动机也大得多,目前使用中的涡轮轴发动机所产生的功率,最高可达6000马力甚至10000马力,活塞发动则相差很远。在经济性上,涡轮轴发动机的耗油率略高于最好的活塞式发动机,但它所用的航空煤油要比前者所用的汽油便宜,这在一定程度上得到了弥补。 当然,涡轮轴发动机也有其不足之处。它制造比较困难,制造成本也较高。特别是由于旋翼的转速更低,它需要比涡轮螺旋桨发动机更重更大的减速齿轮系统,有时它的重量竟占发动机总重量一半以上。
螺桨风扇发动机
桨扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来,目前正处于研究和实验阶段。
桨扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它桨扇)组成。桨扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片。
据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比越来越大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M08~M095的现代高亚音速大型宽体客机,桨扇发动机的概念则应运而生。
由于无涵道外壳,桨扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M08时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左右。
同涡轮螺旋桨发动机相比,桨扇发动机的可用速度又高很多,这是由它们叶片形状不同所决定的。普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M06~M065左右;而桨扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M08时仍有良好的推进效率,是目前新型发动机中最有希望的一种。
当然,桨扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。另外,暴露在空气中的桨扇的气动设计也是目前研究的难点所在。
多级火箭用于发射出大气层的卫星、导弹。
1960年11月5日,我国自制的第一枚短程火箭发射成功,这正好是在苏联专家撤走后的第83天。今天就来聊聊火箭,你可了解火箭为什么有很大的力气?
在发射“神舟九号”的电视直播中,大家肯定注意到,随着“点火”口令下达,发动机会发出震耳欲聋的声音,推举总质量为480吨的火箭和飞船组合体冉冉上升。为什么火箭会有这么大的“力气”?
“长征二号F”火箭点火时,一级火箭和4个助推器的8台煤油液氧YF-100型发动机同时工作,每台发动机的推力是75吨,加在一起600吨。这么大的推力能把重达480吨的火箭抬起推向太空。
火箭飞行速度取决于火箭发动机的喷气速度和火箭的质量比。发动机的喷气速度越大,火箭飞行的速度越快;火箭的质量比越大,火箭飞行能达到的速度就越大。其中,火箭发动机的喷气速度,由发动机的设计水平和推进剂的比冲决定。发动机的设计水平越高,所获得的能量效率越高,火箭发动机的喷气速度越大。推进剂的比冲越高,发动机的喷气速度就越大。火箭的质量比是火箭起飞时的质量(含推进剂)与发动机关机(熄火)时刻的火箭质量(推进剂燃烧尽)之比。质量比越大,火箭的结构质量就越小,所携带的推进剂越多。
随着推进剂质量的减少、助推器和各级火箭的脱落,火箭质量越来越小,速度越来越快,最终,载荷被送入预定轨道。
当第一级火箭的发动机点燃后,火箭就开始脱离发射架上升。几秒后,火箭完全通过发射塔。在离开地面后的几秒内,火箭一直保持垂直飞行。之后,为了保证按合适的方位飞行,发动机喷管的万向节按预定程序旋转,产生横向推力,使火箭从垂直角度稍微倾斜,但基本还是垂直向上飞行的。火箭一开始的加速过程不十分明显,因为整个火箭的质量大得惊人。在第一级推进剂烧完时,重力使火箭缓慢地从微倾斜角度转入水平方向的飞行。这一过程被称为“重力转弯”,帮助火箭从以上升为主转向向前推进,以提高所需的速度。
第一级火箭的推进剂烧完后,爆炸螺栓使其与火箭的其余部分分离。这时,第二级火箭开始点火,继续加速飞行。此时,火箭已飞行2~3分钟。因为火箭卸掉了第一级火箭的结构和推进剂,质量大大减轻,所以即使第二级火箭产生的推力不如第一级大,火箭加速也要比先前快很多。在高度达到150~200千米时,火箭已飞出稠密大气层,有效载荷不再需要整流罩来防护空气动力的作用,按预定程序抛掉整流罩,进一步减轻火箭发动机加速的质量负担。
有些火箭的第二级推进剂,常常在火箭快接近轨道速度时燃烧完毕,爆炸螺栓使第二级火箭与有效载荷分离。这时,有效载荷上的推力器将把它送入最终的轨道。同时,第二级火箭落入大气层。最终,靠空气摩擦使它燃烧,变成灰烬。这样的处理方式,可以避免使第二级火箭的空壳留在太空,成为太空垃圾。如果这些垃圾不巧进入某个卫星的轨道,那将是极大的威胁。
对于低轨道(通常指300千米的高度或更低)的航天器而言,这时火箭就完成了运送任务。但对于发射轨道高度在1000千米以上的航天器或发射行星际探测器,还需要有第三级火箭。在第二级火箭脱离后,火箭在地球引力作用下,开始进入航天技术中称为惯性飞行段的过程,一直到与预定轨道相切的位置。稍后,第三级火箭发动,进入最后加速段飞行,当加速到预定速度时,第三级火箭发动机关机,有效载荷与火箭分离,进入最后的、较高的轨道,或者前往另一行星的轨道。
1科技小作品“火箭”制作方法
