如何鉴定天然红宝石

如何鉴定天然红宝石,第1张

1以人造的玻璃或其它物质填入红宝石的裂缝中,这种处理若非专业的鉴定师很难光凭外表鉴定出来。

2夹层红宝石上端是一层透明的天然刚玉,底下的亭部是合成宝石,从上方观察可以看到天然的内含物,让人误以为是天然红宝石。

3除此之外,还有一种火焰烧制的方法,将原本无色的刚玉置入含有致色元素的化学原料中,再以高温加热使致色元素渗透宝石表面,使无色刚玉变成红宝石。

但颜色只达宝石表面无法深入内部,所以宝石不能重新切磨或抛光,否则会失去处理后的颜色。

扩展资料:

红宝石是珠宝中珍贵的品种之一。红宝石颜色艳丽,在光源照耀下,能反射出美丽动人的六射星光,俗称六道线,这是红宝石的特殊晶体结构所致,是其特有的光学现象。

红宝石有透明、半透明和不透明等状,颜色有水红、粉红、鸽血红、玫瑰红等色的深浅之别。因为大颗宝石非常罕见,所以平常所见的颗粒较大的红宝石,一般是假的。

假红宝石有两种情况:第一种是以低档的红颜色宝石冒充红宝石,而且,凡假红宝石均无红宝石特有的色形和光性。第二种是人造红宝石。人造红宝石在比重、硬度、颜色等方面与天然红宝石极为相似。直观地判断,人造红宝石质地匀净,无天然杂质、色匀而正,常常颗粒较大,缺少自然感。

由于红宝石的市场价格居高不下,因此也出现了很多人为提高宝石质量的办法。

—红宝石

红宝石,指颜色呈现红色或粉红色的刚玉,天然的红宝石非常稀少,因此被称为宝石之王。红宝石因其靓丽耀眼的颜色备受人们喜爱,它象征热情,爱情和美好。

红宝石的主要成分是氧化铝,是刚玉的一种,硬度非常大。但是由于天然红宝石非常稀少,大多的红宝石其实是人工合成的。影响红宝石颜色的因素是钛和铁。而红色来自铬,含量一般在百分之01到百分之3之间,含量越高,颜色越鲜艳。铬含量的比较少的红宝石,呈现出的颜色则比较浅,为浅红色、粉红色等。

那这里也告诉大家鉴别红宝石的方法,天然红宝石和合成红宝石的区别在于合成红宝石的颜色均匀鲜艳,肉眼很难看出包裹体,但是天然红宝石可以看到其中内裂。你学会了吗?

一、传统宝石学颜色成因

传统宝石学主要基于宝石的化学成分和外部构造特点,将宝石颜色划分为自色、他色和假色。

1自色

由作为宝石矿物基本化学组分中的元素而引起的颜色,这些致色元素多为过渡金属离子,如铁铝榴石、绿松石、孔雀石、蓝铜矿等。

2他色

由宝石矿物中所含杂质元素引起的颜色。他色宝石在十分纯净时呈无色,当其含有微量致色元素时,可产生颜色,不同的微量元素可以产生不同的颜色。如尖晶石,其化学成分主要是Mg Al2O4,纯净时无色,含微量的Co元素时呈现蓝色,含微量Fe元素时呈现褐色,而含微量Cr元素时呈现红色。另外同一种元素的不同价态可产生不同的颜色,如含Fe3+常呈棕色,含Fe2+则呈现浅蓝色。同一元素的同一价态在不同的宝石中也可引起不同的颜色,如Cr3+在刚玉中产生红色,在绿柱石中产生绿色。

3假色

假色与宝石的化学成分和内部结构没有直接关系,而与光的物理作用相关。宝石内常存在一些细小的平行排列的包裹体、出溶片晶、平行解理等。它们对光的折射、反射等光学作用产生的颜色就是假色。假色不是宝石本身所固有的,但假色能为宝石增添许多魅力,这一方面的具体内容已在宝石的特殊光学效应一节里进行了较详细的叙述。

