高中化学 有机物

高中化学 有机物,第1张

每个碳原子有4个价电子,如果每个价电子都用来形成共价键,就能结合4个原子,这就是我们常说碳为四价键的原因。如果碳原子结合了四个其它原子,我们就说这个碳原子的化合价得到了最充分的利用,这个碳原子就是饱和碳原子,所以形成4个C-C单键的碳原子当然就是饱和碳原子了。而如果形成C=C双键,C=C双键两端的碳原子就只能结合3个其它原子;形成C≡C三键,C≡C三键两端的碳原子就只能结合2个其它原子。C=C双键两端和C≡C三键两端的碳原子就是不饱和碳原子。不管形成C-C单键两端的碳原子,形成C=C双键两端的碳原子,还是形成C≡C三键两端的碳原子都会形成8电子结构。

有机化学并不难,记准通式是关键。

只含C、H称为烃,结构成链或成环。

双键为烯叁键炔,单键相连便是烷。

脂肪族的排成链,芳香族的带苯环。

异构共用分子式,通式通用同系间。

烯烃加成烷取代,衍生物看官能团。

羧酸羟基连烃基,称作醇醛及羧酸。

羰基醚键和氨基,衍生物是酮醚胺。

苯带羟基称苯酚,萘是双苯相并联。

去H加O叫氧化,去O加H叫还原。

醇类氧化变酮醛,醛类氧化变羧酸。

羧酸都比碳酸强,碳酸强于石碳酸。

光照卤代在侧链,催化卤代在苯环。

烃的卤代衍生物,卤素能被羟基换。

消去一个小分子,生成稀和氢卤酸。

钾钠能换醇中氢,银镜反应可辨醛。

氢氧化铜多元醇,溶液混合呈绛蓝。

醇加羧酸生成酯,酯类水解变醇酸。

苯酚遇溴沉淀白,淀粉遇碘色变蓝。

氨基酸兼酸碱性,甲酸是酸又像醛。

聚合单体变链节,断裂π键相串联。

千变万化多趣味,无限风光任登攀。

这是总结的化学机口诀,超实用哦~(我们老师刚给总结的)

希望可以帮到你哦~

含CHO3种元素,且室温时A1为气,不是甲醛就是醚,而甲醛不符合CH的质量分数和为733%,只有CH3-OCH2CH3符合。

A2A3可分别被氧化,则A2A3中比含-OH,又因为B2能被硝酸银的氨水溶液氧化得到C2而B3则不能,可知A2A3中分别含伯醇和仲醇,即A2是CH3CH2CH2OH,

A3是CH3CH(OH)CH3。

则B3结构简式是CH3C=OCH3

A3与C2反应的产物是CH3CH2COOCH(CH3)2

1 高中化学有机物部分知识总结

1。

卤化烃:官能团,卤原子 在碱的溶液中发生“水解反应”,生成醇 在碱的醇溶液中发生“消去反应”,得到不饱和烃 2。醇:官能团,醇羟基 能与钠反应,产生氢气 能发生消去得到不饱和烃(与羟基相连的碳直接相连的碳原子上如果没有氢原子,不能发生消去) 能与羧酸发生酯化反应 能被催化氧化成醛(伯醇氧化成醛,仲醇氧化成酮,叔醇不能被催化氧化) 3。

醛:官能团,醛基 能与银氨溶液发生银镜反应 能与新制的氢氧化铜溶液反应生成红色沉淀 能被氧化成羧酸 能被加氢还原成醇 4。酚,官能团,酚羟基 具有酸性 能钠反应得到氢气 酚羟基使苯环性质更活泼,苯环上易发生取代,酚羟基在苯环上是邻对位定位基 能与羧酸发生酯化 5。

羧酸,官能团,羧基 具有酸性(一般酸性强于碳酸) 能与钠反应得到氢气 不能被还原成醛(注意是“不能”) 能与醇发生酯化反应 6。酯,官能团,酯基 能发生水解得到酸和醇 7。

烷烃 CnH2n+2 单烯烃 CnH2n n>=2 碳碳双键 环烷烃 CnH2n 二烯烃:CnH2n-2 碳碳双键 单炔烃 CnH2n-2 n>=2 碳碳三键 苯的同系物 CnH2n-6 n>=6(苯环,一般不写,填在试卷上不把它当作官能团) 饱和一元卤代烃 CnH2n+1X(X代表卤) X- (卤原子) 饱和一元醇 CnH2n+2O 醇羟基 苯酚 C6H6O 酚羟基 苯酚是酚类一种代表,其通式不要求掌握 饱和一元醛 CnH2nO 醛基 饱和一元羧酸 CnH2nO2 羧基 酯 CnH2nO2 n>=2 酯基 酮 CnH2nO 酮羰基 醚 CnH2n+2O n>=2 8。草酸(乙二酸)>甲酸>乙酸>碳酸>苯酚 饱和一元酸随碳原子数的增多,酸性减弱 高中有机化学知识总结概括 1、常温常压下为气态的有机物: 1~4个碳原子的烃,一氯甲烷、新戊烷、甲醛。

2、碳原子较少的醛、醇、羧酸(如甘油、乙醇、乙醛、乙酸)易溶于水;液态烃(如苯、汽油)、卤代烃(溴苯)、硝基化合物(硝基苯)、醚、酯(乙酸乙酯)都难溶于水;苯酚在常温微溶与水,但高于65℃任意比互溶。 3、所有烃、酯、一氯烷烃的密度都小于水;一溴烷烃、多卤代烃、硝基化合物的密度都大于水。