能做水火箭就相当可以了。
水火箭的制作(单槽): 1 准备材料。三四个25升的健力宝瓶或可乐瓶, 若干X光片,几个化学器材用的3号和4号软胶塞,一整套单车气门心,剪刀、小刀各一把,透明胶、双面胶和绝缘胶布,502胶水一支。
2 机翼制作。用剪刀将X光片裁成大小相同的直角梯形28块,梯形长12cm,高6cm,斜腰和长底夹角约45度。
另裁4个同上规格但高为8cm,短底相连接两面重叠的梯形(用作机翼的表面)。用双面胶将7小块梯形紧密粘成一个厚的梯形,使之平直平坦,然后用一个大的双面梯形将其紧密包住并粘紧。
为使机翼的厚面平整,可用剪刀或小刀修平修直,然后将机翼的厚面用绝缘胶封住。最后,将机翼两边长出的部分向外折成90度。
这样,按上述方法将其余的X光片做成三个机翼。 3 机身制作。
取一个健力宝瓶(瓶头弧线过度比较自然,作火箭头利于减小空气阻力)在离下端11cm处将其横截剪开,用绝缘胶将带瓶口的部分粘紧在另一个瓶子的底部,用绝缘胶在接口处多缠绕几圈以牢固。 4 气塞制作。
取一个4号的软胶塞,用开洞工具在胶塞的底部正中处开一个比气门芯套筒稍小一点的平直洞,然后用小刀横切去细端约06cm;将气门芯套筒上一个面积较大的“戒指”(五金店有卖),从软胶塞的细端往上把气门芯装好,套上一个同样的“戒指”,拧上螺丝,稍微紧就可以。最后将气塞用磨刀石磨成圆柱体,达到刚好能够完全进入可乐瓶口或稍紧一点,装上气门芯即可使用。
5 炮头制作。取一个3号软胶塞用小刀将其削尖且圆滑。
6 组装机翼。取一个健力宝瓶剪一个长比机翼长稍长的两面相通的圆柱体,然后用透明胶和绝缘胶将4个机翼4等分紧密粘好。
最后,将粘好机翼的圆柱体套在水火箭的底部使其与瓶口相平(这不一定是最佳位置,可在飞行实践中上下调节寻找确定),用绝缘胶缠绕粘紧。 7 其他。
为增大气塞和瓶口的接触面以增大瓶内气压,可用小刀将气塞大端削细一点并使之圆平粗糙。由于机身增长了一节做火箭头,火箭头部分较轻不平衡,可适当往里面塞纸以达到平衡。
为尽可能减小空气阻力,将用软胶塞做成的炮头用502胶水在火箭头瓶口粘好。 按以上方法一个简单的水火箭便制作完成。
根据我们研制的水火箭,通过实践的改进,水平方向飞行可达160米左右,竖直方向飞行可达40~50米。 水火箭发射方法: 1 水量调控。
水火箭用水量和火箭容气空间有一定的比例,不能太多也不能太少,最佳用水量约为火箭容气空间的1/4到2/5之间(25升的空间大约装600毫升左右,可多试验几次寻找确定)。 2 发射角度。
水平方向飞行,由于空气的阻力,发射的最佳角度在50到55度之间,不同的水火箭可能不同,可通过控制变量的方法试验确定。(我们制作的水火箭最佳角度是53度左右)。
竖直方向飞行则为90度。 3 气塞使用。
气塞的使用原理是通过压缩软胶塞体积膨胀来调节气塞的松紧程度,压缩越厉害体积膨胀越大,气塞越紧,要把气塞冲出来的气压就越大,即火箭获得的动力越大。具体使用方法如下:首先拆下气塞的气门芯,将气塞在原形塞进火箭的瓶口内,然后用套筒(一种专门用来拧螺丝的工具,五金店有卖)拧紧气塞的螺丝,最后安装气门芯即可加气使用。
(注:拧紧程度可按需要来调节。) 4 发射稳定调控。
仅讨论水平方向的发射。需要制作一个发射台,发射台要配有导航轨道,导航轨道不要太长也不要太短,一般长为60cm(可用三个教学用的大三角板和两根扫帚柄拼凑而成,为减少扫帚柄作导航轨道时对水火箭的摩擦,可用透明胶粘贴扫帚柄或如图例所示的模型)。
无风天气时,正对目标按最佳发射角度(指发射轨道与地面的夹角)发射。刮风天气时,应视风力和风向适当调偏与发射目标的方向,保持最佳发射角度发射。
5 注意事项。发射时,确保火箭和轨道的平直一致,若偏离1~2度都会影响飞行的平稳性而呈“8”字型飞行。
用气筒打气时,要尽可能平稳,打气频率不要太慢应快点。要尽可能将气塞塞紧,可通过拧紧气塞的螺丝来调节,气塞塞得越紧瓶内气压越大而火箭的动力就越大。
取第一个瓶子,称之为A瓶。在瓶子上下1-1、2-2的位置各画一条线,两条线位置的决定方法如下。
1-1:选瓶上弧线曲度与火箭泡棉头曲度相近处。 2-2:选瓶子下方曲线转直点的下方约05cm处。
自1-1线上方、2-2线下方约05cm处用美工刀(或剪刀)切(剪)开。 用剪刀慢慢修剪至画线处,尽量使其平整,以便与B瓶衔接时可以较为密合。
将火箭泡棉头放置於A瓶上方,由正上方看泡棉头是否对准保特瓶之正中央位置。若已放正,则使用电工胶布缠绕於相接处,加以固定。
取另一个瓶子称之为B瓶,将瓶盖卸下,然后将喷嘴由保特瓶开口处旋紧。 将A、B瓶相连接。
然后至於平坦之桌面或地上滚动,看看是否连接平整,滚动是否平顺。若是,则以电工胶布加以固定。
连接完成图 取第三个瓶子,称为C瓶。在瓶子3-3、4-4之位置各画一条线。
3-3:选瓶子上方曲线转折点的下方约05cm。 4-4:选瓶子下方曲线转折点的下方约05cm。
自3-3线上方、4-4线下方约05cm处用美工刀(剪刀)切(剪)开。 C瓶完成图 。
2航天科技小知识
一、航空航天飞行器上电子设备的特点是:
①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。在高性能飞机和航天器上,这些要求尤为严格。飞机和航天器的舱室容积、载重和电源受到严格限制。卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。导弹和航天器要承受严重的冲击过载、强振动和粒子辐射等。一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。
