风荷载是建筑物的主要侧向控制荷载,测量风荷载及预测建筑物风响应是工程需要。利用高频天平能够测量建筑物静态和动态风荷载并预测建筑物的动态响应,这是一种有待广泛推广的新技术。作为技术研究,在1.4m×1.4m风洞中利用一台五分量高频天平获得了两个模型在不同流动状态大气边界层中的广义力谱,计算了相应高层建筑的动态响应,并与国际ESDU风工程计算作了比较,对试验结果的可靠性进行了分析。
主体结构计算时,垂直于建筑物表面的风荷载标准值应按(321)式计算,风荷载作用面积应取垂直于风向的最大投影面积。
322 基本风压应按照现行国家标准《建筑结构荷载规范》GB 50009的规定采用。对于特别重要或对风荷载比较敏感的高层建筑,其基本风压应按100年重现期的风压值采用。
323 位于平坦或稍有起伏地形的高层建筑,其风压高度变化系数应根据地面粗糙度类别按表323确定。地面粗糙度应分为四类:A类指近海海面和海岛、海岸、湖岸及沙漠地区;B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类指有密集建筑群的城市市区;D类指有密集建筑群且房屋较高的城市市区。
324 位于山区的高层建筑,按本规程第323条确定风压高度变化系数后,尚应按现行国家标准《建筑结构荷载规范》GB 50009的有关规定进行修正。
325 计算主体结构的风荷载效应时,风荷载体型系数μs可按下列规定采用:
1 圆形平面建筑取08;
2 正多边形及截角三角形平面建筑,由下式计算:
3 高宽比H/B不大于4的矩形、方形、十字形平面建筑取13;
4 下列建筑取14:
1)V形、Y形、弧形、双十字形、井字形平面建筑;
2)L形、槽形和高宽比H/B大于4的十字形平面建筑;
3)高宽比H/B大于4,长宽比L/B不大于15的矩形、鼓形平面建筑。
5 在需要更细致进行风荷载计算的场合,风荷载体型系数可按本规程附录A采用,或由风洞试验确定。
326 高层建筑的风振系数βz可按下式计算:
327 当多栋或群集的高层建筑相互间距较近时,宜考虑风力相互干扰的群体效应。一般可将单栋建筑的体型系数μs乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定;必要时宜通过风洞试验确定。
328 房屋高度大于200m时宜采用风洞试验来确定建筑物的风荷载;房屋高度大于150m,有下列情况之一时,宜采用风洞试验确定建筑物的风荷载:
—平面形状不规则,立面形状复杂;
—立面开洞或连体建筑;
—周围地形和环境较复杂。
329 檐口、雨篷、遮阳板、阳台等水平构件,计算局部上浮风荷载时,风荷载体型系数μs不宜小于20。
3210 设计建筑幕墙时,风荷载应按国家现行有关建筑幕墙设计标准的规定采用。
新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。
1.完成整体参数的正确设定 计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。
(1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5113-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于09。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于09,若小于09,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于09为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。
(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。
(3)结构基本周期是计算风荷载的重要指标。设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。
上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。
2确定整体结构的合理性 整体结构的科学性和合理性是新规范特别强调内容。新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。
(1)周期比是控制结构扭转效应的重要指标。它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。也就是说,周期比不是要求就构足够结实,而是要求结构承载布局合理。《高规》第435条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比的要求给出了规定。如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员需要增加结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。