4、能使溴水反应褪色的有机物有:烯烃、炔烃、苯酚、醛、含不饱和碳碳键(碳碳双键、碳碳叁键)的有机物。能使溴水萃取褪色的有:苯、苯的同系物(甲苯)、CCl4、氯仿、液态烷烃等。

5、能使酸性高锰酸钾溶液褪色的有机物:烯烃、炔烃、苯的同系物、醇类、醛类、含不饱和碳碳键的有机物、酚类(苯酚)。 6、碳原子个数相同时互为同分异构体的不同类物质:烯烃和环烷烃、炔烃和二烯烃、饱和一元醇和醚、饱和一元醛和酮、饱和一元羧酸和酯、芳香醇和酚、硝基化合物和氨基酸。

7、无同分异构体的有机物是:烷烃:CH4、C2H6、C3H8;烯烃:C2H4;炔烃:C2H2;氯代烃:CH3Cl、CH2Cl2、CHCl3、CCl4、C2H5Cl;醇:CH4O;醛:CH2O、C2H4O;酸:CH2O2。 8、属于取代反应范畴的有:卤代、硝化、磺化、酯化、水解、分子间脱水(如:乙醇分子间脱水)等。

9、能与氢气发生加成反应的物质:烯烃、炔烃、苯及其同系物、醛、酮、不饱和羧酸(CH2=CHCOOH)及其酯(CH3CH=CHCOOCH3)、油酸甘油酯等。 10、能发生水解的物质:金属碳化物(CaC2)、卤代烃(CH3CH2Br)、醇钠(CH3CH2ONa)、酚钠(C6H5ONa)、羧酸盐(CH3COONa)、酯类(CH3COOCH2CH3)、二糖(C12H22O11)(蔗糖、麦芽糖、纤维二糖、乳糖)、多糖(淀粉、纤维素)((C6H10O5)n)、蛋白质(酶)、油脂(硬脂酸甘油酯、油酸甘油酯)等。

11、能与活泼金属反应置换出氢气的物质:醇、酚、羧酸。 12、能发生缩聚反应的物质:苯酚(C6H5OH)与醛(RCHO)、二元羧酸(COOH—COOH)与二元醇(HOCH2CH2OH)、二元羧酸与二元胺(H2NCH2CH2NH2)、羟基酸(HOCH2COOH)、氨基酸(NH2CH2COOH)等。

13、需要水浴加热的实验:制硝基苯( —NO2,60℃)、制苯磺酸 ( —SO3H,80℃)制酚醛树脂(沸水浴)、银镜反应、醛与新制Cu(OH)2悬浊液反应(热水浴)、酯的水解、二糖水解(如蔗糖水解)、淀粉水解(沸水浴)。 14、 光照条件下能发生反应的:烷烃与卤素的取代反应、苯与氯气加成反应(紫外光)、—CH3+Cl2 —CH2Cl(注意在铁催化下取代到苯环上)。

15、常用有机鉴别试剂:新制Cu(OH)2、溴水、酸性高锰酸钾溶液、银氨溶液、NaOH溶液、FeCl3溶液。 16、最简式为CH的有机物:乙炔、苯、苯乙烯( —CH=CH2);最简式为CH2O的有机物:甲醛、乙酸(CH3COOH)、甲酸甲酯(HCOOCH3)、葡萄糖(C6H12O6)、果糖(C6H12O6)。

17、能发生银镜反应的物质(或与新制的Cu(OH)2共热产生红色沉淀的):醛类(RCHO)、葡萄糖、麦芽糖、甲酸(HCOOH)、甲酸盐(HCOONa)、甲酸酯(HCOOCH3)等。 18、常见的官能团及名称:—X(卤原子:氯原子等)、—OH(羟基)、—CHO(醛基)、—COOH(羧基)、—COO—(酯基)、—CO—(羰基)、—O—(醚键)、C=C (碳碳双键)、—C≡C—(碳碳叁键)、—NH2(氨基)、—NH—CO—(肽键)、—NO2。

