室外供热管道直埋安装时的技术要求有哪些

室外供热管道直埋安装时的技术要求有哪些,第1张

外供热管道安装施工工艺 1 适用范围本工艺标准适用于厂区及民用建筑群(住宅小区)的饱和蒸气压力不大于07MPa,热水温度不超过130℃的室外供热管道安装。2 施工准备21 原材料要求211无缝钢管、焊接钢管、冲压弯头、阀门、型钢具有产品合格证,管道组成件表面应无裂纹、缩孔、夹渣、折迭、重皮等缺陷,表面不得有超过壁厚负偏差的锈蚀和凹陷。阀门安装前,应作强度和严密性试验。试验应在每批(同牌号、同型号、同规格)数量中抽查10%,且不少于一个。212 管件、法兰、螺栓、电焊条213 石棉橡胶垫、石笔、小线、铅油、机油等22 作业人员要求221 从事本标准适用范围内管道工程施工的焊工及无损检测人员,应取得质量技术监督部门颁发的特殊作业人员资格证书。222 工程技术人员、质量检查人员应具备相应的专业资格。223 配备满足施工需要的施工人员:管工、气焊工、油工、起重工、瓦工、砼工等。施工人员已经过技术及安全培训。特殊工种持证上岗。23 主要工机具231 轮式起重机、起重机、电焊机、氩弧焊机、焊条烘干箱、X射线探伤机、管道切割机、角向磨光机、水平尺、试压泵、板手、经纬仪、水准仪、液压弯管机等。232 套丝板、管割刀、管钳、手锯、电锤、钢卷尺、钢直尺、撬杠、钢盘尺、压力表、温度计等。24 外部环境条件241 施工现场已达到三通一平,图纸齐全。242 到货的配管材料满足施工要求,施工所需机具、工具及消耗材料等配备齐全。243 按施工平面布置图堆放材料,摆放施工机具,合理布置管道预制,临时设施。244 不通行地沟半通行地沟或通行地沟的砌筑已完成。钢管架或混凝土柱管架(砖砌管架)已全部施工完毕。245 管道滑动支座、固定支座、导向支座均已预制成型。3 操作工艺31 工艺流程311 直埋铺设放线定位 → 管沟开挖 → 管道铺设 → 补偿器安装 → 水压试验 → 防腐保温 → 填盖细砂 → 回填夯实 312 管沟敷设定位放线 → 挖土方 → 砌管沟 → 支架预制、安装 → 管道安装 → 补偿器安装 → 水压试验 → 防腐保温 → 管沟盖板 → 回填土313 架空敷设放线定位 → 管架制安 → 管道安装 → 补偿器安装 → 水压试验 → 防腐保温 32 操作细则321 定位放线、管沟开挖执行室外井池与管沟施工工艺。 管道预制工作一般按设计单位提供的管道系统图和管道施工图进行。322 管架制作安装3221 管道支吊架可根据设计或需要选择下列类型的支吊架:固定支架滑动支架架空支吊架 活动支架 滚珠支架滚柱支架管道支吊架滑动导向支架地沟支吊架 导向支架 滚珠导向支架滚柱导向支架刚性支架弹簧支吊架3222 管架基础施工A)根据设计图纸进行测量放线,在每个管架位置上打进中心控制桩,用白灰放出管架基础坑的位置线。放坡参见表3222。表3222 基坑放坡尺寸土的类型边坡坡度(高:宽)坡顶无负荷坡顶有静负荷坡顶有动负荷直立壁负荷中密的砂土1:1001:1251:151:100中密的碎石类土(填充物砂土)1:0751:1001:1251:100硬塑的砂质粉土1:0671:0751:1001:125中密的碎石类土(填充物为粘性土)1:0501:0671:0751:150硬塑的复粘土粘土1:0331:051:0671:150老黄土1:011:0251:0331:200软质岩1:0001:011:0251:200B)采用人工挖土时,沿灰线直边切出坑槽边的轮廓线。一、二类土按30cm分层逐步开挖,三、四类土先用镐翻动按30cm分层,每挖一层清底一次,出土先向远处送甩,挖土距坑槽底约15~20cm处,先预留不挖,在下道工序进行前按控制桩抄平。C)混凝土基础(毛石混凝土基础)施工时,把按照设计图纸预制好的)铁件(地脚螺栓或预留孔洞)及时预留好,用水平仪抄好找准标高,预埋地脚螺栓时要注意找直、找正,在丝扣部位涂上黄油用塑料布包扎好,防止螺栓丝扣损坏。3223 管架和管道支座预制A) 按照设计图纸进行放样,放样前要将预制平台清理干净,校核画线工具注意留出焊接收缩量和切割加工余量。由工程技术人员和质量检验人员共同检查放样过程或样板。号料时要注意合理排版,节约使用钢材。B)钢材切割前,先将钢材表面切割区域内的铁锈、油污清理干净。切割后,切口上不允许有裂纹、夹层和大于10mm的缺陷。C)组对焊接前,要求根据管架的结构形式,采用反变形法、刚性固定法、临时固定法、焊接工艺控制变形法等达到减小变形的目的。管架焊接后须进行检查、校核,滑动支座、固定支座、导向支座组对焊接前,先进行钻孔、焊接后分类保管待用。3224 管道支架安装A)架空管架安装:管架基础达到强度后,根据管架的外形、尺寸、重量,将已运至现场的管架采用吊车、卷扬机、三木搭等不同方法将管架吊装就位。同时用经纬仪随时找正找直。若采用预埋铁件焊接固定,要严格保证焊接质量。地脚螺栓连接时要从四个方向对称地、均匀地拧紧螺栓。B)地沟内管架安装:在地沟内壁上测出水平基准线,按照支架的间距在沟壁上定出支架位置,做上标记打眼或预留孔洞,将打好的孔洞用水浇湿,灌入1:2水泥砂浆,把预制好的型钢支架栽进洞用碎砖或石块塞紧,再用抹子压紧抹平。若沟壁有预埋铁件,土建施工时应将预制好的铁件配合土建找准位置预埋。323 直埋管道安装3231 根据设计图纸的位置进行测量打桩放线挖土地沟垫层的处理等,沟槽的开挖宽度应根据管道外壳至槽底边的距离确定,见表3231中的规定。管道周围填砂时该距离不小于100mm。为了便于管道施工,挖沟时应将挖出来的土堆在沟边一侧,距沟边保持06~1m的距离,沟底要求平整夯实防止管道弯曲受力不均。表3231 管道每侧工作面宽度序号管道直径(mm)每侧工作面宽度(mm)1200~5003002600~100040031100~150060041600~20008003232 直埋供热管道的坡度不宜小于2‰,高处设排气阀,低处设放水阀。从干管直接引出分支管时,在分支管上设固定墩或轴向补偿器、弯管补偿器,分支点至直管上固定墩的距离不大于9m;分支点至轴向补偿器或弯管补偿器的距离不大于29m;分支管有干线轴向位移时,轴向位移量不大于50mm。3233 直埋管道上的阀门应能承受管道的轴向荷载,宜采用钢质阀门及焊接连接管道变径处、壁厚变化处也应设补偿器或固定墩,固定墩应设在大管径或壁厚较大一侧。固定墩处应采取可靠的防腐措施,钢管钢架不应裸露。钢管穿过固定墩处,孔边设置加强筋。3234 管道下沟前,先检查沟底标高沟宽尺寸是否符合设计要求,保温管应检查保温层是否有损伤,若有局部损伤将损伤部位放在上面做好标记,便于统一处理。3235 管道应先在沟边进行分段焊接,每段长度在25~35m范围内 。放管时,将绳索的一端固定在地锚上,并套卷管段拉住另一端,用撬杠将管段移至沟边。放好滑杠,统一指挥慢速放绳使管段沿滑杠下滚。为避免管道弯曲,拉绳不得少于两条,沟边不得站人。沟内管道焊接时必须清理管腔,管道找平、找直。焊接处要挖出操作坑,其大小要便于焊接操作。324 地沟内管道敷设3241 在不通行地沟里的管道少,管径小重量轻,地沟及支架结构简单,可以用人力借助绳索将管道直接下沟,落放在已达到强度的支架上,然后进行组对焊接。3242 半通行地沟及通行地沟的构造较复杂。沟内管道多、直径大,支架层数多。下管前要有施工组织措施或技术方案。下管可以采用吊车、卷扬机、倒链等起重设备或人力。3243 通行地沟的管道安装在地沟的一侧或两侧,支架采用型钢制作,支架的间距要求见表3243 管道坡度按设计规定确定。安装支架要牢固平直,同一地沟内有几层管道时,安装顺序应从最下面开始,再安装上面的管道,为了便于焊接焊缝要选在便于操作的位置。遇有伸缩器时,应在预制时按规范要求做好预拉伸并做好支撑,按位置固定与管道连接。325 架空管道安装3251 管道上架前,对管架的垂直度、标高进行检查,有条件的进行复测,否则要详细查阅核算测量记录。3252 按设计规定的安装位置、坐标,量出支架上的支座位置,安装支座。支座安装牢固后,进行架设管道,管道和管件应在地面组装,长度以便于吊装为宜。管道可采用机械或人工进行吊装,已吊装尚未连接的管段要用支架上的卡子固定好。采用丝扣连接的管道,吊装后随即连接;采用焊接时,管道全部吊装完毕后再进行焊接,焊缝不允许设在托架和支座上,焊缝与支架间距应大于150~200mm。3253 阀门集气罐补偿器等附属设备按设计位置与管道连接好。管道安装完毕后找平调直使管道在一条线上。 摆正后安装管道穿结构处的套管,填堵套管,预留口应设临时管堵。3254 按设计规定的压力充水进行强度及严密性试验,合格后办理验收手续,泄水。3255 管道防腐保温应符合设计要求和施工规范规定,注意做好保温层外的防雨、防潮等保护措施。326 为了保证管道的正常运行,及时排除管道内的凝结水,管道应设置疏水和启动排水排空装置。3261 蒸汽管道的疏水装置见图3261,并应设置在蒸汽管道的各低点;垂直升高的管段之前;水平管道每隔50m设一个;可能聚集凝结水的管道闭塞处。