二、航空航天电子技术的主要发展方向是:
①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。
3航天科技小知识
一、航空航天飞行器上电子设备的特点是: ①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。
在高性能飞机和航天器上,这些要求尤为严格。飞机和航天器的舱室容积、载重和电源受到严格限制。
卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。导弹和航天器要承受严重的冲击过载、强振动和粒子辐射等。
一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。
二、航空航天电子技术的主要发展方向是: ①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。
4有关火箭构造的科技知识
火箭的基本组成部分有推进系统、箭体结构和有效载荷。
有控火箭还装有制导和控制系统,有时还可根据需要在火箭上装设遥测、安全自毁和其他附加系统。 推进系统是火箭飞行的动力源。
固体火箭的推进系统就是固体火箭发动机。液体火箭的推进系统包括发动机、推进剂贮箱、增压系统和管路活门组(见飞行器推进系统)。
箭体结构的作用是装载火箭的所有部件,使之构成一个整体。通常固体火箭发动机的壳体和液体火箭的箱体构成箭体结构的一部分。
除此之外,还包括尾段、级间段、仪器舱结构和有效载荷整流罩等部分。箭体结构应有良好的空气动力外形。
在完成相同功能的前提下,箭体结构的重量和体积越小越好。减轻箭体结构重量的途径,除设计技巧和工艺方法外,结构型式和材料的选择也很重要。
有效载荷是火箭所要运送的物体。火箭的用途不同,有效载荷也不同。
军用火箭的有效载荷就是战斗部(弹头)。科学研究用的火箭的有效载荷是各种研究仪器。
运载火箭的有效载荷则是人造卫星、载人和无人飞船或空间探测器等航天器。
5航天科普知识
“长征”3号甲运载火箭
“长征”3号甲是在“长征”3号的基础上改进而成。火箭全长5252米,火箭直径、整流罩均超过“长征”3号。“长征”3号甲同样是三级液体助推火箭,一、二级为常规燃料,第三级为液氢液氧燃料。第三级把直径由225米增大到了3米,并增加贮箱长度,推进剂由82吨增加到176吨。整个起飞重量240吨,起飞推力300吨,其同步转移轨道的运载能力由原来的14吨提高到26吨。它是中国目前高轨道上运载能力最大的火箭,具有一箭多星和适应多种轨道卫星发射要求的能力。
1994年11月30日,“长征”3号甲火箭又把中国新一代通信卫星“东方红”3号发射升空。“长征”3号甲不仅适用于各种大、小卫星发射的需要,而且其发展潜力很大。中国正在用它作芯级,并利用中国已经成熟的捆绑技术,发展“长征”3号乙、“长征”3号丙火箭,由此形成并利用中国运载能力最大的火箭群体,其中“长征”3号丙火箭的地球同步转移轨道运载能力可达到48吨。
长征三号甲运载火箭(CZ-3A)是一枚大型三级液体运载火箭,继承了长征三号运载火箭的成熟技术,采用了改进的液氢液氧第三级,其地球同步转移轨道(GTO)的运载能力有了很大的提高。由于拥有更灵活先进的控制系统,长征三号甲运载火箭可以在星箭分离前对有效载荷进行大姿态调姿定向,并提供可调整的卫星起旋速率,因而具有很强的适应性。长征三号甲运载火箭为我国下一步研制的长征三号乙运载火箭(CZ-3B)及长征三号丙运载火箭(CZ-3C)创造了条件,成为我国GTO运载火箭的基本型。
长征三号甲运载火箭主要用于发射地球同步轨道有效载荷,同时兼顾低轨道(LEO)、太阳同步轨道(SSO)等其它轨道有效载荷的发射,也可进行一箭双星或多星的发射。长征三号甲运载火箭的GTO运载能力为265吨,全箭起飞质241吨,全长525米,一、二子级直径335米、三子级直径30米,卫星整流罩最大直径335米。它的一子级和二子级使用偏二甲肼(UDMH)和四氧化二氮(N2O4)作为推进剂,三子级则使用效能更高的液氢(LH2)和液氧(LOX)。
全箭由箭体结构、动力系统、控制系统、遥测系统、外测安全系统、滑行段推进剂管理与姿态控制系统、低温推进剂利用系统、分离系统以及辅助系统等组成。
主要有六个系统:1箭体结构,是火箭的主体。2控制系统,是火箭的大脑。由计算机、平台、分离机构等组成,由设计师事先设计好发射程序。3动力系统,由发动机、燃料箱等组成,是火箭的动力源。4遥测系统,是将工作参数和监测数据由无线电传回地面的系统。5外侧安全系统,是火箭出现故障,地面无法操纵火箭的时候,进行空中自毁的系统。6低温推进剂利用系统,是合理调控燃料混合比,有效利用燃料的系统。
长征三号甲运载火箭在1994年2月8日首次试验飞行,成功发射了两颗实验卫星。之后,连续五次成功地发射了五颗GTO通讯卫星。长征三号甲运载火箭的所有六次发射完全成功,发射成功率达到100%。
6如何做小学六年级下科学火箭小制作
自制可乐瓶水火箭水火箭,顾名思义就是用水做推力的火箭。
先在一个火箭(塑料瓶)里灌入一定量的水,然后利用打气筒往瓶里充入空气,达到一定的压力后将瓶子释放。高压空气把水从火箭尾部的喷嘴向下高速射出,在反作用下,火箭快速上升,能达到一个相当可观的高度。
水火箭的原理很简单,制作也容易,关键就在这个发射机制上,得确保充气到特定的压力时将瓶子释放出去才能射得最高。通常的方法是:用橡皮塞塞紧可乐瓶口,密闭起来。
然后把气体打入瓶内,使得气压增大。当压力超过橡皮塞与瓶口接合的最大程度时,瓶口与橡皮塞自由脱离,箭内水向后喷出,获得反作用力射出。