2 本人急需要高中化学必修二有机部分的知识

有机化合物 一、基础篇:第一节 最简单的有机化合物—甲烷 氧化反应 CH4(g)+2O2(g) → CO2(g)+2H2O(l) 取代反应 CH4+Cl2(g) → CH3Cl+HCl 烷烃的通式:CnH2n+2 n≤4为气体 、所有1-4个碳内的烃为气体,都难溶于水,比水轻 碳原子数在十以下的,依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸 同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物 同分异构体:具有同分异构现象的化合物互称为同分异构 同素异形体:同种元素形成不同的单质 同位素:相同的质子数不同的中子数的同一类元素的原子 乙烯C2H4 含不饱和的C=C双键,能使KMnO4溶液和溴的溶液褪色 氧化反应 2C2H4+3O2 →2CO2+2H2O 加成反应 CH2=CH2+Br2 →CH2Br-CH2Br 先断后接,变内接为外接 加聚反应 nCH2=CH2 → [ CH2 - CH2 ]n 高分子化合物,难降解,白色污染 石油化工最重要的基本原料,植物生长调节剂和果实的催熟剂, 乙烯的产量是衡量国家石油化工发展水平的标志 苯是一种无色、有特殊气味的液体,有毒,不溶于水,良好的有机溶剂 苯的结构特点:苯分子中的碳碳键是介于单键和双键之间的一种独特的键 氧化反应 2 C6H6+15 O2→12 CO2+ 6 H2O 取代反应 溴代反应 + Br2 → -Br + H Br 硝化反应 + HNO3 → -NO2 + H2O 加成反应 +3 H2 → 第三节 生活中两种常见的有机物 乙醇物理性质:无色、透明,具有特殊香味的液体,密度小于水沸点低于水,易挥发 良好的有机溶剂,溶解多种有机物和无机物,与水以任意比互溶,醇官能团为羟基-OH 与金属钠的反应 2CH3CH2OH+Na→ 2CH3CHONa+H2 氧化反应 完全氧化 CH3CH2OH+3O2→ 2CO2+3H2O 不完全氧化 2CH3CH2OH+O2→ 2CH3CHO+2H2O Cu作催化剂 乙酸 CH3COOH 官能团:羧基-COOH 无水乙酸又称冰乙酸或冰醋酸 弱酸性,比碳酸强 CH3COOH+NaOH→CH3COONa+H2O 2CH3COOH+CaCO3→Ca(CH3COO)2+H2O+CO2↑ 酯化反应 醇与酸作用生成酯和水的反应称为酯化反应原理 酸脱羟基醇脱氢 CH3COOH+C2H5OH→CH3COOC2H5+H2O 第四节 基本营养物质 糖类:是绿色植物光合作用的产物,是动植物所需能量的重要来源又叫碳水化合物 单糖 C6H12O6 葡萄糖 多羟基醛 CH2OH-CHOH-CHOH-CHOH-CHOH-CHO 果糖 多羟基酮 双糖 C12H22O11 蔗糖 无醛基 水解生成一分子葡萄糖和一分子果糖: 麦芽糖 有醛基 水解生成两分子葡萄糖 多糖 (C6H10O5)n 淀粉 无醛基 n不同不是同分异构 遇碘变蓝 水解最终产物为葡萄糖纤维素 无醛基 油脂:比水轻(密度在之间),不溶于水是产生能量最高的营养物质 植物油 C17H33-较多,不饱和 液态 油脂水解产物为高级脂肪酸和丙三醇(甘油),油脂在碱性条件下的水解反应叫皂化反应 脂肪 C17H35、C15H31较多 固态 蛋白质是由多种氨基酸脱水缩合而成的天然高分子化合物 蛋白质水解产物是氨基酸,人体必需的氨基酸有8种,非必需的氨基酸有12种 蛋白质的性质 盐析:提纯 变性:失去生理活性 显色反应:加浓硝酸显** 灼烧:呈焦羽毛味误服重金属盐:服用含丰富蛋白质的新鲜牛奶或豆浆 主要用途:组成细胞的基础物质、人类营养物质、工业上有广泛应用、酶是特殊蛋白质二、复习篇:一、有机化合物的概念及结构特点 1、有机物 含碳元素的化合物叫做有机物,但C、CO、CO2、H2CO3、碳酸盐、碳化物等,一般认为是无机物 由于碳原子有4个价电子,可以与其它原子形成4个共价键;碳原子与碳原子之间能以共价键结合;有机物存在同分异构体,所以有机物种类繁多 有机物含C、H、N、S、P等多种元素,但只含碳和氢两种元素的有机物称为烃 2、有机物中的同系物及同分异构体 (1)“四同”概念比较 (2)同分异构体的书写,下面以C7H16为例书写: 无支链:CH3CH2CH2CH2CH2CH2CH3 去一碳,做甲基: 、去两碳,做一个乙基: 做两个甲基: 、、、去三碳,可做三个甲基: ,共9种同分异构体 二、有机物的性质及反应类型 1、有机化合物的结构特点决定了有机化合物的性质有如下特点 大多数有机物难溶于水,易溶于汽油、酒精、苯等有机溶剂 绝大多数有机物受热容易分解,而且容易燃烧 绝大多数有机物不易导电,熔点低 有机物所起的化学反应比较复杂,一般比较慢,有的需要几小时甚至几天或更长时间才能完成,并且还常伴有副反应发生所以许多有机化学反应常常需要加热或使用催化剂以促进它们的进行 2、有机反应的常见类型 (1)取代反应 有机物分子里的某些原子或原子团被其它原子或原子团所代替的反应叫做取代反应 (2)加成反应 有机物分子里不饱和的碳原子跟其它原子或原子团直接结合生成新物质的反应叫做加成反应 (3)聚合反应 小分子通过加成聚合反应的方式生成高聚物的反应为加聚反应若聚合的同时又生成小分子的反应为缩聚反应,加聚反应和缩聚反应都属于聚合反应 (4)消去反应 有机化合物在适当的条件下,从一个分子脱去一个小分子(如水、卤化氢等分子),而生成不饱和(双键或叁键)化合物的反应,叫做消去反应 (5)酯化反应 酸与醇作用生成酯和水的反应叫做。

3 有机化学的常识(高中的)

有机化学总结第一部分 烃知识归纳总结 从大的方面讲,本章的知识可以从以下几个方面加以概括:1、有机物的结构特点;2、烃;3、几个重要的概念;4、几种重要的有机化学发应类型;5、烷烃的系统命名;6、石油和煤。