图3261 蒸汽管道的疏水装置1—蒸汽干管;2—凝结水干管;3—疏水器3262 蒸汽管道的启动排水装置应设在启动时有可能积水的最低点;管道拐弯和垂直升高的管段之前;水平管道上每隔100~150m设置一个;水平管道上流量测量装置的前面。3263 蒸汽和凝结水管道的排空气装置见图3263。

图3263 蒸汽和凝结水管道的排空气装置(a)—蒸汽管道的排空气装置; (b)—凝结水管道的排空气装置1—蒸汽干管; 2—手动放空阀; 3—凝结水干管; 4—自动放空阀A)在蒸汽管道的高点设手动放空阀(平时不用),当管道进行水压试验(向管内充水)或初次通蒸汽时,利用此阀排除系统内的空气。B)在凝结水干管的始端(高点)设自动放空阀,若采用不带排气阀的疏水器时,在疏水器的前方应设放空阀,以便在系统运行过程中能及时排除凝结水管道内的空气。C)在供、回管道干管的高点和分段阀之间管段的高点应设置放水和排气装置。为了检修时减少热水的损失和缩短放水时间,在供回水干管上每隔800~1000m设一分段阀。327 阀门的安装3271 阀门安装前应核对阀门的规格型号和检查阀门的外观质量。阀门安装前应做强度和严密性试验。试验应在每批(同牌号、同型号)同规格)数量中抽查10%,且不少于一个。对于安装在主干管上起切断作用的闭路阀门,应逐个作强度和严密性试验。3272 井市内的阀门安装距井室四周的距离符合规定,DN50以上的阀门要有支撑装置。阀门法兰的衬垫不得凸入管内其外边缘接近螺栓孔为宜,不得安装双垫或偏垫。连接法兰的螺栓直径长度符合标准,拧紧后,突出螺母的长度为2~3扣。328 减压阀安装:减压阀的阀体应垂直安装在水平管道上,前后应安装法拦截止阀安装时注意方向,不得装反。安装完根据使用压力进行调试。329 调压孔板安装:调压孔板是用不锈钢或铝合金制作的圆板,开孔的位置及直径由设计决定,介质通过不同孔径的孔板进行节流,增加阻力损失起到减压作用。 安装时夹在两片法兰的中间,两侧加垫石棉垫片,减压孔板应待整个系统冲洗干净后方可安装。4 质量标准41 主控项目411 平衡阀及调节阀型号、规格及公称压力应符合设计要求。安装后根据系统要求进行调试。并作出标志。检验方法:对照图纸及产品合格证,并现场观察调试结果。412 直埋无补偿供热管道预热伸长及三通加固应符合设计要求。回填前应检查预制保温层外壳及接口的完好性。回填按设计要求进行。检验方法:回填前现场观察、核查。413 补偿器的位置必须符合设计要求,并按设计要求或产品说明书进行预拉伸。预拉伸(即两固定支架之间管段)热眼神量ΔL的1/2。管道固定支架的位置和构造必须符合设计要求。 检验方法:对照图纸并检查预拉伸记录。414 检查井室、用户入口处管道布置应便于操作及维修,支、吊、托架稳固,并满足设计要求。 检验方法:对照图纸,观察检查。415 直埋管道的保温符合设计要求,接口在现场发泡时,接头处厚度与管道保温层厚度一致,接头处保护层必须与管道保护层成一体,符合防潮防水要求。检验方法:对照图纸、观察检查。416 减压器调压后的压力必须符合设计要求检验方法:解体检查。417 调压板的材质,孔径和孔位使用前必须符合设计要求。 检验方法:检查安装记录或解体记录。42 一般项目421 管道水平敷设其坡度应符合设计要求。 检验方法:对照图纸,用水准仪(水平尺)拉线和尺量检查。422 除污器构造应符合设计要求,安装位置和方向正确。管网冲洗后应清除内部污物。 检验方法:打开清扫孔检查。423 管道支(吊、托)架的安装应符合以下规定:构造正确,埋设平整牢固,排列整齐,支架与管子接触紧密。检验方法:观察和尺量检查。424 供热管道的供水管或蒸汽管,如设计无规定时,应敷设在载热介质前进方向的右侧或上方。检验方法:对照图纸,观察检查。425 室外供热管道安装的允许偏差应符合表425的规定。 表425 管道安装允许偏差项次项 目允许偏差(mm)检验方法1坐 标(mm)敷设在沟槽内及架空20用水准仪(水平尺)、直尺、拉线检查埋地502标 高(mm)敷设在沟槽内及架空±10尺量检查埋地±153水平管道纵、横方向弯曲(mm)每1m管径≤100mm1用水准仪(水平尺)、直尺、拉线检查和尺量检查管径>100mm15全 长(25m以上)管径≤100mm≯13管径>100mm≯254弯 管椭圆率(Dmax-Dmin)/Dmax管径≤100mm8%用外卡钳和尺量检查管径>100mm5%折皱不平度(mm)管径≤100mm4管径125~200mm5管径250~400mm7

飞船数据

飞船名称: 神舟六号

发射: 北京时间2005年10月12日 09:00:00

起飞: 北京时间2005年10月12日 09:00:03583

着陆: 北京时间2005年10月17日 04:33

飞行时间: 115小时32分钟

轨道: 76圈

高度: 343千米

神舟六号载人飞船,是中国神舟号飞船系列之一“神舟六号”与“神舟五号”在外

形上没有差别,仍为推进舱、返回舱、轨道舱的三舱结构,重量基本保持在8吨左右

,用长征二号F型运载火箭进行发射它是中国第二艘搭载太空人的飞船,也是中国

第一艘执行“多人多天”任务的载人飞船

宇航员

执行任务宇航员

费俊龙,指挥长

聂海胜,操作手

这是两位太空人第一次进行太空任务飞行聂海胜10月13日在太空庆祝他的41岁农历

生日

后备宇航员

第一梯队:刘伯明、景海鹏

第二梯队:翟志刚、吴杰

各分系统负责人

航天员系统总指挥、总设计师:陈善广

飞船应用系统总指挥、总设计师:顾逸东

飞船系统总指挥:尚志,总设计师:张柏楠

火箭系统总指挥:刘宇,总设计师:刘竹生

发射场系统总指挥:张育林,总设计师:陆晋荣

测控通信系统总指挥:董德义,总设计师:于志坚

着陆场系统总指挥:隋起胜,总设计师:侯鹰

时间轴

以下时间使用协调世界时(UTC)