二、近代科学宝石颜色的成因

随着科学的发展,人们发现宝石的颜色不仅仅取决于其化学组成,更重要的是取决于其内部结构。近代科学颜色成因理论打破了传统颜色成因理论中的自色、他色的界限,从晶体场理论、分子轨道理论和能带理论等的角度揭示了宝石颜色成因的本质。

(一)离子内部的电子跃迁呈色(晶体场理论)

晶体场理论研究的对象是处于宝石晶体结构中的过渡金属元素和某些镧系、锕系元素。它把晶体场看成一种正负离子间的静电作用,将带有正电荷的阳离子称为中心离子,把带有负电荷的阴离子和络阴离子统称为配位离子,或简称配位体。晶体场理论与其他理论的区别在于,它把配位体处理为一个点电荷,点电荷作用的实质是产生静电势场力,这种静电势电场又被称之为晶体场。晶体场跃迁包括d-d跃迁和f-f跃迁。元素周期表中第四、五周期的过渡金属元素分别含有3d和4d轨道,镧系和锕系元素分别含有4f和5f轨道。在配位体的存在下,过渡元素五个能量相等的d轨道和镧系元素七个能量相等的f轨道分别分裂成几组能量不等的d轨道和f轨道。当它们的离子吸收光能后,低能态的d电子或f电子可以分别跃迁至高能态的d或f轨道,这两类跃迁分别称为d-d跃迁和f-f跃迁。由于这两类跃迁必须在配位体的配位场作用下才可能发生,因此又称为配位场跃迁。

过渡金属元素的d-d电子跃迁引起宝石颜色变化的最好例子是红宝石、祖母绿及变石,图1-4-11为三者的紫外可见吸收光谱。

图1-4-11 红宝石、祖母绿及变石的UV吸收光谱

A——红宝石;B——变石C——祖母绿

红宝石中致色离子为Cr3+,从Cr3+的3d3电子组态导出的自由离子谱项为:基谱项为4F,激发谱项为4P、2G、2D等。八面体场中,由基谱项4F分裂为三个能级,即4A2、4T2、4T1。红宝石的吸收光谱特征表明,在可见光区域内,出现两个强而宽的吸收带,分别由4A2→4T2、4A2→4T1能级之间的跃迁所致。d电子在4A2→4T2、4A2→4T1能级间跃迁的过程中,分别吸收225和302e V能量,其余吸收后的残余能量组合成红宝石的颜色(见图1-4-12)。

祖母绿吸收光谱特征表明(见图1-4-13),在可见光区域内,出现两个强而宽的吸收带,分别由4A2→4T2、4A2→4T1能级之间的跃迁所致。d电子在4A2→4T2、4A2→4T1能级间跃迁的过程中,分别吸收204和292e V能量,其余吸收后的残余能量组合成祖母绿的颜色。

图1-4-12 红宝石的UV吸收光谱

图1-4-13 祖母绿的UV吸收光谱

变石的化学式组成(BeAl2O4)介于红宝石和祖母绿之间,影响铝氧八面体的金属离子只有Be一种,因此Cr3+离子与周围配位体电场强度低于红宝石而高于祖母绿,它的金属氧离子之间化学键的性质也介于红宝石和祖母绿之间。变石中Cr3+离子4A2→4T2跃迁吸收的能量为216eV,介于红宝石(225eV)和祖母绿(204eV)之间,而4A2→4T1跃迁所吸收的能量(298eV)与红宝石和祖母绿相差不大。在可见光区域内,变石中红光和蓝绿光透过的几率近于相等,于是外部环境的光源条件(色温)就决定了变石的颜色。例如,色温较高的日光灯中蓝绿色成分偏多,导致变石中蓝绿色成分的叠加,而呈现蓝绿色。反之,白炽灯光源中色温偏低,导致变石中红色成分的叠加,而呈现红色(见图1-4-14)。

