收集的几种连杆机构:机器人行走背后的机械原理(一)

收集的几种连杆机构:机器人行走背后的机械原理(一),第1张

机器人概念已经红红火火好多年了,目前确实有不少公司已经研制出了性能非常优越的机器人产品,我们比较熟悉的可能就是之前波士顿动力的“大狗”和会空翻的机器人了,还有国产宇树科技的机器狗等,这些机器人动作那么敏捷,背后到底隐藏了什么高科技呢,控制技术太过复杂,一般不太容易了解,不过其中的机械原理倒是相对比较简单,大部分都是一些连杆机构

连杆机构(Linkage Mechanism)

又称低副机构,是机械的组成部分中的一类,指由若干(两个以上)有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。

由若干刚性构件用低副联接而成的机构称为连杆机构,其特征是有一作平面运动的构件,称为连杆,连杆机构又称为低副机构。其广泛应用于内燃机、搅拌机、输送机、椭圆仪、机械手爪、牛头刨床、开窗、车门、机器人、折叠伞等。

主要特征

连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。

优点:

(1)采用低副:面接触、承载大、便于润滑、不易磨损,形状简单、易加工、容易获得较高的制造精度。

(2)改变杆的相对长度,从动件运动规律不同。

(3)两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。

(4)连杆曲线丰富,可满足不同要求。

缺点:

(1)构件和运动副多,累积误差大、运动精度低、效率低。

(2)产生动载荷(惯性力),且不易平衡,不适合高速。

(3)设计复杂,难以实现精确的轨迹。

的相关词条如下

下面我们就看看一般都有什么连杆机构适于用于行走(或者移动)的。

平面四杆机构是由四个刚性构件用低副链接组成的,各个运动构件均在同一平面内运动的机构。机构类型有曲柄摇杆机构、铰链四杆机构、双摇杆机构等。

1、曲柄摇杆机构(Crank rocker mechanism )

曲柄摇杆机构是指具有一个曲柄和一个摇杆的铰链四杆机构。通常,曲柄为主动件且等速转动,而摇杆为从动件作变速往返摆动,连杆作平面复合运动。曲柄摇杆机构中也有用摇杆作为主动构件,摇杆的往复摆动转换成曲柄的转动。曲柄摇杆机构是四杆机构最基本的形式 。主要应用有:牛头刨床进给机构、雷达调整机构、缝纫机脚踏机构、复摆式颚式破碎机、钢材输送机等。

2、双曲柄机构(Double crank mechanism )

具有两个曲柄的铰链四杆机构称为双曲柄机构。其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。在双曲柄机构中,如果两对边构件长度相等且平行,则成为平行四边形机构。这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。

双曲柄机构类型分类

1不等长双曲柄机构

说明:曲柄长度不等的双曲柄机构。

结构特点:无死点位置,有急回特性。

应用实例:惯性筛

2平行双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相同的双曲柄机构。

结构特点:有2个死点位置,无急回特性。

应用实例:天平

3反向双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相反的双曲柄机构。

结构特点:无死点位置,无急回特性。

运动特点:以长边为机架时,双曲柄的回转方向相反;以短边为机架时,双曲柄回转方向相同,两种情况下曲柄角速度均不等。

应用实例:汽车门启闭系统

3、铰链四杆机构(Hinge four-bar mechanism)

铰链是一种连接两个刚体,并允许它们之间能有相对转动的机械装置,比如门窗用的合页,就是一种常见的铰链。由铰链连接的四连杆就叫铰链四杆机构。所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之後,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。如果以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。

铰链四杆机构可以通过以下方法演化成衍生平面四杆机构。

(1)转动副演化成移动副。如引进滑块等构件。以这种方式构成的平面四杆机构有曲柄滑块机构、正弦机构等。

(2)选取不同构件作为机架。以这种方式构成的平面四杆机构有转动导杆机构、摆动导杆机构、移动导杆机构、曲柄摇块机构、正切机构等。

(3)变换构件的形态。

(4)扩大转动副的尺寸,演化成偏心轮机构 。

4、双摇杆机构(Double rocker mechanism)

双摇杆机构就是两连架杆均是摇杆的铰链四杆机构,称为双摇杆机构。 机构中两摇杆可以分别为主动件。当连杆与摇杆共线时,为机构的两个极限位置。双摇杆机构连杆上的转动副都是周转副,故连杆能相对于两连架杆作整周回转。