1、有机物的结构特点 有机物结构有何特点?有机物种类为什么繁多? 2、烃 什么叫烃?本章学过哪些烃?其通式是什么? (1)烃的分类 饱和链烃——烷烃CnH2n+2 (n≥1) 链烃 烯烃CnH2n (n≥2) 不饱和链烃—— 烃 炔烃CnH2n-2 (n≥2) 芳香烃(如苯及其同系物)CnH2n-6 (n≥6) (2)各类烃的结构特点和主要化学性质 结构特点 主要化学性质 烷烃 仅含C—C键 与卤素等发生取代反应、热分解 烯烃 含C==C键 与卤素等发生加成反应,与高锰酸钾发生氧化反应,聚合反应 炔烃 含C≡C键 与卤素等发生加成反应,与高锰酸钾发生氧化反应,聚合反应 苯(芳香烃) 与卤素等发生加成反应,与氢气等发生加成反应 3、几个重要的概念 (1)同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质,互称为同系物; (2)同分异构现象:化合物具有相同的分子式,但具有不同的结构式的现象,叫做同分异构现象; (3)同分异构体:具有同分异构现象的化合物互称为同分异构体; 。有机化学总结第一部分 烃知识归纳总结 从大的方面讲,本章的知识可以从以下几个方面加以概括:1、有机物的结构特点;2、烃;3、几个重要的概念;4、几种重要的有机化学发应类型;5、烷烃的系统命名;6、石油和煤。

1、有机物的结构特点 有机物结构有何特点?有机物种类为什么繁多? 2、烃 什么叫烃?本章学过哪些烃?其通式是什么? (1)烃的分类 饱和链烃——烷烃CnH2n+2 (n≥1) 链烃 烯烃CnH2n (n≥2) 不饱和链烃—— 烃 炔烃CnH2n-2 (n≥2) 芳香烃(如苯及其同系物)CnH2n-6 (n≥6) (2)各类烃的结构特点和主要化学性质 结构特点 主要化学性质 烷烃 仅含C—C键 与卤素等发生取代反应、热分解 烯烃 含C==C键 与卤素等发生加成反应,与高锰酸钾发生氧化反应,聚合反应 炔烃 含C≡C键 与卤素等发生加成反应,与高锰酸钾发生氧化反应,聚合反应 苯(芳香烃) 与卤素等发生加成反应,与氢气等发生加成反应 3、几个重要的概念 (1)同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质,互称为同系物; (2)同分异构现象:化合物具有相同的分子式,但具有不同的结构式的现象,叫做同分异构现象; (3)同分异构体:具有同分异构现象的化合物互称为同分异构体; 4、几种重要的有机化学反应类型 在本章所学各代表物的化学性质中涉及到哪些反应类型?其含义是什么? (1)氧化反应:包括两层含义①与氧气的燃烧②能否被酸性KMnO4溶液氧化; (2)取代反应:有机物分子里的某些原子团或原子被其他原子或原子团所代替的反应叫取代反应。如烷烃与卤素的反应、苯与液溴的反应、苯的硝化、磺化反应等均属取代反应; (3)加成反应:有机物分子里不饱和碳原子与其他原子或原子团直接结合生成新化合物的反应叫加成反应。

如乙烯与溴及其他卤素或氢气的反应、乙炔与卤素的反应等均属加成反应; (4)聚合反应:由相对分子质量小的化合物分子结合成相对分子质量大的高分子的反应叫做聚合反应。如乙烯的聚合、氯乙烯的聚合均属聚合反应; 5、烷烃的系统命名法 烷烃的习惯命名法有什么弊端?烷烃的系统命名法的基本原则和步骤是什么? 系统命名法的基本原则有:①最简化原则;②明确化原则;可解释为一长一近一多一少即主链要长,编号起点离支链最近,支链数目要多,支链位置号码之和要少。

系统命名法的基本步骤可归纳为:①选主链,称某烷;②编号码,定支链;③取代基,写在前,注位置,连短线;④不同基,简在前,相同基,二三连。 6、石油和煤 石油和煤都是重要的化工原料,也是重要的能源物质,那么从原油到各种化工产品,要经过哪些途径?如何提高煤的燃烧效率和利用率? 石油的炼制包括分馏、裂化和裂解。

分馏是利用烃的不同沸点,通过不断地加热和冷凝,把石油分离成不同沸点范围的蒸馏产物的过程。裂化是在一定条件下,使长链烃断裂成短链烃的方法,主要产物是相对分子质量较小的液态烃。

裂解是深度裂化,主要产物是相对分子质量更小的不饱和烃如乙烯等。 煤的价值要想得到充分的利用,必须进行综合利用,一般的措施有煤的干馏(也称煤的焦化)、煤的气化和液化。

规律总结一、计算并推断烃的分子式及其结构简式 确定烃分子式的基本方法: [方法一] 根据有机物中各元素的质量分数(或元素的质量比),求出有机物的最简式, 再根据有机物的式量确定化学式(分子式)。即:质量分数→最简式→分子式 [方法二] 根据有机物的摩尔质量和有机物中各元素的质量分数(或元素质量比),推算出1mol该有机物中各元素的原子物质的量,从而确定分子中的各原子个数。

即: 质量分数→1mol物质中各元素原子物质的量→分子式 [方法三] 燃烧通式法。如烃的分子式可设为CxHy,由于x和y是相对独立的,计算中数据运算简便。

根据烃的燃烧反应方程式,借助通式CxHy进行计算,解出x和y。

4 高考有机化学的知识点

考纲要求 有机化学基础

1 了解有机化合物数目众多和异构现象普遍存在的本质原因。

2 理解基团、官能团、同分异构、同系列等概念。能够识别结构式(结构简式)中各原子的连接次序和方式、基团和官能团。能够辨认同系物和列举异构体。了解烷烃的命名原则。

3 以一些典型的烃类化合物为例,了解有机化合物的基本碳架结构。掌握各类烃(烷烃、烯烃、炔烃、芳香烃)中各种碳碳键、碳氢键的性质和主要化学反应。

4 以一些典型的烃类衍生物(乙醇、溴乙烷、苯酚、乙醛、乙酸、乙酸乙酯、脂肪酸、甘油酯、多羟基醛、氨基酸等)为例,了解官能团在化合物中的作用。掌握各主要官能团的性质和主要化学反应。

