表白数学公式
表白数学公式,在决定向喜欢的女生表白时,算你觉得自己嘴笨不会表达,但是用一两句温暖一点的情话句子或者一些有创意的数学公式,可以适当增加表白时候的气氛,以下分享表白数学公式。
表白数学公式1可以表白的数学公式:
128根号e980、[(n+528)×5–39343]÷05-10×n、X2+(y+3√X2)2=1、r=a(1-cosθ)或r=a(1+cosθ)、x2+(y-3√x2)2=1。
1、128根号e980
I Love You的数学公式最早来源于韩国歌手Kwill的一首MV,叫《I need you》。女孩在黑板上写了一个数学公式“128根号e980”,让男主角解答,男主角冥思苦想都算不出来,于是女孩拿起刷子擦掉公式的上半部分,就变成了英文的 I Love You。
2、[(n+528)×5–39343]÷05-10×n ( N=任意数)
一个任意实数,加528,结果乘以5,再减34343结果乘以2,最后减去这个数的10倍。
3、X2+(y+3√X2)2=1
画出函数图像来,是一个心。
4、r=a(1-cosθ)或r=a(1+cosθ)(a>0)水平方向
心形线
5、x2+(y-3√x2)2=1
数轴上形成一颗爱心,这就是数学系的专属“爱心曲线”
表白数学公式2x^2+(y-(x^2)^(1/3))^2=1
还有这个
这个
这个
最后一个擦掉上半部分,下半部分就是的,一般适合用粉笔字写在黑板上。
表白数学公式3一、数学表白公式大全:
1、九宫格数字表白。
(1)96 24 64 表白密码“我爱你”。
(2)969426464 表白密码“我想你”。
(3)96 94 4826 64 表白密码“我喜欢你”。
(4)964269426464 表白密码“我好想你”。
(6)9826944369694842632696832643462 表白密码“愿意跟我一条道走到黑吗”。
(5)6478628542874962474364749426494 表白密码“你若不离不弃我必生死相依”。
(7)94492664982694 7826744543766443464 表白密码“只要你愿意,全世界送给你”。
2、化学公式表白。
(1)H(氢)At(砹)Tc(锝)--亲爱的。
(2)Ga( 镓)Os(锇)Pd(钯) --嫁给我吧。
(3)Mg+ZnSO4=Zn+MgSO4--你的镁夺走了我的锌。
(4)Os(锇)As(砷)At(砹)Ge(锗)Nb(铌)--我深爱着你。
(5)B、Ca、Al、Si,元素周期表的编号连起来就是5,20,13,14。
(6)Nb(铌)Pu(钚)Kr(氪)Y(钇)Pu(钚)Li(锂)Os(锇)--你不可以不理我。
(7)Zn(锌)Li(锂)Pu(钚)Kr(氪)Y(钇)U(铀)Tl(铊)Ag(银)--心里不可以有他人。
二、用最浪漫的数学表白:
1、9对3说,除了你,还是你。
2、我是1,你是0。我们相加是我,我们相乘是你。
3、我们的心就像一个圆,因为它的离心率永远是零。
4、等量代换与辅助线,在你我之间蔓延,解其实很简单,有且只有爱。
5、我们就是抛物线,你是焦点,我是准线, 你想我有多深,我念你便有多真。
6、如果我的心是x轴,那你就是开口向上、Δ为负的抛物线,永远都在我的心上。
7、有了你,我的世界才有无穷大。因为任何实数,都无法表达,我对你深深的爱。
8、我每天带给你的惊喜和希望,就像无穷集合里的'每个元素,虽然取之不尽,却又各不一样。
9、不论我们前面是怎样的随机变量,不论未来有多大的方差, 相信波谷过了,波峰还会远吗?
