不少人都翘首以盼,计算机会变得越来越聪明,在不久的将来,它就能像人一样具有情感,与人进行自然、亲切和生动的智能交互。 认知科学(Cognitive Science)是在心理学、计算机科学、人工智能、神经科学、科学语言学、科学哲学以及其他基础科学(如数学、理论物理学)共同感兴趣的界面上,即理解人类的、乃至机器的智能的共同兴趣上,涌现出来的高度跨学科的新兴科学。认知科学试图依靠众多学科的共同努力,理解心智的性质,可能的话,在此基础上制造出能思维的机器。而认知心理学由于关注和研究人的心智活动,在认知科学中发挥着重要的作用。
认知心理学: 人脑与计算机类比
认知心理学是20世纪60年代兴起的心理学研究取向,它不仅研究心智活动的“软件”(即心智活动的过程,如人对信息的编码、储存和提取),而且研究心智活动的“硬件”(即心智活动的结构,如认知功能的脑定位或脑机制),提出了极富特色的理论,促进了对人类心智活动的细微剖析和准确理解,成为现代心理学的主流方向。
信息加工系统(Information-Processing System)也被称为符号操作系统(Symbol Operation System)或物理符号系统(Physical Symbol System)。一个完整的物理符号系统具有信息的输入(Input)、输出(Output)、存储(Store)、复制(Copy)、建立符号结构(Build Symbol Structure)和条件性迁移(Conditional Transfer)六种功能。物理符号系统假设提出,任何一个系统,如果能够表现出智能的话,就必能执行上述六种功能; 反之,任何系统如果具有这六种功能,就能表现出智能。其推论自然是: 人具有智能,人一定是个物理符号系统; 计算机是个物理符号系统,计算机一定能表现出智能。既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就可以用计算机来模拟人的智能活动。认知心理学所做的,就是试图用物理符号系统假设中的基本规律来解释人类复杂的心理现象。
心智的计算-表征理解(Computa-tional-Representational Understanding of Mind,简称CRUM)是一种对心智问题的理解方式,认为对思维最恰当的理解是将其视为心智中的表征结构以及在这些结构上进行操作的计算程序。 心智表征属于系统的内部状态,是相对于外部事件或事件的语义加以界定的,是一种形式化的符号表达式; 而所有与系统有关的语义内容,都依照深层的符号表达式及其变换的形式和符号关系结构加以规定,这是一种物理符号操作,是一种计算。表征与计算二者的关系密不可分,因为一定的计算总是建立在一定的表征之上,表现为对表征的某种操作和转换; 而一定的计算也总是会产生某种新的表征。
认知心理学研究心智结构和信息加工过程的方法主要由四个步骤构成,即理论、模型、程序和平台。一个认知理论首先要假定一套表征结构和一套在这些结构上进行操作的加工过程; 然后,通过与由数据结构和算法构成的计算机程序进行类比,设计一个计算模型使得这些表征结构和过程更为精确。有关表征的模糊概念可以用准确的关于数据结构的计算概念予以补充,而心理过程则可由算法来定义; 为了测试该模型,必须用一种编程语言将其在一个软件程序中实现; 最后,该程序应该可以在各种软硬件平台上运行。实际上,无论是信息加工取向对规则和搜索策略等进行的抽象的串行的分析,还是联结主义取向强调的分布式表征和平行加工,各种心智结构和信息加工过程均可采用上述方法进行研究。理论、模型、程序、平台一起构成了认知心理学的基本研究构架。大量研究都遵循着这个途径,并通过实验将各个步骤贯穿起来。
情感计算: 人与计算机交互
显然,情感交流是个复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且有表情、语言、动作或身体的接触。情感计算研究试图通过不断加深对人的情感状态和机制的理解,创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统。
作者简介:傅小兰
研究员,现任中国科学院心理研究所副所长,研究领域为认知心理学,主要关注人的基本认知过程、信息加工动态机制、知识表征、认知绩效以及人机交互中的心理与行为问题。担任脑与认知科学国家重点实验室副主任,中国心理学会常务理事、副秘书长、中国人类工效学会理事、认知工效学专业委员会副主任委员,全国人类工效学标准化技术委员会副主任委员等。