材料可乐瓶快速软管接头轮胎气阀PVC弯头PVC堵头PVC管生料带橡胶垫圈工具铁钳刀子电钻PVC粘合胶水制作步骤用刀子锯下一小截PVC管。用电钻在PVC堵头上开一个小洞,注意不要超过轮胎气阀的大小。
安装气阀:将它从PVC堵头里面穿过去,用钳子夹住往外拉。卡紧气阀以后,再用PVC胶水将堵头、PVC短管、PVC弯头组合在一起,一个”火箭发射器”就做好了。
接下来安装快速接口, 装在可乐瓶口上,母头装在刚做好的”火箭发射器”上。下面是将水瓶和”火箭发射器”组合在一起,一套水火箭基本就完成了,多做两套备用。
接下来就是激动人心的发射时刻了:在瓶内灌上1/3的水,套上快速接头,保持火箭垂直,然后利用自行车打气筒往里头打气。当气压上到300千帕左右时,接头自动释放,火箭就砰的一下起飞了,带着个水尾巴,可壮观了。
7航天小知识
呵呵,我也要参加这个比赛。
我查到了,所以。
不告诉你! 算了,还是告诉你吧!1身体健康 每天都要进行高强度的体育锻炼,至少跑步两英里(约32公里),骑自行车15分钟,50米的泳道游五个来回,不间断地举重15分钟。 2团队合作 学会和他人相处。
太空船空间很小,你必须知道怎样和其他机组人员在一起生活。 3外语水平 懂基本的俄语。
但是这并不是那么简单的。曾经在02年花费巨资搭载俄罗斯太空飞船进行太空旅游的南非富翁马克-沙特沃思曾经表示,每天四个小时的俄语课程就像给大脑动手术还不上 。
4身体检查 良好的健康状况是必需的。心脏病人是绝对不允许上天的,但是像轻微的哮喘病等不会有影响。
5心理检查 心理健康也十分重要,尤其是无论在什么情况下都能保持镇静的素质。一名宇航员可能会面临各种各样的危险,而在太空可没有哪里可以逃的。
6超重耐力训练 超重耐力训练要求航天员在承受8倍于自身体重的重力条件下,保持正常的呼吸和思维能力。这种训练通常会在高速旋转的离心室或旋转座椅上完成,训练中最大的压力是承受加速度,航天员的训练则要求超载达到人体自重8倍重力的加速度,持续时间为40至50秒。
在载人航天飞行训练中,超重耐力训练是对航天员自我极限的最大挑战,这是有名的魔鬼训练,很多人为之却步。 7急救训练 基本的急救知识是宇航员的常识,比如骨折后给腿部上夹板,还有给伤口上药等。
8陆地生存训练 模拟航天飞机在俄罗斯的野外意外坠毁,受训者必须接受怎样生火,怎样搭建临时住所,如何求救等基本生存训练。 9海上生存训练 万一发生意外,宇航员还应该做好在紧急降落黑海的准备。
其中一个训练就是宇航员穿着太空服跳入水中,在水中应该学会自己给救生艇充气。 10失重训练 在失重状态下,一切日常任务如吃东西、喝水、上厕所、呕吐等都需要重新学习,否则可能会给你和其他人带来很多麻烦。
美国宇航局的医学专家特意研究出一个名叫“呕吐彗星机”的大型仪器,宇航员只要在上太空前,在这个仪器里“住”上100个小时,那么,他上到太空后,就不会再发生呕吐的现象了。而在这个不断旋转的机器里,宇航员还要学会在30秒内穿好太空服。
11学会驾驶航天飞机 太空旅行什么意外都可能发生,因此如果自动控制系统出现故障导致意外,或其他机组人员全部遇难的话,必须有人能够驾驶航天飞机返回地球。 12钱 最后可能也是最关键的一点,你应该拥有至少2000万美金。
12007年11月24日我国首颗探月卫星发射成功,这颗卫星名称是嫦娥一号。22007年11月24日搭载着我国首颗探月卫星的运载火箭在西昌发射中心点火发射。
3目前我国有三个卫星发射基地,即将在文昌建设第四个发射基地,预计在2010年投入使用。42007年4月14日我国用“长三甲”运载火箭,成功将一颗北斗卫星送入太空,该卫星是我国“北斗计划”中的一颗卫星,请问“北斗计划”的主要目的是定位导航。
5 为纪念400年前伽利略首次用望远镜观测星空这一壮举,2007年3月国际天文学联合会(IAU)确定2009年为国际天文学年,主题定为:“The Universe – yours to discover”。6下列关于行星说法错误的是木星在我国古代被称为‘长庚’,它是太阳系所有行星中质量最大的。
7到目前为止,人类已经发射了大量的探测器去考察太阳系内的其他行星,下列探测器和被探测的行星对应正确的是伽利略号 木星8下面关于太阳系质量最大的前5个大行星,按质量从大到小排序正确的是木星、土星、海王星、天王星、地球9 猎户座大星云的梅西耶编号为 M4210下列关于各节气的含义描述不正确的是冬至那天太阳赤纬为0度,阳光几乎直射南回归线,是北半球一年中白昼最短的一天。11人类已给月球上的许多地方命名了,下列名称不属于月球的是奥林匹斯山12月球的环形山大多数以天文学家的名字来命名的,其中也有我国古代的天文学家,下面人物中那位人名并没有用来命名的是宋应星13关于望远镜表述正确的是相比地平式望远镜,赤道式望远镜的优点是易于跟踪天体的周日视运动14月球绕地球转动的轨道面和月球赤道之间的夹角大小为6度41分,这使得我们能够在地球南北极看到一些月球背面。
15下列关于彗星的说法不正确的是彗星靠近太阳时被加热,彗星的光主要是由炽热的气体发出的。16小行星的发现同提丢斯—波得定则的提出有密切联系,根据该定则,在距太阳距离为28个天文单位处应有一颗行星,随后皮亚奇果真在该处发现了第一颗小行星谷神星17在太阳系内有的行星向外辐射的能量比其接收到的太阳辐射能量还要大,到目前为止,已知这样的行星有木星和土星18土星外围的光环中间有一条黑暗的缝隙把光环分为内外两部分,这条缝隙是以它的发现者的名字命名的,被称为卡西尼环缝19通过对月相的观察我们可以大致的知道当天在该月份中的日期,如当月相为上弦月时,大概为每个月的农历初八左右20在太阳系的八大行星中,有一颗行星的自转方式非常独特,它的赤道面与公转轨道面的夹角为97度55分,几乎是‘横躺’轨道平面上自转,这是哪颗行星? 天王星21下列天体哪个。