10月11日

22:15—22:17 太空人进入飞船

22:53 神舟六号返回舱舱门关闭

10月12日

00:27 火箭发射塔操作支架完全打开

01:00:00 长征二号F型火箭点火

01:00:03583 神舟六号发射

01:02:03(点火后第120秒) 火箭抛弃逃逸塔

01:02:19(点火后第136秒) 火箭助推器分离

01:02:42(点火后第159秒) 火箭一二级分离,一级火箭坠落

01:03:23(点火后第200秒) 整流罩在110公里高度脱离

01:09:43(点火后第583秒) 飞船与火箭在高度约200公里处分离成功

01:09:52 神舟六号进入预定轨道

07:56 神舟六号飞船实施变轨

10月13日

02:10 航天员进行在轨抗干扰试验

18:21 远望一号、远望二号和远望三号所处海域海况恶化

21:56 神舟六号飞船进行变轨后的首次轨道维持

10月15日

08:29—08:31 太空人与中华人民共和国主席胡 对话

10月16日

18:40 神舟六号围绕地球进入第76圈飞行,在青岛站测控区上空

18:44 神舟六号返回指令解锁

19:10 北京航天飞控中心调度员宣布,返回段跟踪进入30分钟准备

19:17 神舟六号正在南太平洋上空飞行

19:18 推进舱太阳帆板垂直归零

19:42 远望三号测量船捕获到神舟六号信号

19:43—19:48 远望三号测量船对神舟六号实施了姿态调整、轨道舱与返回航分离、

制动点火等一系列关键控制,神舟六号顺利进入预定返回轨道

19:43 远望三号向神舟六号发出指令,神舟六号第一次调姿开始

19:44 轨道舱与返回舱成功分离

19:45 推进舱发动机点火,开始回航

19:48:29 推进舱轨道控制发动机关机,飞出远望三号测量船测控段

19:52 返回舱飞过非洲大陆上空,向中国飞来

20:02 返回舱飞过南亚上空,航天员报告飞船工作正常,感觉良好

20:07 推进舱与返回舱成功分离

20:13 返回舱进入通讯黑障区

20:16 着陆场站测控设备发现飞船

20:19 返回舱主伞舱盖打开

20:20 脱减速伞,主伞打开,直升机目视到目标

20:23 返回舱防热大底成功抛掉

20:33 返回舱成功着陆

21:04 返回舱舱门被打开

21:39 两名太空人费俊龙和聂海胜离开返回舱

发射

神舟六号飞船于北京时间(UTC+8)2005年10月12日上午9:00在酒泉卫星发射中心发

射升空, 费俊龙和聂海胜两名中国航天员被送入太空,预计飞行时间为5天先在轨

道倾角424度、近地点高度200公里、远地点高度347公里的椭圆轨道上运行5圈,实

施变轨后,进入343公里的圆轨道,绕地球飞行一圈需要90分钟,飞行轨迹投射到地

面上呈不断向东推移的正弦曲线轨道特性与神舟五号相同

在轨

10月12日17时29分,航天员费俊龙打开神舟六号返回舱与轨道舱之间的舱门,进入轨

道舱开展空间科学实验

10月13日4时开始,航天员进行在轨干扰力试验,在舱内有意识加大动作幅度,以试

验人的扰动对飞船姿态的影响在进行了开关舱门、穿脱压力服、穿舱、抽取冷凝水

四大项“在轨干扰力”试验后,航天员的活动对飞船姿态的影响很小,飞船可保持正

常飞行,不需纠正飞船姿态

10月14日清晨,神舟六号在第30圈进行变轨后的首次轨道维持,即根据轨道精测参数

进行微量调整,使飞船回到预定的正常轨道维持时,神六发动机共点火65秒,将

飞船抬高了800米

10月15日16时29分,胡 与航天员费俊龙、聂海胜通话18时05分,航天员向北京

航天飞控中心传送他们拍摄的飞船太阳能帆板的数字图像

着陆

完成预定飞行任务后,飞船采用升力再入方式返回内蒙古四子王旗的主着陆场神舟

六号载人飞船返回地面需要经历4个阶段:制动飞行阶段、自由滑行阶段、再入大气

层阶段、着陆阶段在此次绕地飞行中,“神舟六号”的轨道舱与返回舱分离后,还

将继续在轨飞行六个月时间,进行一系列科学实验

由于第一次的载人航天器神舟五号在太空只飞行了一天,主着陆场的天气变化可及时

准确预测,因此未曾启用副着陆场;神舟六号飞船将在太空飞行多天,气象难以准确

预测,因此酒泉卫星发射中心的副着陆场将启用作后备着陆地点为迎接飞船随时可

能返回,地面共设置了13个着陆点除内蒙古四子王旗和酒泉卫星发射中心主、副两

个着陆场外,国内外还有11个应急着陆场着陆场系统包括主、副着陆场分系统,陆

上应急搜救分系统,海上应急搜救分系统,通信分系统和航天员医监医保分系统这5

个分系统

参与航天员搜救的装备包括:搜索救援直升机、搜索救护直升机、搜索摄录直升机、

指挥调度车、航天员医监医保车、工程运输车、航天员运输车、返回舱吊车和小型搜

索车

为保证神六和两名太空人安全回家,设计了4把巨型降落伞返回舱在降落过程中,

至少要先后打开引导伞、减速伞、主伞共3把伞,如果有必要,还要打开第4把备份伞

太空船返回舱降落伞能否顺利打开,直接关系着回收的成败主伞不能一下子全部

打开,否则会被高速气流吹破,返回舱也会被摔烂太空船落地后也并非万事大吉,

如果巨大降落伞被风吹鼓,就可能拖着返回舱快速滚动为策安全,返回舱落地一刹

那间,舱上的切割器会自动切断伞绳吊带,让降落伞独自飘落,保证返回舱不被伞拖

另外,根据神舟五号太空人杨利伟提出的意见,为使神舟六号着陆时对太空人的冲击

降至最小,舱内太空人的座椅还首次安装了“赋形减震座垫”——根据太空人形体不

同特征量体制造的吸能座垫,可在发生撞击瞬间迅速分散人体的应力,避免人体损伤

在2005年10月16日凌晨3时44分,太空船轨道舱与返回舱成功分离,并在3时45分,飞

船的发动机成功点火,开始回航在4时07分飞船推进舱与返回舱成功分离,返回舱

自行重返地球

在着陆期间,在四子王旗主着陆场的夜空一直有一个光点,仿如流星划过夜空返回

舱在4时13分经过大气层时,产生高温,形成通讯黑障区,一度暂停与控制中心联络

,长达3分钟在4时20分,返回舱打开主降落伞,在四子王旗主着陆场慢慢降落,在

4时33分返回舱成功降落,2名太空人费俊龙、聂海胜并向控制中心报平安,控制中心

工作人员鼓掌庆祝在约半小时后,搜救直升机首先发现返回舱,实际着陆地点较预

计相差仅1公里工作人员打开返回舱门后,医疗人员为2名太空人检查身体,并建议

2人可以自行出舱

与神舟五号太空人杨利伟不同,费俊龙首先穿着太空衣,自行爬出返回舱,向现场工

作人员招手聂海胜亦爬出舱门,走下铁梯2人坐在椅子上,接受工作人员献花,

并感谢大家的关心及热爱,费俊龙表示,这次太空之旅非常顺利,他们在太空舱内的

工作及生活很好,现在身体状况不错2名太空人在太空逗留了1155小时,是神舟五

号太空船飞行时间的5倍多,创造中国人在太空逗留最长的时间,圆满结束中国首次

“多人多天”特点的太空旅程费俊龙及聂海胜重返地面后,被直升机接走,跟着由

专机送返北京,暂时被隔离14天

技术改进

飞船上新增加了40余台设备和6个软件,使飞船的设备达到600余台,软件82个,元器

件10万余件,做出了四个方面110项技术改进

围绕两人多天任务的改进:食品柜得到真正使用,通过水箱和单独的软包装两种方式

准备了航天员用水扩大了冷凝水箱,把所有 管线都贴上了吸水材料,确保飞船

湿度控制在80%以下

轨道舱功能使用方面的改进:放置了食品加热装置和餐具等轨道舱中挂有一个睡袋

,供两名航天员轮流休息用轨道舱中还有一个专门的清洁用品柜,航天员可以用里

面的温巾等物品进行清洁大小便收集装置这次也是首次使用

提高航天员安全性的改进:对航天员的坐椅缓冲器进行了重新设计,使返回前坐椅提

升后航天员可以看到舷窗外的情况研制成功了返回舱与轨道舱之间的舱门密闭快速

自动检测装置研制出一种专用抹布,这种布不产生纤维、静电、异味,专门用来清

洁舱门

持续性改进:“黑匣子”不仅存储量比原来大了100倍,而且数据的写入和读出速度

也提高了10倍以上,体积却不到原来的一半

搭载

此次神舟六号飞船上搭载的物品主要是载人航天工程纪念品,如邮品、字画、旗帜和

其他纪念品等,还有用来进行科学试验的微生物菌种和农作物种子

实验用途

一些鸡蛋、蚕卵和云南普洱茶将随“神六”升空,以研究其基因变异的可能性

飞船上放置了盛有搏动的心肌细胞和贴壁伸展的成骨细胞的24个细胞培养盒,航天员

和地面工作人员同步对两份相同的活体细胞进行一系列的科学对比实验,研究空间环

境影响心脏和骨骼的细胞分子机理,并通过空间实时飞行验证放置在细胞培养液中、

地面筛选出药物的防护效果航天员分三个时段操作24个样品盒,操作时,航天员将

把细胞培养带放置在腿上,按不同时段,挤破分别装着激活剂与固定剂的两种胶囊,

激活或固定活体细胞,考察在飞船入轨前与入轨后不同重力条件下细胞样品的状态与

变化

纪念用途

有10克特别的泥土,由9克大陆泥土和1克台湾泥土组成,寓意十全十美,寄望祖国和

平统一

从机械工程角度去验收一台设备,准确的说是按设备的制造图纸去对应每个细节,进行标准化验收!一般按规范和技术协议验收。

我这里有一个某设备的验收标准,借鉴一下吧

设备验收标准  

注意项:需验收的容器资料包括一般图纸,产品质量证明书,里面包括特检院的监检证书,原材料验收及质量证明书,制造检验过程记录,水压试验记录,无损检测报告基本上就是容规上说的那些。主要是容规上的 还有就是三类压力容器和低温制造厂要向使用单位提供容器强度计算书。如有必要还要提供安装指导说明。

对于到货的设备应该对照设备图纸和设备的相关技术要求或技术协议,对其有特殊要求的部位进行重点检查。

设备到货及安装检验标准   

一、立式或卧式容器类设备的整体就位安装质量检验 

(一)、设备到货的验收 

1、检查设备技术文件  

11检查设备是否有竣工图、压力容器产品质量监督检验证书及产品质量证书。 

12产品质量证书应包括:产品合格证、容器特性、主要零部件材料的化学成份和力学性能、容器热处理状态与禁焊等特殊说明、无损探伤检查结果、焊接质量检查结果、压力试验与气密试验结果、与设计图样不符项目。  

13对照竣工图与产品质量证书,检查设备本体及主要零部件是否与设计一致。 

14检查各管口是否配齐配对法兰、螺栓、垫片。  

15检查设备本体上是否安装设备铭牌。铭牌上应包括:制造单位名称和制造许可证号码、压力容器名称和产品编号、设计压力、温度及介质、最高工作压力和最大允许工作压力、压力容器类别和监检标记、压力容器净重和制造日期、试验压力。  

16检查是否有装箱清单,根据竣工图和装箱清单清点验收以下各项:清点箱数、箱号及检查包装情况;核对设备名称、型号及规格;检查接管的规格、方位及数量;核对设备备件、附件的规格尺寸、型号及数量。  

注意:必须将所有技术文件收集、保管好,这是设备档案的一部分,压力容器取证也需要这些资料   

2、检查设备本体  

21检查设备本体的表面质量:设备表面无明显损伤和凹凸不平,接管、法兰及其它焊接件无明显歪斜,法兰密封面无损伤,工夹具的焊疤应清除干净。 

22设备本体按规定进行刷漆防腐,质量合格。满足图纸、技术要求或技术协议要求。

23设备焊缝检查:无十字焊缝、拼接缝应按规定布置和错口,管口应避开焊缝。

焊缝表面不得咬边(深度≤05mm,长度≤10%焊缝长度且≤100mm)、裂纹、未焊透、未熔合、表面气孔、弧坑、未填满和肉眼可见的夹渣等缺陷。

焊缝与母材应圆滑过渡;

角焊缝或搭接焊缝焊角高度应等于较薄件厚度;

焊缝余高<4mm。 

2.4设备本体平直,无弯曲、扭曲。  

2.5设备开盖检查:内构件齐全如:进料分配管、出口防涡旋器、破沫网安装符合要求;焊缝错边量<3mm;

内构件支承圈水平度:直径小于等于φ1600≤3mm,直径小于等于φ3200≤4mm;

内构件安装水平度:直径小于等于φ1600≤3mm,直径小于等于φ3200≤5mm;

不锈钢内构件表面进行酸洗钝化;

器内无杂物,各开口通畅。 

(二)、容器安装质量检查

1、垫铁的安装:不松动、接触好,找正后定位焊固定(垫铁之间),每组垫铁不超过四块,外露均匀(10-30mm),搭接长度不小于全长的3/4。  

2、地脚螺栓的安装:地脚螺栓的螺母和垫圈齐全,均匀紧固、螺栓螺纹无损伤并露出螺母2-3扣,外漏螺纹应涂防锈脂。  

3、卧式容器滑动支座的安装:滑动端支座板的腰形孔与地脚螺栓的位置应满足设备工况下的胀缩量,支座板与底板应能滑动(其表面上无滑动障碍物并涂上润滑剂)。设备配管结束后,将地脚螺栓拧松至05-1mm间隙。  