双摇杆机构的两连架杆都不能作整周转动。三个活动构件均做变速运动,只是用于速度很低的传动机构中 。双摇杆机构在机械中的应用也很广泛,手动冲孔机,就是双摇杆机构的应用实例,比如说吧飞机起落架,鹤式起重机和汽车前轮转向机构都是双摇杆机构。

判别方法

1最长杆长度+最短杆长度 ≤ 其他两杆长度之和,连杆(机架的对杆)为最短杆时。

2 如果最长杆长度+最短杆长度 >其他两杆长度之和,此时不论以何杆为机架,均为双摇杆机构。

5、连杆机构的理论应用

动力机的驱动轴一般整周转动,因此机构中被驱动的主动件应是绕机架作整周转动的曲柄在形成铰链四杆机构的运动链中,a、b、c、d既代表各杆长度又是各杆的符号。当满足最短杆和最长杆之和小于或等于其他两杆长度之和时,若将最短杆的邻杆固定其一,则最短杆即为曲柄。若铰链四杆机构中最短杆与最长杆长度之和小于或等于其余两杆长度之和,则

a、 取最短杆的邻杆为机架时,构成曲柄摇杆机构;

b、 取最短杆为机架时,构成双曲柄机构;

c、 取最短杆为连杆时,构成双摇杆机构;

若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则无曲柄存在,不论以哪一杆为机架,只能构成双摇杆机构。

急回系数

在曲柄等速运动、从动件变速运动的连杆机构中,要求从动件能快速返回,以提高效率。即k称为急回系数。曲柄存在条件参考图 

压力角

如图中的曲柄摇杆机构,若不计运动副的摩擦力和构件的惯性力,则曲柄a通过连杆b作用于摇杆c上的力P,与其作用点B的速度vB之间的夹角α称为摇杆的压力角,压力角越大,P在vB方向的有效分力就越小,传动也越困难,压力角的余角γ称为传动角。在机构设计时应限制其最大压力角或最小传动角。

死点

在曲柄摇杆机构中,若以摇杆为主动件,则当曲柄和连杆处于一直线位置时,连杆传给曲柄的力不能产生使曲柄回转的力矩,以致机构不能起动,这个位置称为死点。机构在起动时应避开死点位置,而在运动过程中则常利用惯性来过渡死点。

6、平面四杆机构一些案例

切比雪夫连杆机构其实是和霍肯连杆机构是属于同一种形式的四连杆机构,其轨迹点都是在连杆两端谁在的直线上。霍肯连杆机构的轨迹点是在两端点连线的延伸线上,而切比雪夫连杆机构的轨迹点是在两端点连线的中间。如下:

切比雪夫连杆机构的动态演示

1、切比雪夫(1821~1894)

俄文原名Пафну́тий Льво́вич Чебышёв,俄罗斯数学家、力学家。切比雪夫在概率论、数学分析等领域有重要贡献。在力学方面,他主要从事这些数学问题的应用研究。他在一系列专论中对最佳近似函数进行了解析研究,并把成果用来研究机构理论。他首次解决了直动机构(将旋转运动转化成直线运动的机构)的理论计算方法,并由此创立了机构和机器的理论,提出了有关传动机械的结构公式。他还发明了约40余种机械,制造了有名的步行机(能精确模仿动物走路动作的机器)和计算器,切比雪夫关于机构的两篇著作是发表在1854年的《平行四边形机构的理论》和1869年的 《论平行四边形》。

理论联系实际是切比雪夫科学工作的一个鲜明特点。他自幼就对机械有浓厚的兴趣,在大学时曾选修过机械工程课。就在第一次出访西欧之前,他还担任着彼得堡大学应用知识系(准工程系)的讲师。这次出访归来不久,他就被选为科学院应用数学部主席,这个位置直到他去世后才由李雅普诺夫接任。应用函数逼近论的理论与算法于机器设计,切比雪夫得到了许多有用的结果,它们包括直动机的理论、连续运动变为脉冲运动的理论、最简平行四边形法则、绞链杠杆体系成为机械的条件、三绞链四环节连杆的运动定理、离心控制器原理等等。他还亲自设计与制造机器。据统计,他一生共设计了40余种机器和80余种这些机器的变种,其中有可以模仿动物行走的步行机,有可以自动变换船桨入水和出水角度的划船机,有可以度量大圆弧曲率并实际绘出大圆弧的曲线规,还有压力机、筛分机、选种机、自动椅和不同类型的手摇计算机。他的许多新发明曾在1878年的巴黎博览会和1893年的芝加哥博览会上展出,一些展品至今仍被保存在苏联科学院数学研究所、莫斯科历史博物馆和巴黎艺术学院里。