设计软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转(平动)周期。以下介绍实用周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于05的平动周期,按周期值从大到小排列。同理,将所有平动系数大于05的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动周期即可。
(2)位移比(层间位移比)是控制结构平面不规则性的重要指标。其限值在《建筑抗震设计规范》和《高规》中均有明确的规定,不再赘述。需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的,如果在结构模型中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。
此外,位移比的大小是判断结构是否规则的重要依据,对选择偶然偏心,单向地震,双向地震下的位移比,设计人员应正确选用。
(3)刚度比是控制结构竖向不规则的重要指标。根据《抗震规范》和《高规》的要求,软件提供了三种刚度比的计算方式,分别是剪切刚度,剪弯刚度和地震力与相应的层间位移比。正确认识这三种刚度比的计算方法和适用范围是刚度比计算的关键:1)剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;2)剪弯刚度主要用于底部大空间为多层的转换结构;3)地震力与层间位移比是执行《抗震规范》第342条和《高规》435条的相关规定,通常绝大多数工程都可以用此法计算刚度比,这也是软件的缺省方式。
(4)层间受剪承载力之比也是控制结构竖向不规则的重要指标。其限值可参考《抗震规范》和《高规》的有关规定。
(5)刚重比是结构刚度与重力荷载之比。它是控制结构整体稳定性的重要因素,也是影响重力二阶效的主要参数。该值如果不满足要求,则可能引起结构失稳倒塌,应当引起设计人员的足够重视。
(6)剪重比是抗震设计中非常重要的参数。规范之所以规定剪重比,主要是因为长期作用下,地震影响系数下降较快,由此计算出来的水平地震作用下的结构效应可能太小。而对于长周期结构,地震动态作用下的地面加速度和位移可能对结构具有更大的破坏作用,但采用振型分解法时无法对此作出准确的计算。因此,出于安全考虑,规范规定了各楼层水平地震力的最小值,该值如果不满足要求,则说明结构有可能出现比较明显的薄弱部位,必须进行调整。
除以上计算分析以外,设计软件还会按照规范的要求对整体结构地震作用进行调整,如最小地震剪力调整、特殊结构地震作用下内力调整、02Q0调整、强柱弱梁与强剪弱弯调整等等,因程序可以完成这些调整,就不再详述了。
3 对单构件作优化设计 前几步主要是对结构整体合理性的计算和调整,这一步则主要进行结构单个构件内力和配筋计算,包括梁,柱,剪力墙轴压比计算,构件截面优化设计等。
(1)软件对混凝土梁计算显示超筋信息有以下情况:1)当梁的弯矩设计值M大于梁的极限承载弯矩Mu时,提示超筋;2)规范对混凝土受压区高度限制:
四级及非抗震:ξ≤ξb
二、三级:ξ≤035( 计算时取AS ’=03 AS )
一级: ξ≤025( 计算时取AS ’=05 AS )
当ξ不满足以上要求时,程序提示超筋;3)《抗震规范》要求梁端纵向受拉钢筋的最大配筋率25%,当大于此值时,提示超筋;4)混凝土梁斜截面计算要满足最小截面的要求,如不满足则提示超筋。
(2)剪力墙超筋分三种情况:1)剪力墙暗柱超筋:软件给出的暗柱最大配筋率是按照4%控制的,而各规范均要求剪力墙主筋的配筋面积以边缘构件方式给出,没有最大配筋率。所以程序给出的剪力墙超筋是警告信息,设计人员可以酌情考虑;2)剪力墙水平筋超筋则说明该结构抗剪不够,应予以调整;3)剪力墙连梁超筋大多数情况下是在水平地震力作用下抗剪不够。规范中规定允许对剪力墙连梁刚度进行折减,折减后的剪力墙连梁在地震作用下基本上都会出现塑性变形,即连梁开裂。设计人员在进行剪力墙连梁设计时,还应考虑其配筋是否满足正常状态下极限承载力的要求。
(3)柱轴压比计算: 柱轴压比的计算在《高规》和《抗震规范》中的规定并不完全一样,《抗震规范》第637条规定,计算轴压比的柱轴力设计值既包括地震组合,也包括非地震组合,而《高规》第642条规定,计算轴压比的柱轴力设计值仅考虑地震作用组合下的柱轴力。软件在计算柱轴压比时,当工程考虑地震作用,程序仅取地震作用组合下的的柱轴力设计值计算;当该工程不考虑地震作用时,程序才取非地震作用组合下的柱轴力设计值计算。因此设计人员会发现,对于同一个工程,计算地震力和不计算地震力其柱轴压比结果会不一样。
