椭圆形面积计算公式:S=π×a×b。其中a、b分别是椭圆的长半轴,短半轴的长。
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。
设椭圆x_/a_+y_/b_=1取第一象限内面积,有y_=b_-b_/a_x_即y=√(b_-b_/a_x_)
由于该式反导数为所求面积,观察到原式为圆方程公式a/b,根据(af(x))'=af'(x),且x=a时圆面积为a_π/4
1、椭圆面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长),或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。
2、(定积分法)首先把x^2/a^2+y^2/b^2=1化为y=b/a(√(a^2-x^2))
积分式是S=4∫(上限a,下限0)b/a(√(a^2-x^2))dx,解得S=πab。特别当a=b=r时,S=πr^2(其中a,b分别是椭圆的长半轴,短半轴的长)。
椭圆周长计算公式:L=T(r+R)
T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。
椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。
关于椭圆的周长等于特定的正弦曲线在一个周期内的长度的证明:
半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。以该圆和椭圆的某一交点为起始转过一个θ角。则椭圆上的点与圆上垂直对应的点的高度可以得到f(c)=r tanα sin(c/r)。
r:圆柱半径、α:椭圆所在面与水平面的角度、c:对应的弧长(从某一个交点起往某一个方向移动)。
扩展资料
椭圆的基本性质
1、范围:焦点在 轴上 , ;焦点在 轴上 , 。
2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
3、顶点:(a,0)(-a,0)(0,b)(0,-b)。
4、离心率: 或 e=√(1-b^2/a²)。
5、离心率范围:0<e<1。
6、离心率越小越接近于圆,越大则椭圆就越扁。
7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。
8、 与 (m为实数)为离心率相同的椭圆。
9、P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。
10、椭圆的周长等于特定的正弦曲线在一个周期内的长度。
参考资料:
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)