5了解石油化工、农副产品化工、资源综合利用及污染和环保的概念。

6 了解在生活和生产中常见有机物的性质和用途。

7 以葡萄糖为例,了解糖类的基本组成和结构,主要性质和用途。

8 了解蛋白质的基本组成和结构、主要性质和用途。

9 初步了解重要合成材料的主要品种的主要性质和用途。理解由单体进行聚合反应(加聚和缩聚)生成高分子化合物的简单原理。

10 通过上述各类化合物的化学反应,掌握有机反应的主要类型。

11 综合应用各类化合物的不同性质,进行区别、鉴定、分离、提纯或推导未知物的结构简式。组合多个化合物的化学反应,合成具有指定结构简式的产物。

回归课本

1常见有机物之间的转化关系

2与同分异构体有关的综合脉络

3有机反应主要类型归纳

下属反应物 涉及官能团或有机物类型 其它注意问题

取代反应 酯水解、卤代、硝化、磺 化、醇成醚、氨基酸成肽、皂化、多糖水解、肽和蛋白质水解等等 烷、苯、醇、羧酸、酯和油脂、卤代烃、氨基酸、糖类、蛋白质等等 卤代反应中卤素单质的消耗量;酯皂化时消耗NaOH的量(酚跟酸形成的酯水解时要特别注意)。

加成反应 氢化、油脂硬化 C=C、C≡C、C=O、苯环 酸和酯中的碳氧双键一般不加成;C=C和C≡C能跟水、卤化氢、氢气、卤素单质等多种试剂反应,但C=O一般只跟氢气、氰化氢等反应。

消去反应 醇分子内脱水卤代烃脱卤化氢 醇、卤代烃等 、等不能发生消去反应。

氧化反应 有机物燃烧、烯和炔催化氧化、醛的银镜反应、醛氧化成酸等 绝大多数有机物都可发生氧化反应 醇氧化规律;醇和烯都能被氧化成醛;银镜反应、新制氢氧化铜反应中消耗试剂的量;苯的同系物被KMnO4氧化规律。

还原反应 加氢反应、硝基化合物被还原成胺类 烯、炔、芳香烃、醛、酮、硝基化合物等 复杂有机物加氢反应中消耗H2的量。

加聚反应 乙烯型加聚、丁二烯型加聚、不同单烯烃间共聚、单烯烃跟二烯烃共聚 烯烃、二烯烃(有些试题中也会涉及到炔烃等) 由单体判断加聚反应产物;由加聚反应产物判断单体结构。

缩聚反应 酚醛缩合、二元酸跟二元醇的缩聚、氨基酸成肽等 酚、醛、多元酸和多元醇、氨基酸等 加聚反应跟缩聚反应的比较;化学方程式的书写。

4醇、醛、酸、酯转化关系的延伸

5 高中有机化学知识点 要全的啊 急用

二十五、有机物的官能团: 1碳碳双键: 2碳碳叁键: 3卤(氟、氯、溴、碘)原子:—X 4(醇、酚)羟基:—OH 5醛基:—CHO 6羧基:—COOH 7酯类的基团: 二十六、各类有机物的通式、及主要化学性质 烷烃CnH2n+2 仅含C—C键 与卤素等发生取代反应、热分解 、不与高锰酸钾、溴水、强酸强碱反应 烯烃CnH2n 含C==C键 与卤素等发生加成反应、与高锰酸钾发生氧化反应、聚合反应、加聚反应 炔烃CnH2n-2 含C≡C键 与卤素等发生加成反应、与高锰酸钾发生氧化反应、聚合反应 苯(芳香烃)CnH2n-6与卤素等发生取代反应、与氢气等发生加成反应 (甲苯、乙苯等苯的同系物可以与高锰酸钾发生氧化反应)卤代烃:CnH2n+1X 醇:CnH2n+1OH或CnH2n+2O 苯酚:遇到FeCl3溶液显紫色 醛:CnH2nO 羧酸:CnH2nO2 酯:CnH2nO2 二十七、有机反应类型: 取代反应:有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应。

加成反应:有机物分子里不饱和的碳原子跟其他原子或原子团直接结合的反应。 聚合反应:一种单体通过不饱和键相互加成而形成高分子化合物的反应。

加聚反应:一种或多种单体通过不饱和键相互加成而形成高分子化合物的反应。 消去反应:从一个分子脱去一个小分子(如水卤化氢),因而生成不饱和化合物的反应。

氧化反应:有机物得氧或去氢的反应。 还原反应:有机物加氢或去氧的反应。

酯化反应:醇和酸起作用生成酯和水的反应。 水解反应:化合物和水反应生成两种或多种物质的反应(有卤代烃、酯、糖等) 二十八、有机物燃烧通式 烃: CxHy+(x+ )O2 ® xCO2+ H2O 烃的含氧衍生物: CxHyOz+(x+ - )O2 ® xCO2+ H2O 二十九、有机合成路线: 补充: 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、。

6 高中有机化学基础知识

有机化合物主要由氧元素、氢元素、碳元素组成。有机物是生命产生的物质基础。脂肪、氨基酸、蛋白质、糖、血红素、叶绿素、酶、激素等。生物体内的新陈代谢和生物的遗传现象,都涉及到有机化合物的转变。此外,许多与人类生活有密切关系的物质,例如石油、天然气、棉花、染料、化纤、天然和合成药物等,均属有机化合物。