(4)剪力墙轴压比计算:为了控制在地震力作用下结构的延性,新的《高规》和《抗震规范》对剪力墙均提出了轴压比的计算要求。需要指出的是,软件在计算断指剪力墙轴压比时,是按单向计算的,这与《高规》中规定的短肢剪力墙轴压比按双向计算有所不同,设计人员可以酌情考虑。
(5)构件截面优化设计:计算结构不超筋,并不表示构件初始设置的截面和形状合理,设计人员还应进行构件优化设计,使构件在保证受力要求的德条件下截面的大小和形状合理,并节省材料。但需要注意的是,在进行截面优化设计时,应以保证整体结构合理性为前提,因为构件截面的大小直接影响到结构的刚度,从而对整体结构的周期、位移、地震力等一系列参数产生影响,不可盲目减小构件截面尺寸,使结构整体安全性降低。
4 满足规范抗震措施的要求 在施工图设计阶段,还必须满足规范规定的抗震措施要求。《混凝土规范》、《高规》和《抗震规范》对结构的构造提出了非常详尽的规定,这些措施是很多震害调查和抗震设计经验的总结,也是保证结构安全的最后一道防线,设计人员不可麻痹大意。
(1)设计软件进行施工图配筋计算时,要求输入合理的归并系数、支座方式、钢筋选筋库等,如一次计算结果不满意,要进行多次试算和调整。
(2)生成施工图以前,要认真输入出图参数,如梁柱钢筋最小直径、框架顶角处配筋方式、梁挑耳形式、柱纵筋搭接方式,箍筋形式,钢筋放大系数等,以便生成符合需要的施工图。软件可以根据允许裂缝宽度自动选筋,还可以考虑支座宽度对裂缝宽度的影响。
(3)施工图生成以后,设计人员还应仔细验证各特殊或薄弱部位构件的最小纵筋直径、最小配筋率、最小配箍率、箍筋加密区长度、钢筋搭接锚固长度、配筋方式等是否满足规范规定的抗震措施要求。规范这一部分的要求往往是以黑体字写出,属于强制执行条文,万万不可以掉以轻心。
(4)最后设计人员还应根据工程的实际情况,对计算机生成的配筋结果作合理性审核,如钢筋排数、直径、架构等,如不符合工程需要或不便于施工,还要做最后的调整计算。
第一章 总则
第101条 为了使砌体结构设计贯彻执行国家的技术经济政策,坚持因地制宜、就地取材的原则,合理选用结构方案和建筑材料,做到技术先进、经济合理、安全适用、确保质量,特制订本规范。
第102条 本规范适用于一般工业与民用房屋及构筑物的砌体结构的设计。
第103条 本规范适用于五列砌体的结构:
一、砖砌体,包括烧结普通砖(粘土砖和硅酸盐砖)、非烧结硅酸盐砖和承重粘土空心砖砌体。
二、砌块砌体,包括混凝土中型、小型空心砌块和粉煤灰中型实心砌块砌体。
三、石砌体,包括各种料石和毛石砌体。
第104条 本规范是根据《建筑结构设计统一标准》(GBJ68—84)规定的原则进行制订的。
第105条 地震区和特殊条件下或有特殊要求的房屋及构筑物的设计,尚应符合国家现行的有关标准规范的规定。
第二章 材料
第一节 材料强度等级
第211条 块体和砂浆的强度等级,应按下列规定采用:
一、烧结普通砖、非烧结硅酸盐砖和承重粘土空心砖等的强度等级:MU30(300)、MU25(250)、MU20(200)、MU15(150)、MU10(100)和MU75(75)。
二、砌块的强度等级:MU15、MU10、MU75、MU5和MU35。
三、石材的强度等级:MU100、MU80、MU60、MU50、MU40、MU30、MU20、< P>
四、砂浆的强度等级:M15、M10、M75、M5、M25、M1和M04。
注:①括号内为相应材料原标准规定的标号。
②石材的规格、尺寸及其强度等级可按附录一的方法确定。
③确定硅酸盐块体的强度等级时,块体的抗压强度应乘以自然碳化系数。对粉煤灰中型实心砌块,当无自然碳化系数试验时,可取人工碳化系数的115倍,且不得大于09。
第二节 砌体的计算指标
第221条 龄期为28d的以毛截面计算的各类砌体抗压强度设计值,根据块体和砂浆的强度等级应分别按下列规定采用:
一、烧结普通砖、非烧结硅酸盐砖和承重粘土空心砖砌体的抗压强度设计值,应按表221-1采用。
二、一砖厚空斗砌体的抗压强度设计值,应按表221-2采用。
三、块体高度为180~350mm的混凝土小型空心砌块砌体的抗压强度设计值,应按表221-3采用。
第224条 施工阶段砂浆尚未硬化的新砌砌体,可按砂浆强度为零确定其砌体强度。对于冬期施工采用掺盐砂浆法施工的砌体,砂浆强度等级按常温施工的强度等级提高一级时,砌体强度和稳定性可不验算。
第225条 砌体的弹性模量、线膨胀系数和摩擦系数,可按表225-1~表225-3采用。砌体的剪变模量,宜为砌体弹性模量的04倍。
第三章 基本设计规定
第一节 设计原则
第311条 本规范采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。
第312条 砌体结构均应按承载能力极限状态设计,并满足正常使用极限状态的要求。
注:根据砌体结构的特点,砌体结构正常使用极限状态的要求,一般情况下可由相应的构造措施保证。
第313条 根据建筑结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,建筑结构按表313划分为三个安全等级,设计时应根据具体情况适当选用。