2、切比雪夫连杆机构经常被用于模拟机器人的行走

根据公式i=3n-2m

(n为活动构件数目,m为低副数目)

可得自由度i=1

3、切比雪夫连杆机构被广泛运用在机器人步态模拟上,从动图上也能看出,它的轨迹底部较为平稳,步态方式非常像四足动物,收腿动作有急回特性。根据下图WORKING MODEL仿真分析可得,在X轴上,也能看出它的急回特点。

4、嵌入汽缸的切比雪夫直线机构的运动

动图 

5、使用切比雪夫连杆机构的行走桌子

常见到有人遛狗溜猫,但你绝对没见过人溜桌子的,拜荷兰设计师Wouter Scheublin的脑洞所赐,荷兰人民倒是有幸见到过这一奇葩景象,有人推着一张桌子在路上行走,而有着八条腿的桌子就运动着自己的腿,走的蹭蹭蹭的,场景怪异中带着搞笑,让人印象深刻。那么桌子是怎么行走的呢?其实并没有用上什么高科技,它只是通过精细的机械传动机构动起来而已。设计师受到俄罗斯数学家切比雪夫的理论启发,并将它应用到桌子中,所以这张160斤重的桌子轻轻推拉就能走,而且走的异常平稳,不比轮子差。

每条桌腿与桌板之间,都采用精细的木质结构打造。当用手推动桌子时,给力的一方会使桌腿不断前进,通过力臂的摇摆和连接处木质结构,会把力传递到对面的桌腿使之向前移动,然后桌子就能满街跑了。

目前数控机床位置精度的检验通常采用国际标准ISO230-2或国家标准GB10931-89等。同一台机床,由于采用的标准不同,所得到的位置精度也不相同,因此在选择数控机床的精度指标时,也要注意它所采用的标准。数控机床的位置标准通常指各数控轴的反向偏差和定位精度。对于这二者的测定和补偿是提高加工精度的必要途径。

一、反向偏差

在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达和步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。对于采用半闭环伺服系统的数控机床,反向偏差的存在就会影响到机床的定位精度和重复定位精度,从而影响产品的加工精度。如在G01切削运动时,反向偏差会影响插补运动的精度,若偏差过大就会造成“圆不够圆,方不够方”的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。同时,随着设备投入运行时间的增长,反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加,因此需要定期对机床各坐标轴的反向偏差进行测定和补偿。

反向偏差的测定

反向偏差的测定方法:在所测量坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值,以所得平均值中的最大值为反向偏差测量值。金属加工内容不错,值得关注。在测量时一定要先移动一段距离,否则不能得到正确的反向偏差值。

测量直线运动轴的反向偏差时,测量工具通常采有千分表或百分表,若条件允许,可使用双频激光干涉仪进行测量。当采用千分表或百分表进行测量时,需要注意的是表座和表杆不要伸出过高过长,因为测量时由于悬臂较长,表座易受力移动,造成计数不准,补偿值也就不真实了。若采用编程法实现测量,则能使测量过程变得更便捷更精确。

例如,在三坐标立式机床上测量X轴的反向偏差,可先将表压住主轴的圆柱表面,然后运行如下程序进行测量:

N10G91G01X50F1000;工作台右移;

N20X-50;工作台左移,消除传动间隙;

N30G04X5;暂停以便观察;

N40Z50;Z轴抬高让开;

N50X-50:工作台左移;

N60X50:工作台右移复位;

N70Z-50:Z轴复位;

N80G04X5:暂停以便观察;

N90M99;

需要注意的是,在工作台不同的运行速度下所测出的结果会有所不同。一般情况下,低速的测出值要比高速的大,特别是在机床轴负荷和运动阻力较大时。低速运动时工作台运动速度较低,不易发生过冲超程(相对“反向间隙”),因此测出值较大;在高速时,由于工作台速度较高,容易发生过冲超程,测得值偏小。