4、卧式容器安装水平度的检查:轴向水平度≤L/1000(L:设备长度),径向水平度≤2D/1000(D:设备直径)。用水平仪测量。  

5、立式设备垂直度检查:立式设备垂直度≤H/1000,且≤30(H:设备高度)。用经纬仪测量。  

6、需要现场安装的内构件检查:

内构件支承圈水平度:直径小于等于φ1600≤3mm,

直径小于等于φ3200≤4mm;

内构件安装水平度: 直径小于等于φ1600≤3mm,

直径小于等于φ3200≤5mm;相邻支承圈间距±3mm,20层中任何两层之间±10mm;支承梁平直度≤L/1000,且≤5mm;

降液板底部与受液盘上表面距离偏差±3mm,降液板立边与受液盘立边距离偏差+5mm,-3mm;

溢流堰高偏差:D≤3m时为±15mm,D>3m时为±3mm;

溢流堰上表面水平度:D≤15m时为3mm,当15m<D≤25m时为45mm,当D>25m时为6mm。

检查数量:检查总层数10%,且不少于5层,少于5层时全部检查。  

7、塔盘内构件补充检查项目:塔盘、卡子、密封垫片安装位置准确,塔盘搭接均匀,无明显凹凸变形,各螺栓齐全、紧固(抽查15%的塔盘);浮阀齐全,无卡涩和脱落现象。 

8、内构件安装完毕封人孔前检查:容器内无积垢,无残留工具及配件、杂物等。 

9、外部附属设施的安装检查:液位计、压力表、温度计安装方向是否便于观察;各法兰螺栓是否齐全、紧固,是否满扣,垫片是否对正,法兰面是否平行。  

10、在人孔回装前必须测量人孔垫片及其螺栓尺寸并记录在设备一览表内。

11、记录各容器液位计规格。  

12、测量各安全阀垫片、螺栓规格,并记录在安全阀档案内。 

13、设备接地电阻必须小于10Ω。  

14、抽出口有滤网的要检查使用的滤网目数(网孔小于最小磁球直径的一半)、抽出口开孔是否与图纸一致(避免床层压降过大)和是否捆扎牢固,避免器内磁球从抽出口漏出或卡在抽出口的开口、缝。  

15、有破沫网的要仔细检查破沫网的厚度是否符合图纸要求及捆扎、固定是否牢固,避免在运行中被冲出堵塞管线。    

二、换热器的整体就位安装质量检验 

(一)设备到货的验收 

1、检查设备技术文件 

11检查是否有产品合格证书;  

12检查是否有产品特性表,该表应包括设计压力、试验压力、设计温度、工作介质、试验介质、换热面积、设备重量、设备类别及特殊要求;  

13检查是否有产品质量证明书,该书内应包括:主要受压元件材料的化学成份、力学性能及标准规定的复验项目的复验值;无损检测及焊接质量的检查报告(包括超过两次返修的记录);通球记录;奥氏体不锈钢设备的晶间腐蚀试验报告;设备热处理报告(包括时间——温度记录曲线);外观及几何尺寸检查报告;压力试验和致密性试验报告。 

14检查是否有设备制造竣工图;(现在一般情况下设计出图后,制造商应该在图纸上盖竣工章);

15检查是否有装箱清单,根据竣工图和装箱清单清点验收以下各项:清点箱数、箱号及检查包装情况;核对设备名称、型号及规格;检查接管的规格、方位及数量;核对设备备件、附件的规格尺寸、型号及数量。  

16检查设备本体上是否安装设备铭牌。  

注意:必须将所有技术文件收集、保管好,这是设备档案的一部分,压力容器取证也需要这些资料   

2、检查设备本体  

21检查设备本体的表面质量:设备表面无明显损伤和凹凸不平,接管、法兰及其它焊接件无明显歪斜,法兰密封面无损伤,工夹具的焊疤应清除干净。 

22设备本体按规定进行刷漆防腐,质量合格。满足图纸、技术要求或技术协议要求。

23设备焊缝检查:

无十字焊缝、拼接缝应按规定布置和错口,管口应避开焊缝。焊缝表面不得咬边(深度≤05mm,长度≤10%焊缝长度且≤100mm)、裂纹、未焊透、未熔合、表面气孔、弧坑、未填满和肉眼可见的夹渣等缺陷。焊缝与母材应圆滑过渡;角焊缝或搭接焊缝焊角高度应等于较薄件厚度。焊缝余高<4mm。 

24设备本体平直,无弯曲、扭曲。  

25换热管束必须进行抽芯、试压检查。 

(二)、换热器安装质量检查  

1、垫铁的安装:不松动、接触好,找正后定位焊固定(垫铁之间),每组垫铁不超过四块,外露均匀(10-30mm),搭接长度不小于全长的3/4。  

2、 螺栓的安装:地脚螺栓的螺母和垫圈齐全,均匀紧固、螺栓螺纹无损伤并露出螺母2-3扣,外漏螺纹应涂防锈脂。  

3、换热器滑动支座的安装:滑动端支座板的腰形孔与地脚螺栓的位置应满足设备工况下的胀缩量,支座板与底板应能滑动(其表面上无滑动障碍物并涂上润滑剂)。设备配管结束后,将地脚螺栓拧松至1-3mm间隙。  

4、换热器安装水平度的检查:轴向水平度≤L/1000(L:设备长度),径向水平度≤2D/1000(D:设备直径)。用水平仪测量。  

5、换热器管束抽芯后(抽芯时必须管箱下管道口必须封盖,防止杂物落如管内),认真检查管束固定管板的胀焊管口是否完整,管板密封面、浮头、钩圈密封面是否有损伤。管束管子外表是否有损伤,U形管束弯管处是否有损伤。防冲板安装的位置是否正确(管束回装时,同样注意防冲板的位置,不能堵塞出口)。  

6、管箱密封面是否有损伤,分程板角焊缝是否合格(外观检查)。  

7、壳体两侧兰及大头盖密封面是否有损伤。  

8、测量标准换热器管箱、浮头、大头盖处的垫片、螺栓的规格,并记录在换热器台帐上。特别要注意螺栓的材质要符合规定:高温部位的螺栓必须使用合金钢螺栓(详见下表规定),在低温湿硫化氢腐蚀介质中的小浮头螺栓不能使用高强度的合金螺栓,只能使用35#/25#钢。  一般螺栓、螺母上均打有材质代码,其代码与材质的对应关系如下: 

材质代码    1    2    3    4    5    6    7  

材质    25#    35#    45#或40MnB、40Cr    30CrMoA    35CrMoA    25Cr2MoVA    不锈钢 

螺栓的材质等级一般比螺母高一级。  所以,对于非临氢系统的管线、设备,温度在250℃以下一般选用碳钢螺栓和螺母,即35#/25#; 

对于非临氢系统的管线、设备,温度在250℃-400℃一般选用35CrMoA/30CrMoA; 对于临氢系统的管线、设备,温度在200℃以下一般选用碳钢螺栓和螺母,即35#/25#; 对于临氢系统的管线、设备,温度在200℃-300℃一般选用35CrMoA/30CrMoA; 

对于临氢系统的管线、设备,温度在300℃-550℃一般选用25Cr2MoVA/35CrMoA或25Cr2MoVA/25Cr2MoVA; 

对于临氢系统的管线、设备,温度在550℃-700℃一般选用不锈钢螺栓及螺母;

9、接地电阻必须小于10Ω。 

三、空冷整体就位安装质量检验 

(一)、 设备到货的验收 

1、检查结构件、零部件、空冷管束、风机、电机等是否有质量证明书、产品使用说明书等,将这些资料拿回车间,保管好。满足图纸、技术要求或技术协议要求。

2、检查是否有装箱清单,根据竣工图和装箱清单清点验收以下各项:清点箱数、箱号及检查包装情况;核对设备名称、型号及规格;检查接管的规格、方位及数量;核对设备备件、附件的规格尺寸、型号及数量,特别是风机的皮带和风叶的规格尺寸。 

3、设备外观检查:翅片管不应折断、裂纹、卷边、倒装和相邻的翅片紧挨。管束法兰面无损伤;管箱焊缝焊缝表面不得咬边(深度≤05mm,长度≤10%焊缝长度且≤100mm)、裂纹、未焊透、未熔合、表面气孔、弧坑、未填满和肉眼可见的夹渣等缺陷。焊缝与母材应圆滑过渡;角焊缝或搭接焊缝焊角高度应等于较薄件厚度。焊缝余高<4mm。 

4、检查电机、管束、风筒上是否铭牌齐全。 

(二)、空冷安装验收 

1、空冷管束安装前必须进行水压试验,试验压力严格按照铭牌上的试验压力。 

2、构架连接牢固,风筒本身及与风箱连接紧密,所有螺栓拧紧。 

3、构架、风筒风箱无机械损伤和残留变形,立柱和横梁无明显歪斜。 

4、风箱壁板上的连接焊缝应严密,不得漏焊、间断、烧穿、接头脱节和包角不密。 

5、立柱垂直度不得超过立柱总长的1/1000,且不超过25mm。 

6、风筒椭圆度:直径为2-3m≤25mm; 直径为3-5m≤4mm。 

7、风筒法兰面两端平行度:直径为2-3m≤5mm; 直径为3-5m≤6mm。 

8、风筒内壁与风机叶片尖端的间距偏差:直径为2-3m为3-8mm; 直径为3-5m为4-12mm。 

9、风机电机座中心的位置偏差≤±2mm。 

10、管束水平度不超过管束长度的1/1000。 

11、盘车灵活无轻重感。 

12、风机试运检查:叶片是否平稳、有无撞击声、皮带不松脱,风机振动不大于015mm,电机轴承温度不大于70℃

四、工艺管道验收标准

1、采用的标准

《工业金属管道工程施工及验收规范》              GB50235-97

《现场设备、工业管道焊接工程施工及验收规范》    GB50236-98

《石油化工有毒、可燃介质管道工程施工及验收规范》SH3501-2002

《压力容器无损检测》                            JB4730-94

11适用范围

《工业金属管道工程施工及验收规范》      GB50235-97

适用于设计压力不大于42Mp,设计温度不超过材料允许的使用温度的工业金属管道

《石油化工有毒、可燃介质管道工程施工及验收规范》 SH3501-2002

适用于设计压力400Pa(绝压)~42MP(表压),设计温度-196℃~850℃的有毒、可燃介质刚直管道工程的施工及验收。

2、管道分级

管道级别        适 用 范 围

SHA        1、毒性程度为极度危害介质管道(苯管道除外)