建筑结构的安全等级 表313
安全等级 破坏后果 建筑物类型
----------------------------------------
一级 很严重 重要的工业与民用建筑物
二级 严重 一般的工业与民用建筑物
三级 不严重 次要的建筑物
----------------------------------------
注:①对于特殊的建筑物,其安全等级可根据具体情况另行确定。
②对地震区的砌体结构设计,应按国家现行《建筑抗震设计规范》根据建筑物重要性区分建筑物类别。
第314条 砌体结构按承载能力极限状态设计时,应按下式计算:
γoS≤R(fd,ak……) (314)
式中γo——结构重要性系数。对安全等级为一级、二级、三级的砌体结构构件,可分别取11、10、09;
S——内力设计值,分别表示为轴向力设计值N、弯矩设计值M和剪力设计值V等;
R(·)——结构构件的承载力设计值函数;
fd——砌体的强度设计值,;
fk——砌体的强度标准值,fk=fm-1645σf;
γf——砌体结构的材料性能分项系数,γf=15;
fm——砌体的强度平均值;
σf——砌体强度的标准差;
αk——几何参数标准值。
第315条 当砌体结构作为一个刚体,需验算整体稳定性时,例如倾覆、滑移、漂浮等,应按下列设计表达式进行验算:
式中G1k——起有利作用的永久荷载标准值;
G2k——起不利作用的永久荷载标准值;
CG1、CG2——分别为G1k、G2k的荷载效应系数;
CQ1、CQi——分别为第一个可变荷载和其他第i个可变荷载的荷载效应系数;
Q1k、Qik——起不利作用的第一个和第i个可变荷载标准值;
ψci——第i个可变荷载的组合值系数。当风荷载与其他可变荷载组合时均可采用06。
第二节 房屋的静力计算规定
第321条 房屋的静力计算,根据房屋的空间工作性能分为刚性方案、刚弹性方案和弹性方案。设计时,可按表321确定静力计算方案。
房屋的静力计算方案 表321
屋盖或楼盖类别 刚性方案 刚弹性方案 弹性方案
------------------------------------------------------------------------------------------------
整体式、装配整体和装配式无檩体系钢筋混凝土屋盖或钢筋混凝土楼盖 s72
装配式有檩体系钢筋混凝土屋盖、轻钢屋盖和有密铺望板的木屋盖或木楼盖 s48
冷摊瓦木屋盖和石棉水泥瓦轻钢屋盖 s36
------------------------------------------------------------------------------------------------
注:①表中s为房屋横墙间距,长度单位为m。
②当屋盖、楼盖类别不同或横墙间距不同时,可按第327条和328条的规定确定房屋的静力计算方案。
③对无山墙或伸缩缝处无横墙的房屋,应按弹性方案考虑。
第322条 刚性和刚弹性方案房屋的横墙应符合下列要求:
一、横墙中开有洞口时,洞口的水平截面面积不应超过横墙截面面积的50%。
二、横墙的厚度不宜小于180mm。
三、单层房屋的横墙长度不宜小于其高度,多层房屋的横墙长度,不宜小于H/2(H为横墙总高度)。
注:①当横墙不能同时符合上述要求时,应对横墙的刚度进行验算。如其最大水平位移值 时,仍可视作刚性或刚弹性方案房屋的横墙。
②凡符合注①刚度要求的一段横墙或其他结构构件(如框架等),也可视作刚性或刚弹性方案房屋的横墙。
第323条 弹性方案房屋的静力计算可按屋架、大梁与墙(柱)为铰接的,不考虑空间工作的平面排架或框架计算。
第324条 刚弹性方案房屋的静力计算,可按屋架、大梁与墙(柱)为铰接的考虑空间工作的平面排架或框架计算。房屋各层的空间性能影响系数,可按表324采用,其计算方法按本规范附录三和附录四。
第325条 刚性方案房屋的静力计算,可按列规定进行:
一、单层房屋:在荷载作用下,墙、柱可视作上端为不动铰支承于屋盖,下端嵌固于基础的竖向构件。
二、多层房屋:在竖向荷载作用下,墙、柱在每层高度范围内,可近似地视作两端铰支的竖向构件;在水平荷载作用下,墙、柱可视作竖向连续梁。
三、对本层的竖向荷载,应考虑对墙、柱的实际偏心影响,当梁支承于墙上时,梁端支承压力N1到墙内边的距离,对屋盖梁应取梁端有效支承长度αo的033倍,对楼盖梁应取梁端有效支承长度αo的040倍(图325)。由上面楼层传来的荷载Nu,可视作作用于上一楼层的墙、柱的截面重心处。
a)屋盖梁情况b)楼盖梁情况
图325 梁端支承压力位置
第326条 当刚性方案多层房屋的外墙符合下列要求时,静力计算可不考虑风荷载的影响:
一、洞口水平截面面积不超过全截面面积的2/3。
二、层高和总高不超过表326的规定。
外墙不考虑风荷载影响时的最大高度 表326
基本风压值(kN/㎡) 层高(m) 总高(m)