8关于人造卫星 航空母舰 宇宙飞船 运载火箭的小知识
一、人造地球卫星: 环绕地球在空间轨道上运行(至少一圈)的无人航天器,简称人造卫星。
人造卫星是发射数量最多、用途最广、发展最快的航天器。人造卫星发射数量约占航天器发射总数的90%以上。
完整的卫星工程系统通常由人造卫星、运载器、航天器发射场、航天控制和数据采集网以及用户台(站、网)组成。人造卫星和用户台(站、网)组成卫星应用系统,如卫星通信系统、卫星导航系统和卫星空间探测系统等。
1957年10月4日苏联发射了世界上第一颗人造地球卫星。 人造卫星按运行轨道区分为低轨道卫星、中高轨道卫星、地球同步卫星、地球静止卫星、太阳同步卫星、大椭圆轨道卫星和极轨道卫星(见人造地球卫星运行轨道)。
人们更多的是按用途把人造卫星分为科学卫星、应用卫星和技术试验卫星二、航空母舰: Aircraft Carrier,简称“航母”、“空母”,是一种可以提供军用飞机起飞和降落的军舰。中文“航空母舰”一词来自日文汉字。
航空母舰是一种以舰载机为主要作战武器的大型水面舰只。现代航空母舰及舰载机已成为高技术密集的军事系统工程。
航空母舰一般总是一支航空母舰舰队中的核心舰船,有时还作为航母舰队的旗舰。舰队中的其它船只为它提供保护和供给。
依靠航空母舰,一个国家可以在远离其国土的地方、不依靠当地的机场情况施加军事压力和进行作战。 航空母舰按其所担负的任务分,有攻击航空母舰、反潜航空母舰、护航航空母舰和多用途航空母舰;航空母舰按其舰载机性能又分为固定翼飞机航空母舰和直升机航空母舰,前者可以搭乘和起降包括传统起降方式的固定翼飞机和直升机在内的各种飞机,而后者则只能起降直升机或是可以垂直起降的定翼飞机。
某些国家的海军还有一种外观类似的舰船,称作“两栖攻击舰”,也能搭乘和起降军用直升机或是可垂直起降的定翼机。按吨位分,有大型航空母舰(满载排水量6-9万吨以上)中型航空母舰(3-6万吨)和小型航空母舰(3万吨以下);按动力分,有常规动力航空母舰和核动力航空母舰。
今天世界上一共有十个国家拥有航空母舰:阿根廷、法国、意大利、俄罗斯、西班牙、巴西、印度、泰国、英国和美国。 中国从前苏联购买了瓦良格号、基辅号、明斯克号等航空母舰,但这些航母都并未作为军事用途。
而日本虽然名义上没有航母,但是其所谓的“大型两栖登陆舰”和“巨型补给舰”实乃直升机航母和轻型航母。2006年3月10日,中国人民 总装备部科技委员会副主任汪致远宣布中国将自行建造航空母舰,发展航空母舰战斗群。
现在世界各国海军一共有数十艘在使用。美国拥有世界上最多的和最大的航空母舰,其它国家的航空母舰比美国的都小得多。
航空母舰是世界上最大的军舰。美国的尼米兹级航空母舰由2座核反应堆和4座蒸汽轮机推动,全长340米,载员6300人,价格50亿美元,仅每条船每月的经营开支就要1300万美元。
三、宇宙飞船 载人飞船又称宇宙飞船,是一种运送航天员到达太空并安全返回的一次性使用的航天器。它能基本保证航天员在太空短期生活并进行一定的工作。
它的运行时间一般是几天到半个月,一般乘2到3名航天员。 世界上第一艘载人飞船是“东方”1号宇宙飞船。
它由两个舱组成,上面的是密封载人舱,又称航天员座舱。这是一个直径为23米的球体。
舱内设有能保障航天员生活的供水、供气的生命保障系统,以及控制飞船姿态的姿态控制系统、测量飞船飞行轨道的信标系统、着陆用的降落伞回收系统和应急救生用的弹射座椅系统。另一个舱是设备舱,它长31米,直径为258米。
设备舱内有使载人舱脱离飞行轨道而返回地面的制动火箭系统、供应电能的电池、储气的气瓶、喷嘴等系统。“东方”1号宇宙飞船总质量约为4700千克。
它和运载火箭都是一次性的,只能执行一次任务。四、运载火箭: 由多级火箭组成的航天运输工具。
用途是把人造地球卫星、载人飞船、空间站、空间探测器等有效载荷送入预定轨道。是在导弹的基础上发展的,一般由2~4级组成。
每一级都包括箭体结构、推进系统和飞行控制系统。末级有仪器舱,内装制导与控制系统、遥测系统和发射场安全系统。
级与级之间靠级间段连接。有效载荷装在仪器舱的上面,外面套有整流罩。
许多运载火箭的第一级外围捆绑有助推火箭,又称零级火箭。助推火箭可以是固体或液体火箭,其数量根据运载能力的需要来选择。
推进剂大都采用液体双组元推进剂。第一、二级多用液氧和煤油或四氧化二氮和混肼为推进剂,末级火箭采用高能的液氧和液氢推进剂。
制导系统大都用自主式全惯性制导系统。在专门的发射中心 (见航天器发射场) 发射。
技术指标包括运载能力、入轨精度、火箭对不同重量的有效载荷的适应能力和可靠性。 目前常用的运载火箭按其所用的推进剂来分,可分为固体火箭、液体火箭和固液混合型火箭三种类型。
如我国的长征三号运载火箭是一种三级液体火箭;长征一号运载火箭则是一种固液混合型的三级火箭,其第一级、第二级是液体火箭,第三级是固体火箭;美国的“飞马座”运载火箭则是一种三级固体火箭。
大多数火箭的主要目标是到达行星的轨道并停留在那里。在行星的轨道上,行星的引力足够大,可以防止火箭漂移到外太空,而引力又足够小,因此火箭不必燃烧大量的燃料即可避免自身坠落回地球。为了进入轨道,火箭首先开始向其侧面倾斜,然后逐渐增加该倾斜,直到达到围绕地球的椭圆轨道。