2、毒性程度为高度危害介质的丙稀腈、光气、二硫化碳和氟化氢介质管道

3、设计压力不大或等于100Mp输送有毒、可燃介质管道

SHB        1、毒性程度为极度危害介质的苯管道

2、毒性程度为高度危害介质管道(丙稀腈、光气、二硫化碳和氟化氢管道除外)

3、甲类、乙类可燃气体和甲A类液化烃、甲B类、乙A类可燃液体介质管道

SHC        1、毒性程度为中度、轻度危害介质管道

2、乙B类、丙类可燃液体介质管道

SHD        设计温度低于-29℃的低温管道

3、管道组成件的检验

31管材、管件、阀门必须具有制造厂的质量证明书。

32管材、管件使用前应进行外观检查,表面应符合下列要求。

--无裂纹、缩孔、夹渣、折叠、重皮等缺陷。

--无超过壁厚负偏差的锈蚀、凹陷及机械损伤。

--有材质标记。

33材料使用前应认真按设计要求进行核对管线的材质、规格。

34管道组成件及管道支撑件在施工过程中应妥善保管,不得混淆或损坏,其色标或标记应明显清晰。

35暂时不能安装的管子,应封闭管口。

36阀门检验

361用于本工程的阀门产品,应符合设计文件中“阀门规格书”的要求。

362阀门的质量证明书应有下列内容:

1、制造厂名称

2、阀门名称、型号、规格、公称压力

3、适用介质,温度

4、出厂日期

5、产品标准代号、质量检查结论

6、制造厂检验单位及检验人员的印章

363阀门的外观质量应符合下列要求:

1、阀门上应有制造厂的铭牌,铭牌上应标明:阀门名称、型号、公称压力、公称直径、工作温度、制造厂名;

2、阀门的壳体上应注有公称压力、公称直径、介质流向等标识;

3、阀体不得有损坏、锈蚀、缺件、脏污、铭牌脱落、色标不符等;

4、阀门的手柄或手轮应操作灵活轻便,无卡涩现象;

5、阀门两端的临时端盖应完好,封闭严实,阀体内无杂物;

364下列管道的阀门,逐个进行壳体压力试验和密封试验。不合格者,不得使用。

1)输送有毒流体、可燃流体管道的阀门;

2)输送设计压力大于等于1MP、或设计压力小于等于1MPa且设计温度大于186℃的非可燃流体、无毒流体管道的阀门

3)输送设计压力设计压力小于等于1MPa且设计温度为-29~186℃非可燃流体、无毒流体管道的阀门应从每批中抽查10%,且不得少于1个进行壳体压力试验和密封试验。当不合格时,应加倍抽查,仍不合格时,该批阀门不得使用。

365阀门的壳体实验压力不得小于公称压力的15倍,试验时间不得小于5min。以壳体填料无渗漏为合格;密封试验以公称压力进行,以阀瓣密封面不漏为合格。

366试验合格的阀门,及时排净内部积水,吹干。除需要脱脂的阀门外,密封面上应涂防锈油,关闭阀门,封闭出入口,做出明显标记。

4、管道预制加工

41管道预制按预制加工图进行预制并满足下列要求:

411管道预制加工按现场审查确认的管段预制图进行。预制加工图应标注现场组焊位置和调节裕量;

412现场组焊的焊缝应便于施焊与检验。

42管道预制过程中每一道工序都要核对其标记,并做好标记移植。

43管道切割、坡口加工

44弯曲度超过允许偏差的钢管,在加工前进行调直。碳素钢管可冷调或热调,不锈钢管应冷调。

45钢管冷调在常温下进行,公称直径不大于50mm的管子,在管子调直机调直,其压模应与钢管外径相符。

46碳素钢管热调时应将钢管的弯曲部分加热到800~1000℃,然后平放到平台上反复滚动,使其目然调直,也可采用火焰调直法。

47钢管下料时应按预制加工图的尺寸号料。切割时应符合下列规定:

471、不锈钢管应用机械或等离子方法切割:

472、碳素钢管可用火焰切割,并必须除去影响焊接质量的表面层。

48钢管的焊接坡口加工应符合下列要求:

481、碳素钢管,宜用机械方法加工,亦可采用火焰加工:

482、不锈钢管应采用机械方法加工。不锈钢管若用砂轮切割或修磨时,必须用专用砂轮片。

483、若用火焰或等离子加工钢管后,必须除去影响焊接质量的表面层。

49焊接坡口两侧的壁厚差大于下列数值时,应按要求削薄进行加工。

491 SHA级管道的内壁差05mm或外壁差2mm;

492SHB、SHC级管道内壁差1mm或外壁差2㎜;

493其余管道外壁差3mm。

410坡口的质量应下列要求:

4101、表面平整,不得有裂纹、重皮、毛刺、凸凹缩口;

4102、切割表面的熔渣、氧化铁、铁屑等应予以清除;

4103、端面倾斜偏差为管子外径的1%,但不得超过2㎜;

4104、坡口尺寸和角度应符合要求。

411管道组对、预组装

412管段组对时,座垫置牢固,定位可靠,防止在焊接过程中产生变形。

413管段对口时应检查组对的平直度,允许偏差为1㎜/m,但全长的最大累计偏差不得超过10mm。

414管道组成件组对时,使用内径对口器。

4141、管段组对时,不得采用强力对口或加热管子的方法来消除接口端面的过量间隙、错边与不同心等缺陷。当发现这些缺陷时,应检查相邻或相关管段的尺寸,然后对产生缺陷的部位应进行校正和返工。

4.15管道上仪表取源部件应按规定位置先钻孔后焊接。温度计取源部件的开孔,不得向里倒角。

416管道预组装前,应对管道组成件进行检查与清理,具备下列条件方可组装:

4161、管道组成件的材质、规格、型号应符合设计要求;

4162、管道组成件内外表面的泥土、油垢及其他杂物等已清理干净:

4163、标识齐全。

417管道预组装时,应检查总体尺寸与各部尺寸及调节裕量,它们的偏差应符合下列要求:

4171每个方向总长L允许偏差为±5㎜;

4172间距N,允许偏差为±15㎜;

4173支管与主管的横向偏差c,允许值为±15mm;

4174法兰面相邻的螺栓孔应跨中安装,f的允许偏差为±lmm;

4175法兰端面应垂直,e的允许偏差为:

a公称直径小子或等于300mm时不大于lmm;

b公称直径大于300mm时不大于2mm。

418壁厚相同的管道组对时,内壁平齐,其错边量不超过下列规定:

SHA级管道为壁厚的10%,且不大于05mm;  

SHB、SHC级管道内壁差10mm或外壁差2mm;

419管道预制应方便运输和安装,组合件应有足够的刚度与强度,否则应有临时加固措施,必要时应标出吊装索具捆绑点的位置。

420管段预制完成后,应做好编号及防护保管工作。

421管道支吊架制作、安装

4211管道支、吊架应在管道安装前根据设计零件图及需用量集中加工,提前预制。管道支、吊架的型式,加工尺寸、材质应符合设计要求。钢板、型钢用机械切断,切断后应清除毛刺。机械剪切切口质量应符合下列要求:

(1)、剪切线与号料线偏差不大于2㎜;

(2)、切口处表面无裂纹;

(3)、型钢端面剪切斜度不大于2㎜。

4212采用热切割时,应清除熔渣和飞溅物,其切割质量应符合下列要求:

4213管道支、吊架的螺栓孔,用机械方法加工。

4214管道支、吊架的卡环或“U”型卡用扁钢弯制而成,圆弧部分应光滑,尺寸应与管子外径相符。

4215支架底板及弹簧支、吊架弹簧盒的工作面平整光洁。滑动或滚动支架的滑道加工后,采取保护措施,防止划伤或碰损。

4216管道支、吊架制作组装后,外形尺寸偏差不得大于3mm,并作编号和标识。

4217管道安装时,及时调整和固定支、吊架位置准确,安装平整牢固,与管子接触紧密。

4218安装完毕后,按设计图纸规定逐个核对支、吊架的形式和位置。

4219无热位移的管道,其吊杆垂直安装。有热位移的管道,吊点设在位移的反方向,按位移值的1/2偏位安装。

5、管道安装

6、焊接工艺要求及焊接质量检验

61一般工艺要求

62奥氏体不锈钢的焊接

63低温钢焊接

64异种钢焊接异种钢由于物理和化学性能差别较大,异种金属的焊接问题比同种金属复杂,施焊中的主要问题是如何防止裂纹、脱碳和组织不均匀性。

65焊接质量检验

651外观质量要求

焊缝与母材圆滑过渡,表面应无裂纹、气孔、夹渣等缺陷,焊缝不应低于母材表面,余高不超过1+01b(b为组对完毕后坡口最大宽度)且不超过3mm。低温钢、不锈钢焊缝焊缝表面不得存在咬边现象。碳素钢焊缝咬边深度不大于05mm,连续长度不应大于100mm且累计总长不超过焊缝长度的10%。

652内部质量要求内部质量检查按照设计要求及施工验收规范指定的无损检测标准执行。

653表面缺陷修补

654内部缺陷返修

检查程序进行外观检查和无损检测。

7、管道系统试验及吹扫

7.1管道压力试验

1)管道系统压力试验应按设计要求,在管道安装完毕、无损检测合格后进行。

2)管道试压前,应由施工单位对相应资料进行审查确认,并联合检查相应的技术及质量条件,合格后方可进行试压。

3)压力试验采用洁净水进行,水压试验压力取设计压力的15倍。

4)压力试验应按管线设计压力进行分段试验,设计压力相同的管线可连通起来同时进行压力试验。

5)试验步骤及要求

注:试验过程中若有泄漏,不得带压修理。缺陷消除后应重新试验。

8、工程交接验收

8.1.1工程交接前,建设单位应对金属管道工程安装质量进行检查,确认,其质量应符合标准要求。

8.1.2管道组成件的质量证明文件、复验报告应齐全。

8.1.3质量检查纪录应齐全准确。

  直缝电焊钢管,对很多人来说是一个很生僻的名词,甚至很多人听都没有听过。其实,直缝电焊钢管,也是钢管的一种,它是焊缝与钢管纵向平行的钢管,而其中也细分类几类,虽然直缝电焊钢管这个词在生活中并不常见,但是,实际上,直缝电焊钢管在我们的生活中用途十分广泛。今天我就来给大家普及一下直缝电焊钢管以及直缝电焊钢管用途。