---------------------------------
04 40 28
05 40 24
06 40 18
07 35 18
----------------------------------
三、屋面自重不小于08kN/㎡。
当必须考虑风荷载时,风荷载引起的弯矩M,可按下式计算:
式中ω——风荷载设计值;
Hi——层高。
第327条 计算上柔下刚多层房屋时,顶层可按单层房屋计算,其空间性能影响系数可根据屋盖类别按表324采用。
注:上柔下刚房屋系指顶层不符合刚性方案要求,而下面各层由相应楼盖类别和横墙间距可确定为刚性方案的房屋。
第328条 计算上刚下柔多层房屋时,底层空间性能影响系数可取表324中1类屋盖的空间性能影响系数,其计算方法应按本规范附录四采用。
注:上刚下柔房屋系指底层不符合刚性方案要求,而上面各层符合刚性方案要求的房屋。
第329条 带壁柱墙的计算截面翼缘宽度bf,可按下列规定采用:
一、多层房屋,当有门窗洞口时,可取窗间墙宽度;当无门窗洞口时,可取相邻壁柱间的距离。
二、单层房屋,可取壁柱宽加2炖3墙高,但不大于窗间墙宽度和相邻壁柱间距离。
三、计算带壁柱墙的条形基础时,可取相邻壁柱间的距离。
第3210条 当转角墙段角部受竖向集中荷载时,计算截面的长度可从角点算起每侧宜取层高的1/3。当上述墙体范围内有门窗洞口时,则计算截面取至洞边,但不宜大于层高的1/3。当上层的竖向集中荷载传至本层时,可按均布荷载计算,此时转角墙段可按角形截面偏心受压构件进行承载力验算。
第一节 受压构件
第411条 受压构件的承载力应按下式计算:
N≤φfA (411)
式中N——荷载设计值产生的轴向力;
φ——高厚比β和轴向力的偏心距e对受压构件承载力的影响系数,可按附录五的附表5-1至附表5-5采用或按附录五的公式计算;
f——砌体抗压强度设计值,应按第221条采用;
A——截面面积,对各类砌体均可按毛截面计算;对带壁柱墙,其翼缘宽度可按第329条采用。
注:对矩形截面构件,当轴向力偏心方向的截面边长大于另一方向的边长时,除按偏心受压计算外,还应对较小边长方向,按轴心受压进行验算。
第412条 计算影响系数φ或查φ表时,应先对构件高厚比β乘以下列系数:
一、粘土砖、空心砖、空斗砌体和混凝土中型空心砌块砌体10。
二、混凝土小型空心砌块砌体11。
三、粉煤灰中型实心砌块、硅酸盐砖、细料石和半细料石砌体12。
四、粗料石和毛石砌体15。
高厚比β应按下列公式计算:
对矩形截面 (412-1)
对T形截面 (412-2)
式中Ho——受压构件的计算高度,按第413条确定;
h——矩形截面轴向力偏心方向的边长,当轴心受压时为截面较小边长;
ht——T形截面的折算厚度,可近似取35i计算;
i——截面回转半径。
第413条 受压构件的计算高度Ho,应根据房屋类别和构件支承条件等按表413采用。表中的构件高度H应按下列规定采用:
一、在房屋底层,为楼板到构件下端支点的距离。下端支点的位置,可取在基础顶面。当埋置较深时,则可取在室内地面或室外地面下300~500mm处。
二、在房屋其它层次,为楼板或其他水平支点间的距离。
三、对于山墙,可取层高加山墙尖高度的1/2;山墙壁柱则可取壁柱处的山墙高度。
第414条 对有吊车的房屋,当不考虑吊车作用时,变截面柱上段的计算高度可按表413规定采用;变截面柱下段的计算高度可按下列规定采用:
一、当时,取无吊车房屋的Ho。
二、当时,取无吊车房屋的Ho应乘以修正系数μ。μ=13-03Iu/I1。Iu为变截面柱上段的惯性矩,I1为变截面柱下段的惯性矩。
三、当时,取无吊车房屋的Ho。但在确定β值时,采用上柱截面。
注:本条规定也适用于无吊车房屋的变截面柱。
第415条 轴向力的偏心距e按荷载标准值计算并不宜超过07y,y为截面重心到轴向力所在偏心方向截面边缘的距离。
当07y<e≤095y时,除按公式(411)进行计算外,尚应按下式进行正常使用极限状态验算:
式中Nk——轴向力标准值;
ftm,k——砌体沿通缝截面的弯曲抗拉强度拟准值,取ftm,k=15ftm;
ftm——砌体沿通缝截面的弯曲抗拉强度设计值,按第222条采用;
W——截面抵抗矩。
当e>095y时,按下式进行计算:
式中N——轴向力设计值。
第二节 局部受压
第421条 砌体截面中受局部均匀压力时的承载力应按下式计算:
N1≤γfA1 (421)
式中N1——局部受压面积上轴向力设计值;
γ——砌体局部抗压强度提高系数;
A1——局部受压面积。
第422条 砌体局部抗压强度提高系数γ,应符合下列规定:
一、γ可按下式计算:
式中Ao——影响砌体局部抗压强度的计算面积。
二、计算所得γ值,尚应符合下列规定:
1在图422a的情况下,γ≤25;
2在图422b的情况下,γ≤125;
3在图422c的情况下,γ≤20;
4在图422d的情况下,γ≤15。
5对空心砖砌体,局部抗压强度提高系数γ应小于或等于15;对未灌实的混凝土中型、小型空心砌块砌体,局部抗压强度提高系数γ为10。