10、零向量可以有很多方向,却只有一个长度,就像我,可以有很多朋友,却只有一个你,值得我来守护。
11、我对你的感情,就像以自然对数e为底的指数函数,不论经过多少求导的风雨,依然不改本色,真情永驻。
12、如果有一天我们分居异面直线的两头,那我一定穿越时空的阻隔,划条公垂线向你冲来,一刻也不愿逗留。
表白数学公式4一、高级暗语表白
1、微信篇
发送 (翻译:我爱你)
发送 (翻译:我只喜欢你)
发送u6211u7231u4f60 (翻译:爱你)
发送lch will mit dir S wim (翻译:我想和你在一起)
发送 (翻译:你知道我爱你 你永远在我心里)
发送Miluji pouze jednu osobu, ta osoba jste vy (翻译:我只爱一个人,那个人就是你)
2、键盘篇
962464:在手机输入法九宫格状态下,打出文字就是:我爱你。
y65rfbji87y表白解密:在电脑键盘的字母区域,根据数字画出图形,就是图形“”。
798213713842687426979713467139:在电脑键盘的数字区域,根据数字画出图形,就是英文字母“ILOVEU”。
132879179248621486313179461793:在手机输入法九宫格数字界面上,按照数字画出图形,就是英文字母“ILOVEU”。
9121522521:表白解密:从1开始到26,分别表示从A到Z。
即:A(1)B(2)C(3)D(4)E(5)F(6)G(7)H(8)I(9)J(10)K(11)L(12)M(13)N(14)O(15)P(16)Q(17)R(18)S(19)T(20)U(21)V(22)W(23)X(24)Y(25)Z(26)。9=I12=L15=O22=V5=E21=U结果是ILOVEU。
3、古文篇
我在山海里,爱在河流里。你在云雾里。
我挥一杯水,爱彼潭云触,你若讦露人。
我是虏家儿,喜色满长安。欢乐殊未央,你可知好里。
我亦摆尘埃,想玉篦偷付。娶妇得如此,你莫思量我。
吾闻此间山水奇,钟灵毓秀若仙居。意气风发神往矣,君愿伴余共赴之?
嫁衣穿在你身上才是最美,给我戴戒指的是你才算承诺,我不想要万里江山,只想每日醒来你在,我枕边。
塞凯赖什夫妇的故事
1933 年,匈牙利数学家乔治·塞凯赖什(George Szekeres)还只有 22 岁。那时,他常常和朋友们在匈牙利的首都布达佩斯讨论数学。这群人里面还有同样生于匈牙利的数学怪才——保罗·埃尔德什(Paul Erds)大神。不过当时,埃尔德什只有 20 岁。
在一次数学聚会上,一位叫做爱丝特·克莱恩(Esther Klein)的美女同学提出了这么一个结论:在平面上随便画五个点(其中任意三点不共线),那么一定有四个点,它们构成一个凸四边形。塞凯赖什和埃尔德什等人想了好一会儿,没想到该怎么证明。于是,美女同学得意地宣布了她的证明:这五个点的凸包(覆盖整个点集的最小凸多边形)只可能是五边形、四边形和三角形。前两种情况都已经不用再讨论了,而对于第三种情况,把三角形内的两个点连成一条直线,则三角形的三个顶点中一定有两个顶点在这条直线的同一侧,这四个点便构成了一个凸四边形。
平面上五个点的位置有三种情况
众人大呼精彩。之后,埃尔德什和塞凯赖什仍然对这个问题念念不忘,于是尝试对其进行推广。最终,他们于 1935 年发表论文,成功地证明了一个更强的结论:对于任意一个正整数 n ≥ 3,总存在一个正整数 m,使得只要平面上的点有 m 个(并且任意三点不共线),那么一定能从中找到一个凸 n 边形。埃尔德什把这个问题命名为了“幸福结局问题”(Happy Ending problem),因为这个问题让乔治·塞凯赖什和美女同学爱丝特·克莱恩之间迸出了火花,两人越走越近,最终在 1937 年 6 月 13 日结了婚。
对于一个给定的 n ,不妨把最少需要的点数记作 f(n)。求出 f(n) 的准确值是一个不小的挑战。由于平面上任意不共线三点都能确定一个三角形,因此 f(3) = 3 。爱丝特·克莱恩的结论则可以简单地表示为 f(4) = 5 。利用一些稍显复杂的方法,我们可以证明 f(5) 等于 9 。2006 年,利用计算机的帮助,人们终于证明了 f(6) = 17。对于更大的 n,f(n) 的值分别是多少? f(n) 有没有一个准确的表达式呢?这是数学中悬而未解的难题之一。几十年过去了,幸福结局问题依旧活跃在数学界中。
不管怎样,最后的结局真的很幸福。结婚后的近 70 年里,他们先后到过上海和阿德莱德,最终在悉尼定居,期间从未分开过。 2005 年 8 月 28 日,乔治和爱丝特相继离开人世,相差不到一个小时。
伽罗瓦的故事