火箭凭借其自身的发动机和与之相连的固体助推器(在发射后不久即被抛弃)以巨大的向上推力垂直发射。发射后,火箭的爬升最初很慢;但在上升的第一分钟结束时,火箭以惊人的的速度运动。在空中飞行时,由于空气阻力,火箭会损失大量能量,因此,当大部分燃料耗尽时,需要确保其达到足够高的高度。这就是为什么火箭最初飞得非常快的原因,因为它需要在尽可能短的距离内越过最厚的大气层。
我认为,关于火箭发送轨迹的大部分困惑是基于这样一个普遍的假设,即大多数火箭只是想避免地球的重力而到达“太空”。尽管从技术上来讲这不是错误的,但它无法真正描述这一过程。首先,您应该了解太空并不是那么遥远。在高于地球100公里的高度上则被正式认为是太空。因此,并不是说火箭只是想到达太空,因为他们实际上可以使用更少的燃料做到这一点。大多数火箭真正想要做的是进入地球的轨道。
优化航天器轨迹以使其达到所需路径的这种技术称为重力转弯或零升程转弯。 它可以让火箭利用地球的重力而不是自身的燃料来改变方向。火箭因此节省的燃料可用于水平加速,以达到较高的速度,更容易进入轨道。 简而言之,如果火箭想进入地球轨道,它必须在发射后弯曲其轨迹。如果它不这样做,并继续直线上升,最终将达到燃料用尽的地步,极有可能最终会像陨石一样砸回地球。
长征系列运载火箭介绍:长征三号系列
作者:陈国华
概 述
长征三号系列运载火箭由长征三号、长征三号A、长征三号B 和长征三号C4种火箭组成。它们都是由中国运载火箭技术研究院研制的。它们区别于长征二号系列的特点是:1)都是三级火箭;2)三子级使用液氧和液氢作为推进剂;3)三子级的发动机可以多次起动;4)可以直接将有效载荷送入地球同步转移轨道。
长征三号
长征三号是在长征二号火箭基础上发展起来的三级火箭,全长约45米,一子级和二子级的直径均为335米,三子级直径225米。卫星整流罩有A、B两种型号,A型的直径为26 米,B型的直径为3米,尾翼翼展615米。火箭的起飞质量约205吨。
长征三号的一子级和二子级均采用偏二甲肼和四氧化二氮作推进剂,三子级采用液氢和液氧作推进剂。
由于长征三号在中国率先采用液氢和液氧作推进剂,不可避免地会遇到许多新问题,诸如研制氢氧发动机、低温绝热结构和防爆设计等。众所周知,在研制新发动机的过程中,试车占有重要的地位,设计中存在的问题要靠试车来发现,改进措施是否得当也要靠试车来验证。氢氧发动机在正式参加飞行试验之前,共进行了约120次试车,累积时间32000秒。在三子级绝热共底贮箱的研制过程中,进行了缩比贮箱、短贮箱和全尺寸贮箱等各种试验,如推进剂的蒸发量试验、用液氢和液氮填充的爆破试验、共底的绝热试验、内压试验和外压试验等。通过这些试验,解决了贮箱的绝热性能、工艺性能、低温强度以及使用寿命等各项技术问题。同样,真空绝热的液氢输送管和各种低温阀门等也都在真空的介质中进行了严格的试验。针对液氢易爆的特点,在火箭上采取了安全防爆措施,如在易于聚集氢气的地方进行吹除和开通气孔;在氢箱与仪器舱之间设隔离膜,防止氢气进入仪器舱;为了防止氢气进入伺服机构,对伺服机构进行氮气保护等。此外还采用了屏蔽、接地、设置放电针等防雷电措施。
火箭的制导系统采用平台�计算机全惯性补偿式方案,以保证卫星进入地球同步转移轨道的精度。火箭的姿态控制系统采用平台、速率陀螺、网络、摆动发动机连续式控制方案,而在三级滑行段飞行中则用继电器型开关控制系统,由开关放大器对无水肼喷管进行控制。姿态控制系统保证了火箭在给定的轨道上的稳定飞行,并将俯仰、偏航和滚动三个姿态角控制在一定的范围之内。
为了了解火箭飞行过程中箭上各系统的工作情况,在火箭上设置了3套遥测设备。一子级上装有一套YE-3M磁记录设备,记录分布于全箭各处的振动、冲击和噪声传感器送来的信息。它只在一级飞行时工作,一、二级火箭分离后随一子级箭体落至残骸落区,然后由人工收回处理。二子级上装有一套Y7-1速、缓变状态的大速变设备。它主要测量火箭在一级和二级飞行中的缓变参数和速变参数。三子级上也装有一套Y7-1速、缓变状态的大速变设备,主要测量第三级火箭和全箭控制系统在飞行全过程中的各类缓变和速变参数。两套Y7-1设备所测得的数据均实时地通过发射机发回地面。从第11发火箭开始,取消了一子级上的YE-3M磁记录设备。
火箭飞行过程中,地面的测控台站以及海上的测量船队都要对火箭进行跟踪测量,所以在箭上设有外弹道测量系统,给地面的测控台站提供跟踪信息。为了防止火箭发生故障而危及发射设施、城镇的安全,在箭上设置了安全系统,以求尽可能控制故障火箭的坠毁地点或爆炸时机。由于这两个系统都需要跟踪火箭的飞行轨迹,为简化箭上设备,所以将两者合为一个系统。
长征三号火箭长达45米,纵向耦合振动(POGO)和低频振动问题随之突出起来。研制过程中进行了全箭纵向弹性振动试验、一子级和二子级推进剂输送管路频率特性试验、蓄压器方案试验和二子级发动机冷流试验等各项试验。仪器舱安装仪器的平台采用了约束阻尼复合板结构,并改进了平台减振器的设计。
长征三号火箭1978年开始方案设计,1980年进入初步设计,1984年1月29日首次发射。截止到1994年底,共发射9次,除第一次发射因三子级发动机在第二次起动后未能正常工作和第8次发射由于三子级发动机的控制气路漏气,造成发动机在第二工作段被迫提前关机外,其它7次发射分别将5颗国内通信卫星、1颗美国休斯公司制造的亚星一号通信卫星和1颗休斯公司制造的亚太一号通信卫星送入地球同步转移轨道。
长征三号在西昌卫星发射中心发射。轨道倾角27度时,其地球同步转移轨道的运载能力为1600公斤(3σ)。如果需要抬高远地点高度,则每抬高1000公里将减少运载能力16公斤。长征三号的发射费用在国际上是最低的,每发火箭的发射费约3500万美元(1993~1994年价格)。