主要有: 多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。 和无机物相比,有机物数目众多,可达几百万种。有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一。 有机化合物除少数以外,一般都能燃烧。和无机物相比,它们的热稳定性比较差,电解质受热容易分解。有机物的熔点较低,一般不超过400℃。有机物的极性很弱,因此大多不溶于水。有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物。

一根据碳原子结合而成的基本结构不同,有机化合物被分为三大类:1链状化合物 这类化合物分子中的碳原子相互连接成链状,因其最初是在脂肪中发现的,所以又叫脂肪族化合物。2碳环化合物 这类化合物分子中含有由碳原子组成的环状结构[1],故称碳环化合物。它又可分为两类:脂环族化合物:是一类性质和脂肪族化合物相似的碳环化合物。芳香族化合物:是分子中含有苯环或稠苯体系的化合物。3杂环化合物:组成这类化合物的环除碳原子以外,还含有其它元素的原子,叫做杂环化合物。

二、按官能团分类

决定某一类化合物一般性质的主要原子或原子团称为官能团或功能基。含有相同官能团的化合物,其化学性质基本上是相同的。

7 高中化学有机物这个知识点,什么官能团消耗几摩尔氢气和氧气的,

①对于1mol有机物CxHyOz完全燃烧:

消耗氧气(x+y/4)mol(只与C和H原子数有关)

②对于官能团的氧化:

-OH(羟基) →(得1O)→ -CHO(醛基) →(得1O)→ -COOH(羧基)

C6H5-CH3(甲苯)→KMnO4(得2O)→C6H5-COOH(苯甲酸)

官能团的氧化不一定是和O2反应,这里是得到O原子数

③对于官能团和H2的加成:

一根双键消耗1molH2:CC双键,-CHO(醛基)中CO双键(-COOH(羧基)中CO双键不能和H2加成)

苯环可以看成三根双键

一根三键消耗2molH2:CC三键

望采纳!!亲!!

烃由碳和氢两种元素构成的一类有机化合物,亦称“碳氢化合物”。种类很多,按结构和性质,

  可以分类如下:

  开链烃分子中碳原子彼此结合成链状,而无环状结构的烃,称为开链烃。根据分子中碳和氢的含量,链烃又可分为饱和链烃(烷烃)和不饱和链烃(烯烃、炔烃)。

  脂肪烃亦称“链烃”。因为脂肪是链烃的衍生物,故链烃又称为脂肪烃。

  饱和烃饱和烃可分为链状饱和烃即烷烃(亦称石蜡烃)和另一类含有碳碳单键而呈环状的饱和烃即环烷烃(参见闭链烃)。

  烷烃即饱和链烃,亦称石蜡烃。通式为CnH2n+2(n≥1),烷烃中的含氢量已达到饱和。烷烃中最简单的是甲烷,是天然气和沼气的主要成分,烷烃主要来源是石油、天然气和沼气。可以发生取代反应,甲烷在光照的条件下可以与氯气发生取代反应,生成物为CH3Cl-----CH2Cl2-----CHCl3-----CCl4。

  不饱和烃系分子中含有“C=C”或“C≡C”的烃。这类烃也可分为不饱和链烃和不饱和环烃。不饱和链烃所含氢原子数比对应的烷烃少,化学性质活动,易发生加成反应和聚合反应。不饱和链烃又可分为烯烃和炔烃。不饱和环烃可分为环烯烃(如环戊二烯)和环炔烃(如苯炔)。

  烯烃系分子中含“C=C”的烃。根据分子中含“C=C”的数目,可分为单烯烃和二烯烃。单烯烃分子中含一个“C=C”,通式为CnH2n,其中 n≥2。最重要的单烯烃是乙烯H2C=CH2,次要的有丙烯CH3CH=CH2和1-丁烯OH3CH2CH=CH2。单烯烃简称为烯烃,烯烃的主要来源是石油及其裂解产物。

  二烯烃系含有两个“C=C”的链烃或环烃。如1,3-丁二烯。2-甲基-1,3-丁二烯、环戊二烯等。二烯烃中含共轭双键体系的最为重要,如1,3-丁二烯、2-甲基-1,3-丁二烯等是合成橡胶的单体。

  炔烃系分子中含有“C≡C”的不饱和链烃。根据分子中碳碳叁键的数目,可分为单炔烃和多炔烃,单炔烃的通式为CnHn-2,其中n≥2。炔烃和二烯烃是同分异构体。最简单、最重要的炔烃是乙炔HC≡CH,乙炔可由电石和水反应制得。

  闭键烃亦称“环烃”。是具有环状结构的烃。可分为两大类,一类是脂环烃(或称脂肪族环烃)具有脂肪族类的性质,脂环烃又分为饱和环烷其中n≥3。环烷烃和烯烃是同分异构体。环烷烃存在于某些石油中,环烯烃常存在于植物精油中。环烃的另一类是芳香烃,大多数芳香烃是有苯环结构和芳香族化合物的性质。

  环烷烃在环烃分子中,碳原子间以单键相互结合的叫环烷烃,是饱和脂环烃。具有三环和四环的环烷烃,稳定性较差,在一定条件下容易开环。五环以上的环烷烃较稳定,其性质与烷烃相似。常见的环烷烃有环丙烷、环丁烷、环戊烷、环己烷等。

  芳香烃一般是指分子中含有苯环结构的烃。根据分子中所含苯环的数目以及苯环间的联结方式,可分为单环芳香烃、多环芳香烃、稠环芳香烃等。单环芳香烃的通式为CnH2n-6,其中n≥6,单环芳香烃中重要的有苯