  

  简介:

  直缝电焊钢管,是焊缝与钢管纵向平行的钢管。通常分为公制电焊钢管、电焊薄壁管、变压器冷却油管等等。

  相关介绍:

  除非是无缝钢管没有焊缝,或者自加工成的,否则都只有一道焊,大管的焊制是螺旋形的!大管常用比较少,长度一般是自定的。

  产品用途:

  1直缝电焊钢管可以用作低压水管,如给排水管,暖气管,低压工艺管道,低压消防管道。

  2直缝电焊钢管还可以做成脚手架架管。

  3或者成为电线电缆保护管。

  4也可以用来做结构支撑用管如钢结构支撑用管,混凝土模板支撑用管,网架钢结构管,小型临时建筑的柱子。

  5用作装饰用管例如装饰工程的艺术造型管,当然要刷漆,或者楼梯栏杆扶手,防护栏杆

  6或者作为套管或预留洞用管,切成一小段一小段地用。

  

  普通钢管和直缝电焊钢管有什么不同:

  焊接钢管:也叫焊管,是用钢板或钢带经过弯曲成型,然后经焊接制成。按焊缝形式分为直缝焊管和螺旋焊管。按用途又分为一般焊管、镀锌焊管、吹氧焊管、电线套管、公制焊管、托辊管、深井泵管、汽车用管、变压器管、电焊薄壁管、电焊异型管和螺旋焊管。

  一般焊管:一般焊管用来输送低压流体。用Q195A、Q215A、Q235A钢制造 。也可采用易于焊接的其它软钢制造。钢管要进行水压、弯曲、压扁等实验,对表面质量有一定要求,通常交货长度为4-10m,常要求定尺(或倍尺)交货。焊管的规格用公称口径表示(毫米或英寸)公称口径与实际不同,焊管按规定壁厚有普通钢管和加厚钢管两种,钢管按管端形式又分带螺纹和不带螺纹两种。

  

  焊接钢管的分类

  分类方法

  按用途分类

  按用途又分为一般焊管、镀锌焊管、吹氧焊管、电线套管、公制焊管、托辊管、深井泵管、汽车用管、变压器管、电焊薄壁管、电焊异型管和螺旋焊管。

  一般焊管:一般焊管用来输送低压流体。用Q195A、Q215A、Q235A钢制造。也可采用易于焊接的其它软钢制造。钢管要进行水压、弯曲、压扁等实验,对表面质量有一定要求,通常交货长度为4-10m,常要求定尺(或倍尺)交货。焊管的规格用公称口径表示(毫米或英寸)公称口径与实际不同,焊管按规定壁厚有普通钢管和加厚钢管两种,钢管按管端形式又分带螺纹和不带螺纹两种。

  

  镀锌钢管:为提高钢管的耐腐蚀性能,对一般钢管(黑管)进行镀锌。镀锌钢管分热镀锌和电钢锌两种,热镀锌镀锌层厚,电镀锌成本低。

  吹氧焊管:用作炼钢吹氧用管,一般用小口径的焊接钢管,规格由3/8寸-2寸八种。用08、10、15、20或Q195-Q235钢带制成。为防蚀,有的进行渗铝处理。

  

  电线套管:也是普通碳素钢电焊钢管,用在混凝土及各种结构配电工程,常用的公称直径从13-76mm。电线套套管壁较薄,大多进行涂层或镀锌后使用,要求进行冷弯试验。

  公制焊管:规格用无缝管形式,用外径壁厚毫米表示的焊接钢管,用普通碳素钢、优质碳素钢或普能低合金钢的热带、冷带焊接,或用热带焊接后再经冷拨方法制成。公制焊管分普能和薄壁、普通用作结构件,如传动轴,或输送流体,薄壁用来生产家具、灯具等,要保证钢管强度和弯曲试验。

  

  托辊管:用于带式输送机托辊电焊钢管,一般用Q215、Q235A、B钢及20钢制造,直径635-2190mm。对管弯曲度、端面要与中心线垂直、椭圆度有一定要求,一般进行水压和压扁试验。

  变压器管:用于制造变压器散热管和其它热交换器,采用普通碳素钢制造,要求进行压扁、扩口、弯曲、液压试验。钢管以定尺或倍尺交货,对钢管弯曲度有一定要求。

  异型管:由普通碳结结构钢及16Mn等钢带焊制的方形管、矩形管、帽形管、空胶钢门窗用钢管,主要用作农机构件、钢窗门等。

  

  电焊薄壁管:主要用来制作家具、玩具、灯具等。近年来不锈钢带制作的薄壁管应用很广,高级家具、装饰、栏栅等。螺旋焊管:是将低碳碳素结构钢或低合金结构钢钢带按一定的螺旋线的角度(叫成型角)卷成管坯,然后将管缝焊接起来制成,它可以用较窄的带钢生产大直径的钢管。螺旋焊管主要用于石油、天然气的输送管线,其规格用外径壁厚表示。螺旋焊管有单面焊的和双面焊的,焊管应保证水压试验、焊缝的抗拉强度和冷弯性能要符合规定。

  

  按焊缝形状分类

  可分为直缝焊管和螺旋焊管

  直缝焊管:生产工艺简单,生产效率高,成本低,发展较快。

  螺旋焊管:强度一般比直缝焊管高,能用较窄的坯料生产管径较大的焊管,

  

  还可以用同样宽度的坯料生产管径不同的焊管。但是与相同长度的直缝管相比,焊缝长度增加30~100%,而且生产速度较低。因此,较小口径的焊管大都采用直缝焊,大口径焊管则大多采用螺旋焊。

  按焊接方法分类

  按焊接方法不同可分为电弧焊管、高频或低频电阻焊管、气焊管、炉焊管、邦迪管等。

  电焊钢管:用于石油钻采和机械制造业等。

  炉焊管:可用作水煤气管等,大口径直缝焊管用于高压油气输送等;螺旋焊管用于油气输送、管桩、桥墩等。按端部形状分类

  又分为圆形焊管和异型(方、扁等)焊管。

  

  看到这些,相信大家已经发现直缝电焊钢管用途在我们的生活中有多么广泛了吧,从上面的介绍,我们可以看出我们的生活中,直缝电焊钢管几乎是随处可见,它作为低压水管,可能在我们的房子里面,作为脚手架架管,大家可能在施工的工地上见过,以前可能不会注意,但是,经过我的讲解,大家以后就会在生活中看到处处可见的直缝电焊钢管了吧。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:https://wwwto8tocom/yezhu/zxbj-cszyphpto8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~

可以参照压力管道外检中的管线图来画。以轴测图的角度画。通常,流体经鼓风机、压缩机、泵和锅炉等增压后,从管道的高压处流向低压处,也可利用流体自身的压力或重力输送。

如图所示:

轴测图只是看管道走向,或设计标高之类,如果是民用建筑一般只有给排水又管道轴测图。如果是工业管道安装,就比较复杂, 要看阀门、法兰、管件的安装具体位置以及标高。轴测图只有一种,也叫系统图来着。

管道的用途很广泛,主要用在给水、排水、供热、供煤气、长距离输送石油和天然气、农业灌溉、水力工程和各种工业装置中。

扩展资料:

这种管道轴测图是按轴测投影原理绘制的,图样立体感强,便于识读,有利于管段的预制和安装施工,如图所示。但这种图样由于要求表达的内容十分详细,所能表达的范围较小,仅限于一段管道,它反映的只是个别局部。

设计模型除能提供整套装置(或整个车间) 设备与管道安装布置的全貌外,还可直观地反映装置设备、管道与建(构) 筑物之间的各种复杂装配关系。

可以避免发生在图纸上不易发觉的管道相碰等布置不合理的情况,因此,设备布置图、管道布置图配己合模型设计(特别是大、中型工程项目) 的施工图设计方法,将是今后发展的必然趋势。

-管道轴测图

  土方机械的选择:土方机械化开挖应根据基础形式、工程规模、开挖深度、地质、地下水情况、土方量、运距、现场和机具设备条件、工期要求以及土方机械的特点等合理选择挖土机械,以充分发挥机械效率,节省机械费用,加速工程进度。

土方机械化施工常用机械有:推土机、铲运机、挖掘机(包括正铲、反铲、拉铲、抓铲等)、装载机等。

一、推土机

(一)适用范围

适于开挖一~四类土;找平表面,场地平整;开挖深度不大于15m的基坑(槽);短距离移挖筑填,回填基坑(槽)、管沟并压实;堆筑高度在15m以内的路基、堤坝,以及配合挖土机从事平整、集中土方、清理场地、修路开道;拖羊足碾、松土机,配合铲运机助铲以及清除障碍物等。

(二)作业方法

推土机开挖的基本作业是铲土、运土和卸土三个工作行程和空载回驶行程。铲土时应根据土质情况,尽量采用最大切土深度在最短距离(6~10m)内完成,以便缩短低速运行时间,然后直接推运到预定地点。回填土和填沟渠时,铲刀不得超出土坡边沿。上下坡坡度不得超过35°,横坡不得超过l0°。几台推土机同时作业,前后距离应大于8m。

(三)提高生产率的常用方法

1下坡推土法;

2槽形挖土法;

3并列推土法;

4分堆集中;

5铲刀附加侧板法。

二、铲运机

(一)适用范围

适于开挖含水率27%以下的一~四类土;大面积场地平整、压实;运距800m内的挖运土方;开挖大型基坑(槽)、管沟、填筑路基等。但不适于砾石层、冻土地带及沼泽地区使用。