第423条 影响砌体局部抗压强度的计算面积可按下列规定采用:
一、在图422a的情况下,Ao=(a+c+h)h;
二、在图422b的情况下,Ao=(a+h)h;
三、在图422c的情况下,Ao=(b+2h)h;
四、在图422d的情况下,Ao=(a+h)h+(b+h1-h)h1。
式中a、b——矩形局部受压面积A1的边长;
h、h1——墙厚或柱的较小边长,墙厚;
c——矩形局部受压面积的外边缘至构件边缘的较小距离,当大于h时,应取为h。
图422 影响局部抗压强度的面积Ao
第424条 梁端支承处砌体的局部受压承载力应按下式计算:
ψNo+N1≤ηγfA1 ( 424-1)
式中ψ——上部荷载的折减系数,,当Ao/A1≥3时,取ψ=0;
No——局部受压面积内上部轴向力设计值,No=σoA1,σo为上部平均压应力设计值;
η——梁端底面压应力图形的完整系数,一般可取07,对于过梁和墙梁可取10;
A1——局部受压面积,A1=aob,b为梁宽,ao为梁端有效支承长度。
当梁直接支承在砌体上时,梁端有效支承长度可按下式计算:
式中αo——梁端有效支承长度(mm),当α>α时,应取αo=α;
a——梁端实际支承长度(mm);
N1——梁端荷载设计值产生的支承压力(kN);
b——梁的截面宽度(mm);
tgθ——梁变形时,梁端轴线倾角的正切,对于受均布荷载的简支梁,当ω/lo=1/250时,可取tgθ=1/78;
ω——梁的最大挠度;
lo——梁的计算跨度。
对于跨度小于6m的钢筋混凝土梁,梁端有效支承长度可按下式计算:
式中hc——梁的截面高度(mm);
f——砌体的抗压强度设计值(MPa)。
第425条 在梁端下设有垫块或垫梁时,垫块或垫梁下砌体的局部受压承载力应按下列规定计算:
一、预制刚性垫块
No+N1≤φγ1fAb (425-1)
式中No——垫块面积Ab内上部轴向力设计值,No=σoAb;
φ——垫块上No及N1合力的影响系数,应采用本规范第411条当β≤3时的φ值;
γ1——垫块外砌体面积的有利影响系数,γ1应为08γ,但不小于10。γ为砌体局部抗压强度提高系数,按式(422)以Ab代替A1计算得出;
Ab——垫块面积,Ab=abbb,ab为垫块伸入墙内的长度,bb为垫块的宽度。
刚性垫块的高度不宜小于180mm,自梁边算起的垫块挑出长度不宜大于垫块高度tb。在带壁柱墙的壁柱内设刚性垫块时(图425-1),其计算面积应取壁柱面积,不应计算翼缘部分,同时壁柱上垫块伸入翼墙内的长度不应小于120mm。
图425-1 壁柱上设有垫块时梁端局部受压
二、与梁端现浇成整体的垫块
梁端支承处砌体的局部受压承载力仍按本规范第424条规定计算,此时A1=aobh,同时在计算有效支承长度的公式(424-2)中应以bb代b。
三、长度大于πho的垫梁(图425-2)
No+N1≤24fbbho (425-2)
式中No——垫梁πbbho/2范围内上部轴向力设计值,No=πbbhoσo/2;
b——垫梁宽度;
ho——垫梁折算高度,
Eb、Ib——分别为垫梁的弹性模量和截面惯性矩;
E——砌体的弹性模量;
h——墙厚。
第426条 对于混凝土中型、小型空心砌块砌体,当局部受压承载力不能满足公式(421)、(424-1)或(425-1)要求时,可将影响砌体局部抗压强度的计算面积范围内的砌体孔洞加以补强,补强措施应采用不低于砌块材料强度等级的混凝土灌实,其砌体强度设计值可按表221-3注④采用。
图425-2 垫梁局部受压
注:灌实部分的高度由局部荷载作用面算起,混凝土小型空心砌块砌体应不少于三皮,混凝土中型空心砌块砌体应为一块砌块高度。
第三节 轴心受拉构件
第431条 轴心受拉构件的承载力,应按下式计算:
Nt≤ftA(431)
式中Nt——轴心拉力设计值;
ft——砌体轴心抗拉强度设计值,应按第222条表222-1和表222-2中的较小值采用。
第四节受弯构件
第441条 受弯构件的承载力,应按下式计算:
M≤ftmW (441)
式中M——弯矩设计值;
ftm——砌体的弯曲抗拉强度设计值,应按第222条表222-1和表222-2中的较小值采用;
W——截面抵抗矩。
第442条 受弯构件的受剪承载力应按下式计算:
V≤fvbz (442)
式中V——剪力设计值;
fv——砌体的抗剪强度设计值,应按第222条表222-1采用;
b——截面宽度;
z——内力臂,z=I/S,当截面为矩形时,z=2h/3;
I——截面惯性矩;
S——截面面积矩;
h——截面高度。
第五节 受剪构件
第451条 沿通缝受剪构件的承载力,应按下式计算:
V≤(fv+018σk)A (451)
式中σk——恒荷载标准值产生的平均压应力。
第五章 构造要求
第一节 墙、柱的允许高厚比
第511条 墙、柱的高厚比应按下式验算:
式中Ho——墙、柱的计算高度,应按第413条采用;
h——墙厚成矩形柱与Ho相对应的边长;
μ1——非承重墙允许高厚比的修正系数;