回转运动轴反向偏差量的测量方法与直线轴相同,只是用于检测的仪器不同而已。

反向偏差的补偿

国产数控机床,定位精度有不少>002mm,但没有补偿功能。对这类机床,在某些场合下,可用编程法实现单向定位,清除反向间隙,在机械部分不变的情况下,只要低速单向定位到达插补起始点,然后再开始插补加工。插补进给中遇反向时,给反向间隙值再正式插补,即可提高插补加工的精度,基本上可以保证零件的公差要求。

对于其他类别的数控机床,通常数控装置内存中设有若干个地址,专供存储各轴的反向间隙值。当机床的某个轴被指令改变运动方向时,数控装置会自动读取该轴的反向间隙值,对坐标位移指令值进行补偿、修正,使机床准确地定位在指令位置上,消除或减小反向偏差对机床精度的不利影响。

一般数控系统只有单一的反向间隙补偿值可供使用,为了兼顾高、低速的运动精度,除了要在机械上做得更好以外,只能将在快速运动时测得的反向偏差值作为补偿值输入,因此难以做到平衡、兼顾快速定位精度和切削时的插补精度。

对于FANUC0i、FANUC18i等数控系统,有用于快速运动(G00)和低速切削进给运动(G01)的两种反向间隙补偿可供选用。根据进给方式的不同,数控系统自动选择使用不同的补偿值,完成较高精度的加工。

将G01切削进给运动测得的反向间隙值A。

输入参数NO11851(G01的测试速度可根据常用的切削进给速度及机床特性来决定),将G00测得的反向间隙值B。

输入参数NO11852。金属加工内容不错,值得关注。需要注意的是,若要数控系统执行分别指定的反向间隙补偿,应将参数号码1800的第四位(RBK)设定为1;若RBK设定为0,则不执行分别指定的反向间隙补偿。G02、G03、JOG与G01使用相同的补偿值。

二、定位精度

数控机床的定位精度是指所测量的机床运动部件在数控系统控制下运动所能达到的位置精度,是数控机床有别于普通机床的一项重要精度,它与机床的几何精度共同对机床切削精度产生重要的影响,尤其对孔隙加工中的孔距误差具有决定性的影响。一台数控机床可以从它所能达到的定位精度判出它的加工精度,所以对数控机床的定位精度进行检测和补偿是保证加工质量的必要途径。

定位精度的测定

目前多采用双频激光干涉仪对机床检测和处理分析,利用激光干涉测量原理,以激光实时波长为测量基准,所以提高了测试精度及增强了适用范围。检测方法如下:

安装双频激光干涉仪;

在需要测量的机床坐标轴方向上安装光学测量装置;

调整激光头,使测量轴线与机床移动轴线共线或平行,即将光路预调准直;

待激光预热后输入测量参数;

按规定的测量程序运动机床进行测量;

数据处理及结果输出。

定位精度的补偿

若测得数控机床的定位误差超出误差允许范围,则必须对机床进行误差补偿。常用方法是计算出螺距误差补偿表,手动输入机床CNC系统,从而消除定位误差,由于数控机床三轴或四轴补偿点可能有几百上千点,所以手动补偿需要花费较多时间,并且容易出错。

现在通过RS232接口将计算机与机床CNC控制器联接起来,用VB编写的自动校准软件控制激光干涉仪与数控机床同步工作,实现对数控机床定位精度的自动检测及自动螺距误差补偿,其补偿方法如下:

备份CNC控制系统中的已有补偿参数;

由计算机产生进行逐点定位精度测量的机床CNC程序,并传送给CNC系统;

自动测量各点的定位误差;

根据指定的补偿点产生一组新的补偿参数,并传送给CNC系统,螺距自动补偿完成;

重复进行精度验证。

根据数控机床各轴的精度状况,利用螺距误差自动补偿功能和反向间隙补偿功能,合理地选择分配各轴补偿点,使数控机床达到最佳精度状态,并大大提高了检测机床定位精度的效率。

定位精度是数控机床的一个重要指标。尽管在用户购选时可以尽量挑选精度高误差小的机床,但是随着设备投入使用时间越长,设备磨损越厉害,造成机床的定位误差越来越大,这对加工和生产的零件有着致命的影响。采用以上方法对机床各坐标轴的反向偏差、定位精度进行准确测量和补偿,可以很好地减小或消除反向偏差对机床精度的不利影响,提高机床的定位精度,使机床处于最佳精度状态,从而保证零件的加工质量。