(二)作业方法

铲运机的基本作业是铲土、运土、卸土三个工作行程和一个空载回驶行程。在施工中,由于挖填区的分布情况不同,为了提高生产效率,应根据不同施工条件(工程大小、运距长短、土的性质和地形条件等),选择合理的开行路线和施工方法。

开行路线有如下几种:

1椭圆形开行路线;

2“8”字形开行路线;

3大环形开行路线;

4连续式开行路线;

5锯齿形开行路线;

6螺旋形开行路线。

(三)提高生产率的常用方法

1下坡铲土法;

2跨铲法;

3交错铲土法;

4助铲法;

5双联铲运法。

三、挖掘机

(一)正铲挖掘机

1适用范围

适用于开挖含水量应小于27%的一~四类土和经爆破后的岩石和冻土碎块;大型场地整平土方;工作面狭小且较深的大型管沟和基槽路堑;独立基坑及边坡开挖等。

2作业方法

正铲挖掘机的挖土特点是:“前进向上,强制切土”。根据开挖路线与运输汽车相对位置的不同,一般有以下两种:

(1)正向开挖,侧向装土法:正铲向前进方向挖土,汽车位于正铲的侧向装车。本法装车方便,循环时间短,生产效率高。用于开挖工作面较大,深度不大的边坡、基坑(槽)、沟渠和路堑等,为最常用的开挖方法。

(2)正向开挖,后方装土法:正铲向前进方向挖土,汽车停在正铲的后面。本法开挖工作面较大,生产效率降低。用于开挖工作面较小、且较深的基坑(槽)、管沟和路堑等。

3提高生产率的常用方法

(1)分层开挖法;

(2)多层挖土法;

(3)中心开挖法;

(4)上下轮换开挖法;

(5)顺铲开挖法;

(6)间隔开挖法。

(二)反铲挖掘机

1适用范围

适用于开挖含水量大的一~三类的砂土或黏土;主要用于停机面以下深度不大的基坑(槽)或管沟,独立基坑及边坡的开挖。

2开挖方法

反铲挖掘机的挖土特点是:“后退向下,强制切土”。根据挖掘机的开挖路线与运输汽车的相对位置不同,一般有以下几种:

(1)沟端开挖法;

(2)沟侧开挖法;

(3)沟角开挖法;

(4)多层接力开挖法。

(三)抓铲挖掘机

1适用范围

适用于开挖土质比较松软(一~二类土)、施工面狭窄的深基坑、基槽,清理河床及水中挖取土,桥基、桩孔挖土,最适宜于水下挖土,或用于装卸碎石、矿渣等松散材料。

2挖土方法

抓铲挖掘机的挖土特点是:“直上直下,自重切土”。抓铲能在回转半径范围内开挖基坑上任何位置的土方,并可在任何高度上卸土(装车或弃土)。

对小型基坑,抓铲立于一侧抓土;对较宽的基坑,则在两侧或四侧抓土。抓铲应离基坑边一定距离,土方可直接装自卸汽车运走,或堆弃在基坑旁或用推土机推到远处堆放。挖淤泥时,抓斗易被淤泥吸住,应避免用力过猛,以防翻车。抓铲施工,一般均需加配重。

四、装载机

装载机按行走方式分履带式和轮胎式两种。有的单斗装载机背端还带有反铲。

(一)适用范围

适用于装卸土方和散料,也可用于较软土体的表层剥离、地面平整、场地清理和土方运送等工作。

(二)作业方法

与推土机基本类似。在土方工程中,也有铲装、转运、卸料、返回四个过程。

  41依据地质勘察报告,以及地下管线构筑物竣工图、基础设计图和深基坑支护设计图以及《土方与爆破工程施工及验收规范》(GBJ210-83),审查基坑开挖的施工方案,对深基坑尤其要特别认真审查,并填写“施工组织设计报审表”(A2)。

  42根据总平面图中的测量控制点(平面控制桩和水准点)和规划红线,审查与复核施工单位所放的开口线,务求准确。并填写“工程报验申请表”(A4)。

  43深基坑开挖前须由专业队伍对基坑支护结构和周边环境(道路路面、民房建筑等)进行监测。定期进行位移、沉降观测,并将成果上报监理单位。

  44深基坑开挖前还必须对支护结构的质量进行检测,检测合格后方允许开挖。

  45检查土方开挖机械性能是否适用于本工程、机手是否持证上岗。

  46采用爆破工艺开挖的,应督促施工方和业主向政府主管部门申报,并审查爆破方案是否合理,填写A4表。

  47在基坑(槽)开挖过程中,经常巡视工地,注意如下问题:

  471轴线桩、龙门板或水平桩有无位移;基坑边坡是否符合设计要求;

  472坑边堆土高度、位置与范围、以及建材堆放高度是否合乎要求;

  473土壁、坑底渗水现象;

  474地表水、雨水冲刷斜坡情况,边坡周围排水沟工作是否正常;

  475周边地面有无裂缝;

  476有无局部塌方;

  477土质异常、局部土质松软、古墓、古井、局部障碍物;

  478施工安全(如下层掏洞开挖、挖土机下作业等);

  479基坑开挖周围应设置护栏或明显标志、防止人车跌入基坑内,夜间应设红灯警示;

  4710做好挖方工程计量工作,记录土类与分界情况(标高、范围)。

  48基坑内建筑物及基坑的保护

  481对先打(或钻、挖)桩后开挖基坑的工程,则在开挖前必须在施工方案中明确工程桩的保护措施,开挖中安排专业人员监测工程桩的位移、倾斜和桩身完整性。

  482暴露时间可能较长的深基坑,应由设计单位评估地基岩(土)层的风化速度,塌坑的可能性或基底会隆起,以及采取相应的保护措施(如喷浆,铺设保护层等)。

  49验槽

  当基坑(槽)开挖完成,并清理好之后,在基础施工前,组织有关单位共同验槽,验槽后,确认合格,有关责任人签名确认,并填写工程报验申请表(A4)。验槽内容如下:

  491基坑尺寸(长、宽、深)及坡度与设计图纸是否相符,质量标准见附表;

  492基坑壁土层分层,特别是基底土层与地质报告和设计图纸是否相符、有无地下水出露、是否要增设排水措施;

  493上部结构重要部位(即受力较大或沉降灵敏部位)土质是否符合设计要求(对筏形基础而言);

  494地基处理(或者只限局部)效果检验;

  495桩头处理;

  496基坑、底部地下渗水情况如何,排水设施工作是否正常。

流量测量方法

名词与术语

 瞬时流量:单位时间内流过管道横截面的流体量(m3/h、t/h)。

 累计流量:在一段时间内流过管道横截面的流体总量(m3、t)。

流量计:用于测量管道中流量的计量器具称为流量计。

主要的质量指标

 流量范围:最大与最小可测范围,该范围内误差不超过容许值。

 量程和量程比:量程是最大流量与最小流量之差;量程比是最大流量与最小流量之比,又称范围度。

测量误差

基本误差:

准确度:流量计示值接近被测流量真值的能力,称为流量计的准确度。

准确度等级有:01、02、05、10、15、25、40级。

 重复性:流量计在同一工作条件下,多次重复测量,其示值一致性的程度,反映仪表随机性误差的大小。

按测量对象划分就有封闭管道和明渠两大类;

按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。

按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。

流量计简介

流量测量方法和仪表的种类繁多。工业用的流量仪表种类达100多种。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。

本文按照目前最流行、最广泛的分类法,分别介绍各种流量计的原理、特点、应用概况及国内外的发展情况。

序号 流量计种类 全球产量

百分比

1 差压式流量计(孔板、文丘里) 45~55%

2 浮子流量计(又称玻璃转子流量计) 13~16%

3 容积式流量计(椭圆、腰轮、螺旋) 12~14%

4 涡轮流量计 9~11%

5 电磁流量计 5~6%

6 流体振荡流量计(涡街、旋进) 22~3%

7 超声流量计(时差式、多普勒) 16~22%

8 热式流量计 2~25%

9 科里奥利质量流量计 09~12%

10 其他流量计(插入式流量计 16~22%

  11差压式流量计

  差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。

差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。

二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。

  差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。

  检测件又可按其标准化程度分为二大类:标准的和非标准的。

  所谓标准检测件是只要按照标准文件设计、制造、安装和使用,无须经实流标定即可确定其流量值和估算测量误差。

  非标准检测件是成熟程度较差的,尚未列入国际标准中的检测件。

  差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。

  优点:

  (1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;

  (2)应用范围广泛,至今尚无任何一类流量计可与之相比拟;

  (3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。

  缺点:

  (1)测量精度普遍偏低;

  (2)范围度窄,一般仅3:1~4:1;

  (3)现场安装条件要求高;

  (4)压损大(指孔板、喷嘴等)。

  应用概况:

  差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作状态方面:常压、高压、真空、常温、高温、低温等;管径方面:从几mm到几m;流动条件方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。

  12 浮子流量计

  浮子流量计,又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力是由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。

  浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、微流量方面有举足轻重的作用。

  80年代中期,日本、西欧、美国的销售金额占流量仪表的15%~20%。我国产量1990年估计在12~14万台,其中95%以上为玻璃锥管浮子流量计。

  特点:

  (1)玻璃锥管浮子流量计结构简单,使用方便,缺点是耐压力低,有玻璃管易碎的较大风险;

  (2)适用于小管径和低流速;

  (3)压力损失较低。

  13容积式流量计

原理

结构 容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双转子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计、湿式气量计及膜式气量计等。

特点 (1)计量精度高;

(2)安装管道条件对计量精度没有影响;

(3)可用于高粘度液体的测量;

(4)范围度宽;

(5)直读式仪表无需外部能源可直接获得累计,总量,清晰明了,操作简便。

缺点:

(1)结果复杂,体积庞大;

(2)被测介质种类、口径、介质工作状态局限性较大;

(3)不适用于高、低温场合;

(4)大部分仪表只适用于洁净单相流体;

(5)产生噪声及振动。

应用   容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。

  工业发达国家近年PD流量计(不包括家用煤气表和家用水表)的销售金额占流量仪表的13%~23%;我国约占20%,1990年产量(不包括家用煤气表)估计为34万台,其中椭圆齿轮式和腰轮式分别约占70%和20%。