图1-4-14 变石的UV吸收光谱

(二)离子间的电荷迁移呈色(分子轨道理论)

分子中单个电子的状态函数称为分子轨道。根据分子轨道模型,认为一个分子中所有的轨道都扩展至整个分子上。占据这些轨道的电子不是定域在某个原子上,而是存在于整个分子之中。根据分子轨道理论,电子可以从这一个原子轨道上跃迁到另一个原子轨道上去,这种电子跃迁称为电荷迁移。

某些分子既是电子给体,又是电子受体,当电子受辐射能激发从给体外层轨道向受体跃迁时,就会产生较强的吸收,这种光谱称为电荷迁移光谱。伴随电荷转移,在吸收光谱中产生强吸收带,如果电荷转移带出现在可见光范围内,则产生相应的颜色。电荷迁移有多种形式,它可以发生在同核原子价态之间,也发生在异核原子价态之间。

1金属—金属原子间的电荷迁移

金属—金属原子间的电荷迁移可分为同核原子价态之间的电荷迁移和异核原子价态之间的电荷迁移。

(1)同核原子价态之间的电荷迁移

同核原子价态之间的电荷迁移来自不同价态的同一过渡元素的两个原子之间的相互作用,当两个不同价态的同核原子分布在不同类型的格点中,且两者之间有能量差时,电子可发生转移,并产生光谱吸收带,从而使宝石呈现颜色。堇青石的蓝紫色的产生是这种情况的典型实例。在堇青石中,Fe3+和Fe2+分别处于四面体和八面体位置中,两个配位体以共棱相接,当可见光照射到堇青石时,其Fe2+的一个d电子吸收一定能量的光跃迁到Fe3+上,此过程的吸收带位于17000cm-1(相当于黄光),使堇青石呈现蓝色。蓝色、绿色电气石和海蓝宝石也是由于Fe2+-Fe3+间的电荷迁移而呈的色。

(2)异核原子价态之间的电荷迁移

图1-4-15 蓝宝石的UV吸收光谱

异核原子价态之间的电荷迁移的典型实例是蓝宝石(见图1-4-15),在蓝宝石中Fe2+与Ti4+分别位于相邻的以面相连接的八面体中,Fe、Ti离子的距离为0265nm,二者的d轨道沿结晶轴重叠,当电子从Fe2+中跑到Ti4+中时,Fe2+转变为Fe3+,而Ti4+转变为Ti3+,即Fe2++Ti4+→Fe3++Ti3+。电荷迁移的这一过程,伴随着的光谱吸收能为211eV,吸收带的中心位于588nm,其结果是在蓝宝石的c轴方向只透过蓝色,呈现蓝色。当两个八面体在垂直c轴方向上以棱相连接时,这时电荷转移吸收带略向长波方向位移,使蓝宝石在非常光方向上呈现蓝绿色。异核原子价态之间的电荷迁移,也是蓝色黝帘石、褐色红柱石呈色的原因。

2其他类型的电荷迁移

除了上述两种类型的电荷迁移外,还有非金属与金属原子之间的电荷迁移和非金属与非金属原子之间的电荷迁移。

宝石中常见的非金属与金属原子之间的电荷迁移为O2-→Fe3+。02-与Fe3+之间的电荷迁移对可见光光谱中紫色、蓝色光强烈吸收,导致宝石呈金**。金**绿柱石、金**蓝宝石的颜色均由02-→Fe3+之间的电荷迁移引起。

(三)能带间的电子跃迁呈色(能带理论)