汽车不能启动的原因有蓄电池电量过低、启动马达损坏、点火系统故障、供油系统故障、发动机机械系统故障等。冬季低温及个别用电设备忘关后,会造成车辆无法启动,特别是冬季长期短途低速使用,电瓶电压会低于额定值。

汽车不能启动的原因

蓄电池亏电,表现特点是起动机开始转,但转速不够,无力,后来起动机只咔咔响但不转。点火系统工作状态不好,特别冷天,由于进气温度低,燃油在气缸内雾化不好,若加之点火能量不足,其结果就会发生淹缸现象,即过多的燃油积累在气缸内,超过着火极限浓度而无法着车。可拧出火花塞,擦掉电极间油污,装复后即可着车。

在供油系统中,如果汽油流动受阻也会导致汽车不能启动,表现为发动机供油管内无油压。此种情况多发生于温度特别低的早晨,这是由燃油管路长期脏污造成。

如果反向拧会把发条拧出来。

发条里面是螺纹连接的,反向扭就是松螺丝,会拧出来,正向拧就是拧紧发条。

发条是为手表提供能量的零件,圈绕在条盒内。利用条轴上的铣方槽上紧发条。条轴的方槽是由上条机构驱动。

机械表一般是依靠手动拧动发条作动力,机芯的厚度较一般自动上发条的表薄一些,相对来说手表的重量就轻。

扩展资料

发条是为手表提供能量的零件,圈绕在条盒内。利用条轴上的铣方槽上紧发条。条轴的方槽是由上条机构驱动。手表在无复上条情况下,即能走时36到50小时左右。由于发条经受明显的应力,时常会导致断裂,因此,当前,采用合金材料,使机械表发条几乎不断裂。

发条储存一定的能量,以均匀小量地分配给振荡器。为此,提供的能量通过轮列组,由轮列组以相同比例缩减传输力的同时增加圈数。该轮列组包括4只轮和4只齿轮,后3只轮是铆压在前3只齿轮上。在该示意图上,斜线表示动件之间的啮合,而横线则表示动件铆接在相同轴上。第一只轮是圆周铣齿的条盒轮。

最后一只轮是擒纵机构齿轮,擒纵轮铆压在该齿轮上。擒纵轮属于分配机构及计数器。 条盒轮转一圈约6小时,在此段时间内,擒纵齿轮和擒纵轮转约3600圈。这数字代表第一只轮和最后一只轮之间的旋转频率比。该比例始终在此数值范围内。一般都设法使齿轮和分轮在手表的中心,并每小时转一圈。

机械手表的选购应注意以下几点:

1、外观。目测壳、面、针,无“沙眼”、划痕,镀层光亮,无色差,后盖旋合处应严密。

2、起动性能。缓慢旋转上条柄上发条,同时观察秒针,一般使秒针起动的上条旋转次数越少,该表的起动性能越佳。

3、上条。上条时手感应轻松,无杂音。除自动表上条上足后有打滑现象外,一般手表发条应能上足,不打滑。

4、拨针。拨针时手感应舒适,过紧或过松均不佳。时分针指示应协调(当时针分别对准3、6、9、12字符时,分针不得偏离12字符±4分格),时、分、秒三针互不碰擦。

5、表音。手表上足发条后,用耳听表音,应清晰匀称无杂音,并且不随方向变化而变化。

6、走时精度。需用专用仪器测得,一些大型国营商店有为顾客代测业务,选购时可请营业员检测走时精度以及位置误差。

-机械表

手头上没工具,凑合看看了。

黑色部分可以类似火车轮的结构或直接通过中间的轴驱动。

黑色齿轮只有部分有有齿(齿数需严格计算),这样就能够实现蓝色的框体往复运动,蓝色部分安装上齿后对接普通圆形齿轮就能实现正反转。

缺点是不适合高速设备,且正反转中间有一定的停顿。

一般来说,力的作用是相互的,有作用力就会有反作用力。

机械液压千斤顶也不会例外。

使用千斤顶只是使用液压的工作原理将多次很小的力,通过液压的作用变成一个方向很大的力,但千斤顶的后面必须要有能承受这个大力的稳固支点。

希望我的回答对你有帮助。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10604074.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-10
下一篇2023-11-10

发表评论

登录后才能评论

评论列表(0条)

    保存