长征三号的研制成功,表明了中国火箭技术的提高,是中国火箭发展史上的一个重要里程碑。它首次采用了液氢和液氧作为火箭推进剂,首次实现了火箭的多次起动,首次将有效载荷送入地球同步转移轨道。
长征三号发射的亚星一号通信卫星是中国首次发射外国制造的卫星,为后来其它型号火箭的对外发射服务建立了可遵循的模式。
一、主要技术性能
二、总体布局
长征三号是一种三级液体火箭,由一子级、二子级、三子级和卫星整流罩等箭体结构及箭上的推进系统、控制系统、遥测系统、外测安全系统、滑行段推进剂管理与姿态控制系统等组成。
箭体结构一方面承受载荷,一方面又起着支承各个系统的作用,将它们连成一个整体。控制系统、遥测系统和外测安全系统的仪器主要安装在仪器舱内,也有少部分仪器根据需要分布于尾段或箱间段。
为了减轻贮箱的结构质量,简化推进剂输送管道和尽可能提高液氢使用的安全性,三子级推进剂贮箱的配置与一、二子级的不同,将燃料箱安排在氧化剂箱的上面。
一、二级之间的分离采用热分离方式,一级发动机关闭之前二级发动机就开始起动,然后再令一、二级之间的连接爆炸螺栓起爆,在二级发动机推力的作用下实现分离。二级飞行末期,在主发动机已经关闭,而游动发动机仍在工作的情况下,卫星整流罩被抛掉,然后游动发动机关闭,连接二、三级箭体的爆炸螺栓和安装在级间段上的8台固体反推火箭同时点燃,在反向推力的作用下,二子级被推离三级。星箭分离有两种方式,可以采用反推火箭,也可以采用分离弹簧。发射国内卫星时,包带解锁后,安装在三子级后短壳上的反推火箭点火,使三子级减速,实现分离,分离过程中卫星不受分离力的影响。发射外国卫星时,应用户要求,采用了分离弹簧。包带解锁后,分离弹簧的约束同时解除,弹簧力使卫星加速,同时使三子级减速,实现分离。
三、箭体结构
长征三号火箭的结构包括一子级、二子级、三子级和整流罩,主要结构材料是LD10铝合金。
1一子级结构
一子级结构由尾翼、尾段、后过渡段、燃料箱、箱间段、氧化剂箱、级间段和导管、阀门等组成。
尾翼平面为直角梯形,翼根弦长22 米,翼展14米,变厚度楔形双梁蜂窝夹芯结构。
尾段为外加桁梁式薄壁全铆接结构,由两个半壳沿纵向对接合拢而成。长征三号的尾段结构和功能与长征二号C的尾段不完全相同。为了提高火箭的飞行稳定性,长征三号尾段上增加了4个尾翼及相应的安装结构。火箭竖立在发射台上时,长征二号C的发射支点在尾段的上方,尾段不承受支承力,而长征三号的发射支点在尾段的下端,支承力由尾段承受和传递,为此在尾段壳体的表面设置了8根大梁,在尾段上端有4个前接头,在尾段下端有4个支承块。这样,支承块、大梁和前接头组成了承、传力结构。
后过渡段、燃料箱、箱间段、氧化剂箱以及导管、阀门等均与长征二号C的相应部分相同。
级间段包括筒段与杆系结构两部分。杆系由24根斜杆和上、下对接框组成。长征三号的斜杆比长征二号C的少8根,相对来说其抗扭刚度高了,但减弱了抗弯曲能力。
2二子级结构
二子级结构由燃料箱、箱间段、氧化剂箱、级间段及导管、阀门等组成。
燃料箱、箱间段和氧化剂箱的结构与长征二号C相应部分相同,只是长征三号的氧化剂箱前底上设置了绝热帽,以防止三子级加注推进剂后低温对氧化剂箱的影响。
二子级的级间段是截锥形的半硬壳式结构,外表面粘贴了一层301软木防热层。它既是连接二、三子级的承力结构,又是三子级的发动机舱。由于二、三子级间的级间分离是冷分离,所以不需要考虑排焰问题。
3三子级结构
三子级结构由共底绝热贮箱、仪器舱、有效载荷支架、转接锥及阀门、导管等组成。
三子级贮箱为共底贮箱,上箱贮存液氢,下箱贮存液氧。为缩短火箭长度和减轻结构质量,两箱之间采用共底。共底凸向液氢箱。贮箱的外表面包覆了绝热层,对输送推进剂的导管也采取了绝热措施。
液氧箱由后短壳、后底、圆筒段和共底组成。后底为椭球底,正中开有人孔,液氧输送口处装有消漩器。圆筒段为化铣网格结构,筒内装了环形防晃板,以抑制液氧的晃动。此外,箱内还装有测量液位和温度的传感器。共底的型面与下底相同,由非金属蜂窝结构与上、下面板构成,其外侧焊有抽空管嘴和真空度测量及气体分析管嘴。加注推进剂之前,将共底抽至近于真空,加注后腔内气体冷凝,真空度进一步提高,达到绝热的目的。共底的边缘与上、下两个贮箱的箱壁相连。为了防止箱壁之间的热传导,在此处采用了绝热的承力结构。
液氢箱由共底、圆筒段、前底和前短壳组成。圆筒段由4个筒形壳段组焊而成。筒内分三层共装有6块扇形防晃板及一个环形防晃框,用以抑制晃动,还装有破坏液氢温度分层的环形结构。前底也是椭球形的,正中开有人孔。前短壳用化铣网格整体壁板构成。
贮箱外表面的绝热层是以喷涂聚氨酯泡沫塑料为主体的多层密封缠绕式结构,由缓冲层、隔热层和防护层三部分组成。缓冲层的作用是改善铝合金箱壁与泡沫塑料之间线膨胀系数不同而引起的变形不一致,使泡沫塑料牢固地粘接到箱壁上。隔热层起绝热作用。防护层的作用是防止气体渗透,防机械损伤,防热辐射和保护整个绝热层,使之能经受飞行中的气流冲刷。
仪器舱位于贮箱上端,与卫星、转接锥和有效载荷支架一起,被罩在整流罩之内。仪器舱由截锥形壳体、环形圆盘、支承杆和井字梁组成。截锥形壳体是铝蜂窝结构,上部有上端框,框内缘的8个凸耳用以安装井字梁;框外缘有一支撑台阶用来安装环形圆盘。截锥体的下端框与贮箱的前短壳相连。环形圆盘由约束阻尼复合板构成,其内缘与锥壳的上框相连,外缘通过16根型材撑杆支承在锥壳的下端框上。为增加圆盘的刚度和减轻结构质量,在其上冲有若干减轻孔。井字梁用“工”字梁构成,有很高的强度和刚度。仪器舱边缘的Ⅱ-Ⅳ象限线处各设有两块挡板,防止因整流罩分离时发生意外事件而伤害仪器。仪器舱与液氢箱之间有一层隔离膜,防止可能产生的氢气进入仪器舱。