      优点:

  应用概况:

  14 涡轮流量计

  涡轮流量计,是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。

  一般它由传感器和显示仪两部分组成,也可做成整体式。

  涡轮流量计和容积式流量计、科里奥利质量流量计称为流量计中三类重复性、精度最佳的产品,作为十大类型流量计之一,其产品已发展为多品种、多系列批量生产的规模。

  优点:

   (1)高精度,在所有流量计中,属于最精确的流量计;

   (2)重复性好;

   (3)元零点漂移,抗干扰能力好;

   (4)范围度宽;

   (5)结构紧凑。

  缺点:

   (1)不能长期保持校准特性;

   (2)流体物性对流量特性有较大影响。

  应用概况:

  涡轮流量计在以下一些测量对象获得广泛应用:石油、有机液体、无机液、液化气、天然气和低温流体统在欧洲和美国,涡轮流量计在用量上是仅次于孔板流量计的天然计量仪表,仅荷兰在天然气管线上就采用了2600多台各种尺寸,压力从08~65MPa的气体涡轮流量计,它们已成为优良的天然气计量仪表。

  15电磁流量计

  电磁流量计是根据法拉弟电磁感应定律制成的一种测量导电性液体的仪表。

  电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。

  70、80年代电磁流量在技术上有重大突破,使它成为应用广泛的一类流量计,在流量仪表中其使用量百分数不断上升。

  优点:

  (1)测量通道是段光滑直管,不会阻塞,适用于测量含固体颗粒的液固二相流体,如纸浆、泥浆、污水等;

  (2)不产生流量检测所造成的压力损失,节能效果好;

  (3)所测得体积流量实际上不受流体密度、粘度、温度、压力和电导率变化的明显影响;

  (4)流量范围大,口径范围宽;

  (5)可应用腐蚀性流体。

  缺点:

  (1)不能测量电导率很低的液体,如石油制品;

  (2)不能测量气体、蒸汽和含有较大气泡的液体;

  (3)不能用于较高温度。

  应用概况:

  电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆液和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。

  16 涡街流量计

  涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。

  涡街流量计按频率检出方式可分为:应力式、应变式、电容式、热敏式、振动体式、光电式及超声式等。

  涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。

  优点:

  (1)结构简单牢固;

  (2)适用流体种类多;

  (3)精度较高;

  (4)范围度宽;

  (5)压损小。

  缺点:

  (1)不适用于低雷诺数测量;

  (2)需较长直管段;

  (3)仪表系数较低(与涡轮流量计相比);

  (4)仪表在脉动流、多相流中尚缺乏应用经验。

  17 超声流量计

  超声流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。

  根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。

  超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。

  优点:

  (1)可做非接触式测量;

  (2)为无流动阻挠测量,无压力损失;

  (3)可测量非导电性液体,对无阻挠测量的电磁流量计是一种补充。

  缺点:

  (1)传播时间法只能用于清洁液体和气体;而多普勒法只能用于测量含有一定量悬浮颗粒和气泡的液体;

  (2)多普勒法测量精度不高。

  应用概况:

  (1)传播时间法应用于清洁、单相液体和气体。典型应用有工厂排放液、:怪液、液化天然气等;

  (2)气体应用方面在高压天然气领域已有使用良好的经验;

  (3)多普勒法适用于异相含量不太高的双相流体,例如:未处理污水、工厂排放液、脏流程液;通常不适用于非常清洁的液体。

  18 科里奥利质量流量计

  科里奥利质量流量计(以下简称CMF)是利用流体在振动管中流动时,产生与质量流量成正比的科里奥利力原理制成的一种直接式质量流量仪表。

  我国CMF的应用起步较晚,近年已有几家制造厂(如太行仪表厂)自行开发供应市场;还有几家制造厂组建合资企业或引用国外技术生产系列仪表。

  19明渠流量计

  与前述几种不同,它是在非满管状敞开渠道测量自由表面自然流的流量仪表。

  非满管态流动的水路称作明渠,测量明渠中水流流量的称作明渠流量计(open channel flowmeter)。

  明渠流量计除圆形外,还有U字形、梯形、矩形等多种形状。

  明渠流量计应用场所有城市供水引水渠;火电厂引水和排水渠、污水治理流入和排放渠;工矿企业水排放以及水利工程和农业灌溉用渠道。有人估计1995台,约占流量仪表整体的16%,但是国内应用尚无估计数据。

2 新工作原理流量仪表的研究和开发

  21 静电流量计(electrostatic flowmeter)

  日本东京技术学院研制适用于石油输送管线低导电液体流量测量的静电流量计。

  静电流量计的金属测量管绝缘地与管系连接,测量电容器上静电荷便可知道测量管内的电荷。他们分别作了内径4~8mm铜、不锈钢等金属和塑料测量管仪表的实流试验,试验表明流量与电荷之间接近于线性。

  22 复合效应流量仪表(combined effects meter)

  该仪表的工作原理是基于流体的动量和压力作用于仪表腔体产生的变形,测量复合效应的变形求取流量。本仪表由美国GMI工程和管理学院开发,已申请两项专利。

  23 转速表式流量传感器(tachmetric flowrate sensor)

  它是由俄罗斯科学工程中心工业仪表公司开发,是基于悬浮效应理论研制的。该仪表已在若干现场成功的应用(例如在核电站安装2000余台测量热水流量,连续使用8年),且还在改进以扩大应用领域。

3 几种流量仪表应用和发展动向

  31 科里奥利质量流量计(CMF)

  国外CMF已发展30余系列,各系列开发在技术上着眼点在于:流量检测测量管结构上设计创新;提高仪表零点稳定性和精确度等性能;增加测量管挠度,提高灵敏度;改善测量管应力分布,降低疲劳损坏,加强抗振动干扰能力等。

  32 电磁流量计(EMF)

  EMF从50年代初进入工业应用以来,使用领域日益扩展,80年代后期起在各国流量仪表销售金额中已占16%~20%。

  我国近年发展迅速,1994年销售估计为6500~7500台。国内已生产最大口径为2~6m的ENF,并有实流校验口径3m的设备能力。

  33 涡街流量计(USF)

  USF在60年代后期进入工业应用,80年代后期起在各国流量仪表销售金额中已占4%~6%。1992年世界范围估计销售量为3548万台,同期国内产品估计在8000~9000台。

4 结论

  由上述可知,流量计发展到今天虽然已日趋成熟,但其种类仍然极其繁多,至今尚无一种对于任何场合都适用的流量计。

  每种流量计都有其适用范围,也都有局限性。这就要求我们:

  (1)在选择仪表时,一定要熟悉仪表和被测对象两方面的情况,并要兼顾考虑其它因素,这样测量才会准确;

  (2)努力研制新型仪表,使其在现有的基础上更加完善。

流量相关的物性参数

在流量测量和计算中,要使用到一些流体的物理性质(流体物性),它们对流量测量的准确度及流量计的选用都有很大影响。我们对这些物性参数只作基本概念及一些简单计算式的介绍,详细数据资料需到有关手册去查询。

1.流体的密度

流体的密度由下式定义

ρ—流体密度,kg/m3;

m—流体的质量,kg;

V—流体的体积,m3。

(1) 液体的密度

压力不变时,液体密度计算式为:

ρ—温度t时液体的密度,kg/m3;

ρ20—20℃时液体的密度,kg/m3;

μ—液体的体积膨胀系数,1/℃;

t—液体的温度,℃。

温度不变时,液体密度计算式为:

ρ1—压力P1时液体的密度,kg/m3;

ρ0—压力P0时液体的密度,;kg/m3;

β—液体的体积压缩系数1/Mpa;

P0、P1——液体的压力,Mpa。

通常压力的变化对液体密度的影响很小,在5Mpa以下可以忽略不计,但是对于碳氢化合物,即使在较低压力下,亦应进行压力修正。

(2) 气体的密度

工作状态下干气体的密度计算式为:

ρ—工作状态下干气体的密度,kg/m3;

ρn—标准状态下(29315k,101325kPa)干气体的密度,kg/m3;

p—工作状态下气体的绝对压力,kPa;

pn—标准状态下绝对压力,101325kPa;

T—工作状态下气体的绝对温度,K;

Tn—标准状态下绝对温度,29315K;

Zn—标准状态下气体的压缩系数;

Z—工作状态下气体的压缩系数。

2.流体的粘度

流体本身阻滞其质点相对滑动的性质称为流体的粘性。流体粘性的大小用粘度来度量。同一流体的粘度随流体的温度和压力而变化。通常温度上升,液体的粘度下降,而气体粘度上升。液体粘度只在很高压力下才需进行压力修正,而气体的粘度与压力、温度的关系十分密切。表征流体粘度常用有如下二种:

(1)动力粘度

η——流体动力粘度,Pa•s;

τ—单位面积上的内摩擦力,Pa;

—速度梯度,1/s;

u —流体流速,m/s;

h —两流体层间距离,m。

(3)运动粘度 流体的动力粘度与其密度的比值称为运动粘度。

v——运动粘度m2/s 。

3.热膨胀率

热膨胀率是指流体温度变化1ºC时其体积的相对变化率,即:

β—流体的热膨胀率,1/℃;

V —流体原有体积,m3;

∆V—流体因温度变化膨胀的体积,m3;

∆T—流体温度变化值,℃。

4.压缩系数

压缩系数是指当流体温度不变,所受压力变化时,其体积的变化率,即:

k—流体的压缩系数,1/Pa;

∆V—压力为p时的流体体积m3;

∆p—压力增加∆p时流体体积的变化量,m3。

5.雷诺数

雷诺数是一个表征流体惯性力与粘性力之比的无量纲量,其定义为:

V—流体的平均速度,m/s;

L—流速的特征长度,如在圆管中取管内径值,m;

ν—流体的运动粘度,m2/s。

雷诺数的大小可以判断流动的状态,一般管道雷诺数Re<2300为层流状态,Re=2000~4000为过渡状态,Re>4000为湍流(紊流)状态。

希望能用上。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/11318493.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-27
下一篇2023-11-27

发表评论

登录后才能评论

评论列表(0条)

    保存