μ2——有门窗洞口墙允许高厚比的修正系数;
[β]——墙、柱的允许高厚比,应按511采用。
注:①当墙高H大于或等于相邻横墙或壁柱间的距离s时,应按计算高度Ho=06s验算高厚比;
②当与墙连接的相邻两横堵间的距离s≤μ1μ2[β]h时,墙的高度可不受本条限制;
③变截面柱的高厚比可按上、下截面分别验算,其计算高度可按表414条的规定采用。验算上柱的高厚比时,墙、柱的允许高厚比可按表511的数值乘以13后采用。
第512条 带壁柱墙的高厚比验算,应按下列规定进行:
一、按公式(511)验算带壁柱墙的高厚比,此时公式中h应改用带壁柱墙的折算厚度hT,在确定截面回转半径时,墙截面的翼缘宽度,可按本规范第329条的规定采用;当确定墙的计算高度Ho时,s应取相邻横墙间的距离。
二、按公式(511)验算壁柱间墙的高厚比,此时s应取相邻壁柱间的距离。
设有钢筋混凝土圈梁的带壁柱墙,当b/s≥1/30时,圈梁可视作壁柱间墙的不动铰支点(b为圈梁宽度)。如具体条件不允许增加圈梁宽度,可按等刚度原则(墙体平面外刚度相等)增加圈梁高度,以满足壁柱间墙不动铰支点的要求。
墙、柱的允许高厚比[β]值 表511
砂浆强度等级 墙 柱
----------------------
M04 16 12
M1 20 14
M25 22 15
M5 24 16
≥M75 26 17
----------------------
式中bs——在宽度s范围内的门窗洞口宽度;
s——相邻窗间墙或壁柱之间的距离。
当按公式(514)算得的μ2值小于07时,应采用07。当洞口高度等于或小于墙高的1/5时,可取μ2等于10。
第二节 一般构造要求
第521条 六层及六层以上房屋的外墙、潮湿房间的墙,以及受振动或层高大于6m的墙、柱所用材料的最低强度等级,应符合下列要求:
一、砖采用MU10;
二、砌块采用MU5;
三、石材采用MU20;
四、砂浆采用MU25。
第522条 在室内地面以下,室外散水坡顶面以上的砌体内,应铺设防潮层。防潮层材料一般情况下宜采用防水水泥砂浆。勒脚部位应采用水泥砂浆粉刷。地面以下或防潮层以下的砌体,所用材料的最低强度等级应符合表522的要求。
注:①石材的重力密度,不应低于18kN/。
②地面以下或防潮层以下的砌体,不宜采用空心砖。当采用混凝土中、小型空心砌块砌体时,其孔洞应采用强度等级不低于C15的混凝土灌实。
③各种硅酸盐材料及其他材料制作的块体,应根据相应材料标准的规定选择采用。
第523条 承重的独立砖柱,截面尺寸不应小于240mm×370mm。
毛石墙的厚度,不宜小于350mm,毛料石柱截面较小边长,不宜小于400mm。
注:当有振动荷载时,墙、柱不宜采用毛石砌体。
第524条 空斗墙的下列部位,宜采用斗砖或眠砖实砌:
一、纵横墙交接处,其实砌宽度距墙中心线每边不小于370mm;
二、室内地面以下,及地面以上高度为180mm的砌体;
三、搁栅、檩条和钢筋混凝土楼板等构件的支承面下,高度为120~180mm的通长砌体,所用砂浆不应低于M25;
四、屋架、大梁等构件的垫块底面以下,高度为240~360mm,长度不小于740mm的砌体,其所用砂浆不应低于M25。
第525条 跨度大于6m的屋架和跨度大于下列数值的梁,其支承面下的砌体应设置混凝土或钢筋混凝土垫块,当墙中设有圈梁时,垫块与圈梁宜浇成整体:
一、对砖砌体为48m;
二、对砌块和料石砌体为42m;
三、对毛石砌体为39m。
第526条 对厚度小于或等于240mm的墙,当大梁跨度大于或等于下列数值时,其支承处宜加设壁柱,或采取其他加强措施:
一、对砖墙为6m;
二、对砌块和料石墙为48m。
第527条 预制钢筋混凝土板的支承长度,在墙上不宜小于100mm;在钢筋混凝土圈梁上不宜小于80mm。支承在墙、柱上的吊车梁、屋架,及跨度大于或等于下列数值的预制梁的端部,应采用锚固件与墙、柱上的垫块锚固:
一、对砖砌体为9m;
二、对砌块和料石砌体为72m。
第528条 骨架房屋的填充墙,应分别采用拉结条或其他措施与骨架的柱和横梁连接。
第529条 山墙处的壁柱宜砌至山墙顶部。风压较大的地区,檩条应与山墙锚固,屋盖不宜挑出山墙。
第5210条 砌块的两侧宜设置灌缝槽,当无灌缝槽时,墙体应采用两面粉刷。
第5211条 砌块砌体应分皮错缝搭砌。中型砌块上下皮搭砌长度不得小于砌块高度的1/3,且不应小于150mm;小型空心砌块上下皮搭砌长度,不得小于90mm。当搭砌长度不满足上述要求时,应在水平灰缝内设置不少于2Φ4的钢筋网片,网片每端均应超过该垂直缝,其长度不得小于300mm。
第5212条 砌块墙与后砌隔墙交接处,应沿墙高每400~800mm在水平灰缝内设置不少于24的钢筋网片(图5212)
图5212 砌块墙与后砌隔墙交接处钢筋网片