能带理论是研究宝石材料的一种量子力学模式,是分子轨道理论的进一步发展。它较好地解释了天然彩色钻石的呈色机理及其金刚光泽的产生原因。能带理论认为:固体中电子并非束缚于某个原子上,而为整个晶体所共有,并在晶体内部三维空间的周期性势场中运动。电子运动时的能量具一定的上下限值,这些电子运动所允许的能量区域就称之为能带。它与晶体场理论和分子轨道理论的区别是:晶体场理论和分子轨道理论主要适用于局部离子和原子团上的电子,电子是定域的,是局部态之间的跃迁;能带理论则与之相反,它认为电子是不定域的,是非局部态之间的电子跃迁。能带又可分为:①导带(又称空带),由未填充电子的能级所形成的一种高能量带。②带隙(又称禁带),价带最上部的面(又称为费米面)与导带最下部面之间的距离,禁带的宽度随矿物键性的不同而不同;③价带(又称满带),由已充满电子的原子轨道能级所构成的低能量带,当自然光通过宝石时,宝石将吸收能量使电子从价带跃迁至导带,所需的能量取决于带隙的宽度,即价带顶部与导带底部间的能量差,又称能量间隔,一般用ΔEg表示。不同的宝石由于能量间隔不同而呈现不同的颜色。与晶体场理论一样,电子从导带返回至价带的过程中,其吸收的能量仍以光的形式发射出来。例如,Ⅱa型钻石带隙的能量间隔(ΔEg=54e V)大于可见光的能量,即电子从价带跃迁至导带时吸收的能量为54e V,故吸收主要发生在紫外光区,对可见光能量无任何吸收,故理论上,IIa钻石为无色(见图1-4-16);由于Ⅰb型钻石中含有微量的孤氮原子,氮原子外层电子(1s22s22p3)比碳原子(1s22s22p2)多一个,额外的电子则在禁带中生成一个杂质能级(氮施主能级),由此缩小了带隙的能量间隔,电子从杂质能级跃迁至导带所吸收的能量为22e V(564nm),故该类钻石显橙**(见图1-4-17)。

(四)晶格缺陷呈色

宝石晶体结构中的局部范围内,质点的排列偏离其格子状构造规律(质点在三维空间作周期性的平移重复)的现象,称为晶格缺陷。其产生原因与宝石晶体内部质点的热振动、外界的应力作用、高温高压、辐照、扩散、离子注入等有关。

例如,在上地幔的高温高压环境中结晶出的金刚石晶体,被寄主岩浆(金伯利岩岩浆或钾镁煌斑岩岩浆)快速携带到近地表时,温压条件的迅速改变和晶体与围岩物质的相互碰撞,则易导致侵位金刚石晶体的结构局部发生改变,并诱发晶格缺陷,使一部分原本无色的金刚石的颜色发生改变,从而形成褐黄、棕**及粉红色金刚石。

图1-4-16 Ⅱa型钻石中电子跃迁图示

图1-4-17 Ⅰb型钻石中电子跃迁图示

色心作为晶格缺陷的一种特例,泛指宝石中能选择性吸收可见光能量并产生颜色的晶格缺陷。属典型的结构呈色类型。色心的种类十分复杂,但最常见的为电子心(F心)、空穴心(V心)及杂质离子心。

1电子心(F心)

电子心(F心)是由宝石晶体结构中阴离子空位引起的。就整个宝石晶体而言,当阴离子缺位时,空位就成为一个带正电的电子陷阱,它能捕获电子。如果一个空位捕获一个电子,并将其束缚于该空位,这种电子呈激发态,并选择性吸收了某种波长的能量而呈色。因此,电子心是由一个阴离子空位和一个受此空位电场束缚的电子所组成的。例如,紫色萤石晶体中的氟离子离开正常格位,而形成一个阴离子空位(缺少负电荷),该结构位显示正电性,形成一个带正电的电子陷阱。为了维持晶体的电中性,阴离子空位必须捕获一个负电子,由此产生了颜色。

2空穴心(V心)