情感计算研究有助于提高计算机感知情境,理解人的情感和意图,做出适当反应的能力。情境化是人与计算机交互研究中的新热点。在人与计算机的交互中,计算机需要捕捉关键信息,觉察人的情感变化,形成预期,进行调整,做出反应。例如,通过对不同类型的用户建模(例如: 操作方式、表情特点、态度喜好、认知风格、知识背景等),以识别用户的情感状态,利用有效的线索选择合适的用户模型(例如,根据可能的用户模型主动提供相应有效信息的预期),并以适合当前类型用户的方式呈现信息(例如: 呈现方式、操作方式、与知识背景有关的决策支持等); 在对当前的操作做出即时反馈的同时,还要对情感变化背后的意图形成新的预期,并激活相应的数据库,及时主动地提供用户需要的新信息。
情感计算是一个高度综合化的技术领域。目前情感计算研究面临的挑战仍是多方面的: (1)情感信息的获取与建模,例如细致和准确的情感信息获取、描述及参数化建模,海量的情感数据资源库,多特征融合的情感计算理论模型; (2)情感识别与理解,例如多模态的情感识别和理解; (3)情感表达,例如多模态的情感表达(图像、语音、生理特征等),自然场景对生理和行为特征的影响; (4)自然和谐的人性化和智能化的人计交互的实现,例如情感计算系统需要将大量广泛分布的数据整合,然后再以个性化的方式呈现给每个用户。
情感计算有广泛的应用前景。计算机通过对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们理解自己和他人的情感世界。计算机的情感化设计能帮助我们增加使用设备的安全性,使经验人性化,使计算机作为媒介进行学习的功能达到最佳化。在信息检索中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。
在电子商务领域,在设计购物网站和股票交易网站等时充分利用人的情感因素的作用,以改变客流量。多模式的情感交互技术能构筑更贴近人们生活的智能空间或虚拟场景,而机器人、智能玩具、游戏等产业则能构筑出更加拟人化的风格和更加逼真的场景。
题主是否想询问“python实现循环神经网络进行淘宝商品评论情感分析的研究结论?”python实现循环神经网络进行淘宝商品评论情感分析的研究结论具体如下:
1、数据质量对结果影响较大,收集到的评论数据的质量和数量都会对模型的结果产生影响。在实际应用中,如果数据质量较低或者数量不足,可能需要使用数据增强或者其他方法来提高数据质量和数量。
2、神经网络模型的设计和调参对结果影响较大,选择合适的神经网络模型、优化算法和参数对结果的影响非常重要。在实际应用中,需要根据具体场景和需求,选择适合的神经网络模型,并对模型的参数进行调整和优化。
3、情感分析的准确率不够高,虽然使用循环神经网络进行情感分析可以得到不错的结果,但是仍存在一定的误差和不确定性。在实际应用中,可能需要考虑其他方法来提高情感分析的准确率和稳定性。
监督学习
目前,基于监督学习的情感分析仍然是主流,除了(Li et al,2009)基于非负矩阵三分解(Non-negative Matrix Tri-factorization),(Abbasi et al,2008)基于遗传算法(Genetic Algorithm)的情感分析之外,使用的最多的监督学习算法是朴素贝叶斯,k最近邻(k-Nearest Neighbor,k-NN),最大熵和支持向量机的。而对于算法的改进主要在对文本的预处理阶段。
基于规则/无监督学习
和基于监督学习的情感分析相比,基于规则和无监督学习方面的研究不是很多。除了(Turney,2002)之外,(朱嫣岚 et al,2002)利用HowNet对中文词语语义的进行了情感倾向计算。(娄德成 et al,2006)利用句法结构和依存关系对中文句子语义进行了情感分析,(Hiroshi et al,2004)通过改造一个基于规则的机器翻译器实现日文短语级情感分析,(Zagibalov et al,2008)在(Turney,2002)的SO-PMI算法的基础上通过对于中文文本特征的深入分析以及引入迭代机制从而在很大程度上提高了无监督学习情感分析的准确率。
跨领域情感分析
跨领域情感分析在情感分析中是一个新兴的领域,目前在这方面的研究不是很多,主要原因是目前的研究还没有很好的解决如何寻找两个领域之间的一种映射关系,或者说如何寻找两个领域之间特征权值之间的平衡关系。对于跨领域情感分析的研究开始于(Blitzer et al,2007)将结构对应学习(Structural Correspondence Learning,SCL)引入跨领域情感分析,SCL是一种应用范围很广的跨领域文本分析算法,SCL的目的是将训练集上的特征尽量对应到测试集中。(Tan et al,2009)将SCL引入了中文跨领域情感分析中。(Tan2 et al,2009)提出将朴素贝叶斯和EM算法的一种半监督学习方法应用到了跨领域的情感分析中。(Wu et al,2009)将基于EM的思想将图排序(Graph Ranking)算法应用到跨领域的情感分析中,图排序算法可以认为是一种迭代的k-NN
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)