第5213条 混凝土中型空心砌块房屋,宜在外墙转角处、楼梯间四角的砌体孔洞内设置不少于1Φ12的竖向钢筋,并用C20细石混凝土灌实。竖向钢筋应贯通墙高并锚固于基础和楼、屋盖圈梁内,锚固长度不得小于30倍的钢筋直径。钢筋接头应绑扎或焊接,绑扎接头搭接长度不得小于35倍的钢筋直径。混凝土小型空心砌块房屋,宜将上述部位纵横墙交接处,距墙中心线每边不小于300mm范围内的孔洞,采用不低于砌块材料强度等级的混凝土灌实,灌实高度应为全部墙身高度。
第5214条 混凝土小型空心砌块墙体的下列部位,如未设圈梁或混凝土垫块,应采用不低于砌块材料强度等级的混凝土将孔洞灌实:
一、搁棚、檩条和钢筋混凝土楼板的支承面下,高度不应小于200mm的砌体;
二、屋架、大梁等构件的支承面下,高度不应小于400mm,长度不应小于600mm的砌体;
三、挑梁支承面下,纵横墙交接处,距墙中心线每边不应小于300mm,高度不应小于400mm的砌体。
第三节 防止墙体开裂的主要措施
第531条 对于钢筋混凝土屋盖的温度变化和砌体干缩变形引起墙体的裂缝(如顶层墙体的八字缝、水平缝等),可根据具体情况采取下列预防措施:
一、屋盖上宜设置保温层或隔热层;
二、采用装配式有檀体系钢筋混凝土屋盖和瓦材屋盖;
三、对于非烧结硅酸盐砖和砌块房屋,应严格控制块体出厂到砌筑的时间,并应避免现场堆放时块体遭受雨淋。
注:当有实践经验时,也可采取其他措施,如在钢筋混凝土屋面板与墙体的连接面处设置滑动层。
第532条 为了防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。伸缩缝应设在因温度和收缩变形可能引起应力集中、砌体产生裂缝可能性最大的地方。温度伸缩缝的间距可通过计算确定,亦可按表532采用。
注:①当有实践经验时,可不遵守本表的规定。
②按本表设置的墙体伸缩缝,一般不能同时防止第531条的由钢筋混凝土屋盖的温度变形和砌体干缩变形引起的墙体裂缝。
③层高大于5m的混合结构单层房屋,其伸缩缝间距可按表中数值乘以13,但当墙体采用硅酸盐块体和混凝土砌块砌筑时,不得大于75m。
④温差较大且变化频繁地区和严寒地区不采暖的房屋及构筑物墙体的伸缩缝的最大间距,应按表中数值予以适当减小。
⑤墙体的伸缩缝应与其他结构的变形缝相重合,缝内应嵌以软质材料,在进行立面处理时,必须使缝隙能起伸缩作用。
从某一高度的已知风压(如高度为10米的基本风压),推算另一任意高度风压的系数。风压高度变化系数随离地面高度增加而增大,其变化规律与地面粗糙度及风速廓线直接有关。设计工程结构时应在不同高度处取用对应高度的风压值。
扩展资料:
一、风载体型系数
也称空气动力系数,它是风在工程结构表面形成的压力(或吸力)与按来流风速算出的理论风压的比值。它反映出稳定风压在工程结构及建筑物表面上的分布,并随建筑物形状、尺度、围护和屏蔽状况以及气流方向等而异。
对尺度很大的工程结构及建筑物,有可能并非全部迎风面同时承受最大风压。对一个建筑物而言,从风载体型系数得到的反映是:迎风面为压力;背风面及顺风向的侧面为吸力;顶面则随坡角大小可能为压力或吸力。
二、地面粗糙度
地面因障碍物形成影响风速的粗糙程度。风(气流)在接近地面运动时,受到树木、房屋等障碍物的摩擦影响,消耗了一部分动能,使风速逐渐降低。这种影响一般用地面粗糙度衡量。地面粗糙度愈大,同一高度处的风速减弱愈显著。
一般地面粗糙度可由小而大列为水面、沙漠、空旷平原、灌木、村、镇、丘陵、森林、大城市等几类。
-风荷载
其他参数容易确定,关键是体型系数。
查荷规或高规截角三角形的体型系数,根据每个面的体型系数的正负号,确定每个面的受力大小和方向,如图红色箭头。
然后就是力的分解与合成,求出风作用方向的合力大小。
基本风压是如何定义的如下:
基本风压W0是以当地比较空旷平坦地面上离地面10米高平均最大风速为标准。
荷载规范规定,基本风压应按规范附录中给出的50年(n=50)一遇风压采用,但不得小于03 KN/㎡,对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。
对于特别重要的高层建筑,目前尚无统一明确的定义,一般可根据《建筑结构可靠度设计统一标准》规定的设计使用年限和安全等级确定,设计使用年限为100年的或安全等级为一级的高层建筑可认为是特别重要的高层建筑。
对风荷载是否比较敏感,主要与高层建筑的自振特性有关,如结构的自振频率和振型等。对于前几阶振型频率比较密集和振型比较复杂的高层建筑结构,高振型影响不可忽视,因此应适当提高风压取值。
为了便于执行,《高规》说明指出,一般情况下,房屋高度大于60m的高层建筑可取100年一遇的风压值;对于房屋高度不超过60m的高层建筑其风压值是否提高,根据结构的侧向刚度确定,侧向刚度较大的就不用提高。
对房屋相互间距较近的建筑群,由于旋涡的相互干扰,房屋的某些部位的局部风压会显著增大,设计时宜考虑其不利影响。群体效应情况比较复杂,荷载规范未给出具体计算方法,一般可将风荷载体型系数进行放大。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)