空穴心(V心)是由晶体结构中阳离子缺位引起的。从静电作用考虑,缺少一个阳离子,等于附近增加了一个负电荷,则附近一个阴离子必须成为“空穴”才能保持静电平衡。因此,空穴心是由一个阳离子空位捕获一个“空穴”所组成的。例如,烟晶中以类质同象形式替代Si4+的Al3+杂质,在晶格位中形成正电荷不足的位置(正电荷陷阱),为了维持暂时的电中性,Al3+离子周围必须有相应的正一价阳离子存在。当水晶受到辐照后,与最近邻的O2-将失去一个多余的电子,而残留下一个空穴,形成空穴心(V心)。利用辐照源的带电粒子(加速电子、质子)、中子或射线辐照宝石,通过带电粒子、中子或Y射线与宝石中离子、原子或电子的相互作用,最终在宝石中形成电子-空穴心或离子缺陷心。如辐照处理钻石、蓝黄玉等,辐照的本质是提供激活电子、格位离子或原子发生位移的能量,从而形成辐照损伤心。

   天然红宝石与人造红宝石有什么区别?如何鉴别红宝石的真假?跟着我一起来了解下!

天然红宝石与人造红宝石有什么区别 如何鉴别红宝石的真假

 红宝石是红色宝石中唯一硬度为9的宝石,立方氧化锆的硬度为85,是人工合成品只要用待测红宝石的边棱刻划立方氧化锆,划动者为红宝石,划不动者不是红宝石此法适用于宝石原料和各种琢型红宝石鉴定但它属于有损鉴定,对刻面宝石慎用切不可以用立方氧化锆的尖棱去刻划红宝石台面,否则红宝石上会留下划痕。

  人造红宝石与天然红宝石的区别

 鉴定红宝石可分为二个步骤,第一步是先把真正的红宝石与其它红色宝石替代品区分开来;第二步是把天然红宝石与人造红宝石区别开来。

 通常红宝石色彩越纯正、越浓艳,品质越高,价值也就越高。在综合影响红蓝宝石颜色的各种因素之后,我们分别将红蓝宝石分成五个级别,其中红宝石分为深红色、红色、中等红色、浅红色、淡红色五级。消费者只需对比红宝石的五个级别,就可以对红宝石的颜色进行简单的分级了。

 现在人工合成红宝石的技术已经很成熟,人工合成红宝石的方法也很多,但目前主要有三种方法:焰熔法,助熔剂法,水热法。其中焰熔法红宝石较易鉴定,通过观察内部弧形生长纹和气泡而确定为合成红宝石,市面上特别是在旅游商店出售的颜色鲜红、颗粒较大的标有“红刚玉”、“刚玉”“鲁宾石”的雕件或饰品,实则就是此种人工合成的红宝石。

如何鉴别真假红宝石

 助熔剂法红宝石需要专业人员在高倍显微镜下观察其内部特征才能鉴定出来。水热法红宝石合成环境仿照天然红宝石的生长环境,内部特征极象天然红宝石,一般仪器都很难将其区分,常需借助其它大型仪器,如x射线仪。合成宝石大致有合成红宝石、合成尖晶石、合成红色碧玺、合成红锆石和含钴红玻璃等,要鉴别这些貌似红宝石并不困难,因为它们在各种物理性质上与真正的红宝石有着比较明显的差异。

 不同方法合成的红宝石有不同的包裹体,区别它们需在专业实验室进行或通过放大镜检查。合成红宝石的共同特征是颜色鲜艳,且比较均匀,肉眼难以发现其中有包裹体,感觉内部非常干净。

 市场上大多数天然红宝石或多或少都明显存在所谓的“棉绺”,即沿一定方向(受晶体内部结构控制)分布的包体和内裂的组合,有时可见绢丝状包体。对于难以发现明显包裹体的天然红宝石可以用长波紫外灯(普通便携式袖珍验钞机)与合成红宝石区别。