  稠环芳香烃分子中含有两个或多个苯环,苯环间通过共用两个相

  杂环化合物分子中含有碳原子和氧、氮、硫等其它原子形成环状结构的化合物叫杂环化合物。其中以五原子和六原子的杂环较稳定。具有芳香性的称作芳杂环,烃分子中一个或多个氢原子被卤素原子取代而形成的化合物称为卤代烃。根据取代上去的不同卤素原子可分为氟代烃、氯代烃、溴代烃、碘代烃等。根据分子中卤素原子的数目,可分为一卤代烃和多卤代烃。根据烃基种类的不同,可分为饱和卤代烃即卤代烷烃、不饱和卤代烃即卤代烯烃和卤代炔烃、卤代芳香烃等,例如氯CH3-CHBr-CH2Br等。

  醇烃分子中的一个或几个氢原子被羟基取代后的产物称为醇(若苯环上的氢原子被羟基取代后的生成物属于酚类)。根据醇分子中羟基的数目,可分为一元醇、二元醇、三元醇等,根据醇分子中烃基的不同,可分为饱和醇不饱和醇和芳香醇。由于跟羟基所连接的碳原子的位置,又可分为伯醇如

  (CH3)3COH。醇类一般呈中性,低级醇易溶于水,多元醇带甜味。醇类的化学性质主要有氧化反应、酯化反应、脱水反应、与氢卤酸反应、与活动金属反应等。

  芳香醇系芳香烃分子中苯环的侧键上的氢原子被羟基取代而成的物质。如苯甲醇(亦称苄醇)。

  酚芳香烃分子中苯环上的氢原子被羟基取代而成的化合物称作酚类。根据酚分子中所含羟基的数目,可分为一元酚,二元酚和多元酚等,如 溶液呈变色反应。酚具有较弱的酸性,能与碱反应生成酚盐。酚分子中的苯环受羟基的影响容易发生卤化、硝化、磺化等取代反应。

  醚两个烃基通过一个氧原子连结而成的化合物称作醚。可用通式R-O-R'表示。若R与R'相同,叫简单醚,如甲醚CH3-O-CH3、乙醚C2H5-O-C2H5等;若R与R'不同,叫混和醚,如甲乙醚CH3-O-C2H5。若二元醇分子子中醛基的数目,可分为一元醛、二元醛等;根据分子中烃基的不同,可分相应的伯醇氧化制得。醛类中羰基可发生加成反应,易被较弱的氧化剂如费林试剂、多伦试剂氧化成相应的羧酸。重要的醛有甲醛、乙醛等。

  芳香醛分子中醛基与苯环直接相连而形成的醛,称作芳香醛。如苯甲醛。

  羧酸烃基或氢原子与羧基连结而形成的化合物称为羧酸,根据羧酸分子中羧基的数目,可分为一元酸、二元酸、多元酸等。一元酸如乙酸

  饱和酸如丙酸CH3CH2COOH、不饱和酸如丙烯酸CH2=CH-COOH等。羧酸还可以分为脂肪酸、脂环酸和芳香酸等。脂肪酸中,饱和的如硬脂酸C17H35COOH、 等。

  羧酸衍生物羧酸分子中羧基里的羟基被其它原子或原子团取代而形成的化合物叫羧酸衍生物。如酰卤、酰胺、酸酐等。

  酰卤系羧酸分子中羧基上的羟基被卤素原子取代而形成的化合物等。

  酰胺系羧酸分子中羧基上的羟基被氨基-NH2或者是被取代过的氨基所取代等。

  酸酐两个分子的一元羧酸分子间失水或者二元羧酸分子内失水而形成的化合物,称作酸酐。如两个乙酸分子失去一个水分子形成乙酸酐(CH3-

  酯羧酸分子中羧基上的羟基被烷氧基-O-R'取代而形成的化合物称

  油脂系高级脂肪酸甘油酯的总称。在室温下呈液态的叫油,呈固态的叫作脂肪。可用通式表示:若R、R'、R″相同,称为单甘油酯;若R、R'、R″不同,称为混甘油酯。天然油脂大都是混甘油酯。 

  硝基化合物系烃分子中的氢原子被硝基-NO2取代而形成的化合物,可用通式R-NO2表示,R可以是烷基,也可以是苯环。如硝基乙烷CH3CH2NO2、

  胺系氨分子中的氢原子被烃基取代后而形成的有机化合物。根据取根据烃基结构的不同,可分为脂肪胺如甲胺CH3NH2、二甲胺CH3-NH-CH3和芳香胺如苯胺C6H5-NH2、二苯胺(C6H5)2NH等。也可以根据氨基的数目分为一元胺、二元胺、多元胺。一元胺如乙胺CH3CH2NH2,二元胺如乙二胺H2N—CH2—CH2—NH2,多元胺如六亚甲基四胺 (C6H2)6N4。胺类大都具有弱碱性,能与酸反应生成盐。苯胺是胺类中重要的物质,是合成染料,合成药物的原料。

  腈系烃基与氰基(-CN)相连而成的化合物。通式为R-CN,如乙腈CH3CN。

  重氮化合物大多是通式为R—N2—X的有机化合物,分子中含有是一种重氮化合物,其中以芳香族重氮盐最为重要。可用 化学性质活动,是制取偶氮染料的中间体。

  偶氮化合物分子中含有偶氮基(-N=N-)的有机化合物。用通式R-N=N-R表示,其中R是烃基,偶氮化合物都有颜色,有的可作染料。也可作色素。

  磺酸系烃分子中的氢原子被磺酸基-SO3H取代而形成的化合物,可用RSO3H表示。脂肪族磺酸的制备常用间接法,而芳香族磺酸可通过磺化反应直接制得。磺酸是强酸,易溶于水,芳香族磺酸是合成染料、合成药物的重要中间体。