伽罗瓦(évariste Galois),19 世纪最伟大的法国数学家之一,唯一被我称为“天才数学家”的人。他 16 岁时就参加了巴黎综合理工学院的入学考试,结果面试时因为解题步骤跳跃太大,搞得考官们不知所云,最后没能通过考试。
在数学历史上,伽罗瓦毫无疑问是最富传奇色彩与浪漫色彩的数学家,没有“之一”。18 岁时,伽罗瓦漂亮地解决了当时数学界的顶级难题:为什么五次及五次以上的多项式方程没有一般的解。他把这一研究成果提交给了法国科学院,由大数学家柯西 (Augustin-Louis Cauchy)负责审稿;然而,柯西建议他回去仔细润色一下(此前一直认为柯西把论文弄丢了或者私藏起来,最近的法国科学院档案研究才让柯西平反昭雪)。后来伽罗瓦又把论文交给了科学院秘书傅立叶(Joseph Fourier),但没过几天傅立叶就去世了,于是论文被搞丢了。1831年伽罗瓦第三次投稿,当时的审稿人是泊松,他认为伽罗瓦的论文很难理解,于是拒绝发表。
因为一些极端的政治行动,伽罗瓦被捕入狱。即使在监狱里,他也不断地发展自己的数学理论。他在狱中结识了一名医生的女儿,并很快坠入爱河;但好景不长,两人的感情很快破裂。出狱后的第二个月,伽罗瓦决定替自己心爱的女孩与女孩的一个政敌进行决斗,不幸中枪,第二天便在医院里死亡。伽罗瓦死前的最后一句话是对他的哥哥艾尔弗雷德(Alfred)说的:“不要哭,我需要足够的勇气在 20 岁死去。”
仿佛是预感到了自己的死亡,在决斗的前一夜,伽罗瓦通宵达旦奋笔疾书写下了自己所有的数学思想,并把它们和三篇论文手稿一同交给 了他的好友谢瓦利埃(Chevalier)。在信的末尾,伽罗瓦留下遗嘱,希望谢瓦利埃能把论文手稿交给当时德国的两位大数学家雅可比(Carl Gustav Jacob Jacobi)和高斯(Carl Friedrich Gauss),让他们就这些数学定理公开发表意见,以便让更多的人意识到这个数学理论的重要性。
谢瓦利埃遵照伽罗瓦的遗愿,将论文手稿寄给了雅可比和高斯,不过都没有收到回音。直到 1843 年,数学家刘维尔(Joseph Liouville)才肯定了伽罗瓦的研究成果,并把它们发表在了他自己主办的《纯数学与应用数学杂志》(Journal de Mathématiques Pures et Appliquées)上。人们把伽罗瓦的整套数学思想总结为了“伽罗瓦理论”。伽罗瓦用群论的方法对代数方程的解的结构做出了独到的分析,多项式方程的 根、尺规作图的不可能性等一系列代数方程求解问题都可以用伽罗瓦理论得到一个简洁而完美的解答。伽罗瓦理论对今后代数学的发展起到了决定性的作用。
笛卡尔的故事
笛卡尔(René Descartes),17 世纪著名的法国哲学家,曾经提出“我思故我在”的哲学观点,有着“现代哲学之父”的称号。笛卡尔对数学的贡献也是功不可没,中学时大家学到的平面直角坐标系就被称为“笛卡尔坐标系”。
传闻,笛卡尔曾流落到瑞典,邂逅美丽的瑞典公主克里斯蒂娜(Christina)。笛卡尔发现克里斯蒂娜公主聪明伶俐,便做起了 公主的数学老师, 于是两人完全沉浸在了数学的世界中。国王知道了这件事后,认为笛卡尔配不上自己的女儿,不但强行拆散他们,还没收了之后笛卡尔写给公主的所有信件。后来,笛卡尔染上黑死病,在临死前给公主寄去了最后一封信,信中只有一行字:r=a(1-sinθ)。
自然,国王和大臣们都看不懂这是什么意思,只好交还给公主。公主在纸上建立了极坐标系,用笔在上面描下方程的点,终于解开了这行字的秘密——这就是美丽的心形线。看来,数学家也有自己的浪漫方式啊。
a=1时的心形线
事实上,笛卡尔和克里斯蒂娜的确有过交情。不过,笛卡尔是 1649 年 10 月 4 日应克里斯蒂娜邀请才来到的瑞典,并且当时克里斯蒂娜已经成为了瑞典女王。并且,笛卡尔与克里斯蒂娜谈论的主要是哲学问题。有资料记载,由于克里斯蒂娜女王时间安排很紧,笛卡尔只能在早晨五点与她探讨哲学。天气寒冷加上过度操劳让笛卡尔不幸患上肺炎,这才是笛卡尔真正的死因。
心形线的故事究竟几分是真几分是假,还是留给大家自己判断吧。
用数学制造浪漫就不得不说之前还蛮火的各种心形函数,还有用微积分方程解释男女爱情。
x代表女孩(susan)喜欢男孩(george)的程度。y代表男孩喜欢女孩的程度。
上面一个方程表示,女孩如果发现自己更喜欢男孩了或者男孩更喜欢自己了,那么就会更喜欢男孩(x'为正)
下面一个方程表示,如果george发现susan更喜欢自己,或者自己更喜欢susan了,那么因为担心被缠住,会讨厌女孩(y'为负,渣男一个)
答案是啥呢?椭圆,他们生生死死被套在一起无限循环。这不仅仅是浪漫了,简直是看透了人世间的男男女女之间的爱情本质。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)