有效载荷支架也是截锥形壳体,铝蜂窝夹芯结构。由于惯性平台安装在壳体内部,所以在壳体上开有160毫米×160毫米的方孔,以便在发射时,通过它以及在整流罩倒锥段开的透明舱口使发射场的瞄准设备与惯性平台上的棱镜通视,以瞄准射向。有效载荷支架高度为740毫米,下端框与仪器舱相连。
长征三号的转接锥有A、B两种型号。A型用于发射国内卫星,锥高680毫米,与卫星接口尺寸为Φ872毫米;B型用于发射外国制造的卫星,锥高300毫米,与卫星的接口尺寸是国际上通用的标准接口Φ937毫米。两种型号的转接锥下对接框都是与有效载荷支架相连,对接尺寸为Φ1036毫米。上对接框通过包带与卫星的对接框相连。
液氢的粘度低,渗透性强,再加上超低温,给阀门、导管带来了密封和绝热上的困难。三子级上除了对密封材料进行选择外,还对阀门或导管接头的结构采用了气密设计。三子级共有阀门17种,导管23种。其中的液氢输送管比较复杂,是双层的真空导管,由内管、外管和防辐射夹层组成,使用前将夹层之间抽成真空,使通过导管的液氢温升低于0003摄氏度。液氢输送管设在贮箱外面, 绕过液氧箱后,通向发动机。
4整流罩
长征三号的整流罩有A、B两种型号。A型罩的最大直径为26米,圆筒段长度24米;B型罩的最大直径是30米,圆筒段长度26米。 两者除直径和高度不同之外,结构形式和分离方式都是一样的。火箭处于临射状态时,发射场的空调系统可以对整流罩内部进行空调,确保罩内的温度、湿度和洁净度满足卫星的要求。整流罩由玻璃钢端头、非金属蜂窝的双锥段、金属蜂窝的圆筒段和化铣的倒锥段组成。成品是两个独立的半罩,发射前通过爆炸螺栓连成整体,并通过爆炸螺栓和铰链机构与三子级箭体相连。双锥段对无线电波是透明的,透波率约为85%。二级飞行末期,大气环境已不会危害卫星,整流罩与火箭分离。分离时,控制系统先令与三子级相连的爆炸螺栓起爆,然后再使将两个半罩连成整体的爆炸螺栓起爆。这时,两个半罩各自在分离弹簧的作用下,绕下端的铰链旋转。当转到一定的角度时,铰链脱开,半罩在离心力的作用,沿切线方向离开三子级箭体。由于瞄准的需要,在倒锥段的第Ⅲ象限线上开有瞄准窗口,因而在 Ⅰ-Ⅲ象限线上不能设分离面,整流罩只能从Ⅱ-Ⅳ平面分离。
四、推进系统
长征三号的推进系统由一、二、三子级的推进系统组成。一、二子级的推进剂是四氧化二氮和偏二甲肼,三子级的推进剂是液氧和液氢。
1一子级推进系统
一子级推进系统与长征二号C的基本相同,只是长征三号的一子级发动机是FY-21,而长征二号C的是YF-21。由于两者由不同的工厂生产,存在着一些细微差别,但它们的组成、工作原理、功能和与箭体的接口都是一样的,可以互换。长征三号从第11发火箭开始,改用YF-21B发动机。
2二子级推进系统
二子级推进系统原与长征二号C的完全一样,后改为加长喷管的YF-24D发动机。
3三子级推进系统
三子级推进系统由YF-73氢氧发动机、输送系统、增压系统、推进剂管理系统和其它系统组成。
(1)YF-73氢氧发动机
该发动机采用燃气发生器循环系统,由一台涡轮泵供应4台推力室。液氢泵和液氧泵均为一级离心泵,涡轮为一级冲动式涡轮。发动机可作二次起动,每次起动都是用气瓶起动,用火药点火器点火。
发动机由推力室、涡轮泵、燃气发生器、自动器、起动气瓶和火药点火器等组成。
推力器分头部和身部两部分。头部采用平顶式结构,氧腔在上,氢腔在下。头部中心有安装火药点火器的四孔座,孔座周围有3圈按同心圆排列的喷嘴。内圈的8个喷嘴和第二圈的12个喷嘴为中心喷嘴,它们的氧喷嘴为离心式结构。外圈的18个喷嘴为边区喷嘴,其氧喷嘴为直流式。喷注器面板为不锈钢丝编织烧结而成的金属纤维发汗材料。氢对面板进行发汗冷却,防止面板被烧蚀。身部由内、外壁钎焊连结而成。喷管型面按罗氏最佳推力喷管设计。内壁上铣有沟槽式冷却通道,冷却剂液氢进入冷却通道后先流向喷口,再由相邻槽返回头部。推力室的身部焊有传动轴,轴端有齿,与伺服机构啮合后实现推力室单向摆动。
涡轮泵由涡轮、液氢泵、液氧泵和齿轮箱等组成。涡轮和液氢泵同轴,是主动轴;液氧泵单独一根轴,是从动轴;中间由减速齿轮传动。涡轮为单级冲动式结构,由涡轮盖、转子和主轴组成。液氢泵由诱导轮、离心轮、螺壳、前后密封环组成。液氧泵由进口管、泵轴、诱导轮、离心轮、前后密封环和氧泵壳体组成。齿轮箱由上盖、下盖、齿轮、中轴及限流嘴组成。限流嘴是用来控制冷却剂液氢的流量的。
燃气发生器由头部和身部构成。头部为平顶式结构,有3层平底。第一、二层底之间为液氢腔,第二、三层底之间为液氧腔。头部中央为火药点火器喷口,其周围由16个双组元同轴式喷嘴排列成两个同心圆。身部由圆柱段和收敛段组成,两者均为双层壁结构,内壁上有铣槽,形成再生冷却通道。
自动器共有24种41个,主要包括液氢泵前阀门、液氧泵前阀门、液氢主阀门、液氧主阀门、氢副系统控制阀门、氧副系统控制阀门、氢泄出阀门、氧泄出阀门、氦气减压器、液氧稳压器、气动阀门和电动气阀门等器件,用以控制发动机的起动和关机。
起动气瓶内贮高压氮气。当电动气阀门通电打开后,高压氮气通过起动喷嘴吹动涡轮。氮气耗尽后由燃气接替维持发动机正常工作。因为发动机要作两次起动,故设有两套独立的气瓶起动系统。
发动机上共有20个火药点火器,燃气发生器头部和每个推力室的头部各装4个,每次点火时各消耗两个,其中一个为冗余。点火器由电发火系统、能量释放系统(包括引燃药、烟火药、过渡药和惰性药等)和结构件组成。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)