  氨基酸系羧酸分子中烃基上的氢原子被氨基取代而形成的化合物。根据氨基取代的位置可分为α-氨基酸、β-氨基酸、γ-氨基酸等。α-氨基酸中的氨基在羟基相邻的碳原子上。α-氨基酸是组成蛋白质的基本单位。蛋白质经水解可得到二十多种α-氨基酸,如甘氨酸、丙氨酸、谷氨酸等,大多是L-型a-氨基酸。在人体所需要的氨基酸中,由食物中的蛋白质供给的,如赖氨酸、色氨酸、苯丙氨酸、苏氨酸等称为“必需氨基酸”,象甘氨酸、丝氨酸、丙氨酸、谷氨酸等可以从其它有机物在人体中转化而得到,故称为“非必需氨基酸”。

  肽系一分子氨基酸中的氨基与另一分子氨基酸中的羧基缩合失去水分子后而形成的化合物。两个氨基酸分子形成的肽叫二肽,如两个分子氨基

  多肽由多个a-氨基酸分子缩合消去水分子而形成含有多个肽键-

  蛋白质亦称朊。一般分子量大于10000。蛋白质是生物体的一种主要组成物质,是生命活动的基础。各种蛋白质中氨基酸的组成、排列顺序、肽链的立体结构都不相同。目前已有多种蛋白质的氨基酸排列顺序和立体结构搞清楚了。蛋白质按分子形状可分为纤维状蛋白和球状蛋白。纤维蛋白如丝、毛、发、皮、角、蹄等,球蛋白如酶、蛋白激素等。按溶解度的大小可分为白蛋白、球蛋白、醇溶蛋白和不溶性的硬蛋白等。按组成可分为简单蛋白和复合蛋白,简单蛋白是由氨基酸组成,复合蛋白是由简单蛋白和其它物质结合而成的,如蛋白质和核酸结合生成核酸蛋白,蛋白质与糖结合生成糖蛋白,蛋白质与血红素结合生成血红蛋白等。

  糖亦称碳水化合物。多羟基醛或多羟基酮以及经过水解可生成多羟基醛或多羟基酮的化合物的总称。糖可分为单糖、低聚糖、多糖等。一般糖类的氢原子数与氧原子数比为2:1,但如甲醛CH2O等不是糖类;而鼠李糖:C6H12O5属于糖类。

  单糖系不能水解的最简单的糖,如葡萄糖(醛糖)

  低聚糖在水解时能生成2~10个分子单糖的糖叫低聚糖。其中以二糖最重要,如蔗糖、麦芽糖、乳糖等。

  多聚糖亦称多糖。一个分子多聚糖水解时能生成10个分子以上单糖的糖叫多聚糖,如淀粉和纤维素,可用通式(C6H10O5)n表示。n可以是几百到几千。

  高分子化合物亦称“大分子化合物”或“高聚物”。分子量可高达数千乃至数百万以上。可分为天然高分子化合物和合成高分子化合物两大类。天然高分子化合物如蛋白质、核酸、淀粉、纤维素、天然橡胶等。合成高分子化合物如合成橡胶、合成树脂、合成纤维、塑料等。按结构可分为链状的线型高分子化合物(如橡胶、纤维、热塑性塑料)及网状的体型高分子化合物(如酚醛塑料、硫化橡胶)。合成高分子化合物根据其合成时所经反应的不同,又可分为加聚物和缩聚物。加聚物是经加聚反应生成的高分子化合物。如聚乙烯 、聚氯乙烯 聚丙烯 等。缩聚物是经缩聚反应生成的高分子化合物。如酚醛塑料、尼龙66等。

卤代烃:卤原子(-X),X代表卤族元素(F,Cl,Br,I); 在碱性条件下可以水解生成羟基

  醇、酚:羟基(-OH);伯醇羟基可以消去生成碳碳双键,酚羟基可以和NaOH反应生成水,与Na2CO3反应生成NaHCO3,二者都可以和金属钠反应生成氢气

  醛:醛基(-CHO); 可以发生银镜反应,可以和斐林试剂反应氧化成羧基。与氢气加成生成羟基。

  酮:羰基(>C=O);可以与氢气加成生成羟基

  羧酸:羧基(-COOH);酸性,与NaOH反应生成水,与NaHCO3、Na2CO3反应生成二氧化碳

  硝基化合物:硝基(-NO2);

  胺:氨基(-NH2) 弱碱性

  烯烃:双键(>C=C<)加成反应。 (具有面式结构,即双键及其所连接的原子在同一平面内)

  炔烃:三键(-C≡C-) 加成反应。(具有线式结构,即三键及其所连接的原子在同一直线上)

  醚:醚键(-O-) 可以由醇羟基脱水形成

  磺酸:磺基(-SO3H) 酸性,可由浓H2SO4 取代生成

  腈:氰基(-CN)

  酯: 酯 (-COO-) 水解生成羧基与羟基,醇、酚与羧酸反应生成

我帮你回答两遍,也不知道是不是同一个人啊。作为重点高中,高中部的化学课代表队长,我只能回答这些了,谢谢,望采纳

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/565526.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-03
下一篇2023-07-03

发表评论

登录后才能评论

评论列表(0条)

    保存