 天然红宝石有较强的“二色性”,红宝石在长、短波紫外线照射下发红色及暗红色荧光。所谓二色性,即从不同方向看有红色和橙红色二种色调,放大检查时,红宝石内气液包体和固态包体丰富。刻面宝石在合适方向可见后刻面棱重影。即使仅依赖红宝石具有“二色性”的手段进行观察辨别,当即就可以排除其中的一大半替代品和伪劣品。

1 珠宝小知识

珠宝小知识 1 关于珠宝的一些基础知识和常识

第一章珠宝基础知识

第一节珠宝的概念

一珠宝的分类

二珠宝的“真”和“假”

三珠宝的三大特性和三大功能

第二节几种名贵珠宝

一钻石

二红宝石

三蓝宝石

四祖母绿

五金绿宝石

六欧泊

第三节市场上常见的珠宝

一珍珠

二石榴石

三尖晶石

四碧玺

五海蓝宝石

六托帕石

七橄榄石

八琥珀

九水晶及其代用品

十玛瑙及其代用品

十一岫玉

十二和田玉(和阗玉)

十三独山玉

十四寿山石及印石三宝

第四节珠宝鉴定常识

一珠宝的自然属性

二常规鉴定仪器的应用

第五节珠宝首饰检验标识

一珠宝首饰检验的必要性

二检验标识及分类

三检验标识的内容及识读

四检验机构的合法性

五正确书写珠宝首饰标签

第二章翡翠

第一节翡翠的产地与集散

一翡翠的名称及发现史

二翡翠的成分与产地

三翡翠毛料的销售路径及交易地

第二节赌石

一翡翠毛料的特征

二翡翠毛料的分类

三赌石交易趣谈

四云南毛料市场掠影

第三节翡翠成品的评估

一翡翠成品的分类和款式

二优点和缺点的综合评估

三中国王文化对翡翠价格的影响

第四节翡翠的处理品和仿制品

一翡翠的处理品

二翡翠的仿制品

第三章贵金属首饰常识

第一节贵金属的重要特性

一化学性质很稳定

二物理性质很特殊

三地壳储量很稀少

第二节贵金属首饰的计量和标志符号

一足金、足铂、足银

二K金

三首饰中铂的含量及银的含量

四首饰上金、铂、银的符号

第三节市场上的贵金属首饰

一市场上含金的首饰

二市场上不含金却称呼“金”的首饰

三市场上的铂金首饰

四市场上的银首饰

五市场上的白色仿真首饰

六金、铂、银首饰的鉴定

2 卖珠宝需要知道一些什么常识

首先要了解珠宝制成的材料以及材料名称,其次要知道该公司的主打商品以及销售情况。

要了解一些珠宝的名称,要会识别。最后了解一下现在各种珠宝的市场价格。

由于珠宝首饰价值相对较高,对于顾客来讲是一项较大的开支,因此,往往在最后的成交前压力重重,忧郁不决,甚至会暂时放置,一句“再转转看看”而可能一去不回。这就需要营业员采取分心的方法减轻顾客的压力,比如给自己的同事或顾客的同行者谈一下有关首饰流行的话,也可拿出几种档次的首饰盒让顾客挑选。

扩展资料:

珠宝销售基础是专业知识,要从头学起。即:要了解所销售的产品黄金,铂金,钯金,钻石,翡翠,银饰等的含量、硬度、镶嵌、切工,雕刻等的的基本知识。

这些资料无论从哪里获取的,都首先要牢记。 珠宝销售技巧的基础,和其他行业一样,首先要掌握的还是沟通的艺术。

如何用自己的专业知识辅以巧妙的沟通技巧,让顾客完全信赖自己是最重要的。 推销产品首先要做到的就是推销自己,可是,如何能让顾客信赖你,从而选择你推荐的商品,这一点才是销售能否成功的重点,要好好揣摩揣摩。

3 珠宝首饰的护理常识

珠宝首饰的护理常识对于拥有珠宝的人是很实用的。人们对珠宝的热情越来越高了,拥有珠宝首饰的人也越来越多了,很多人愿意投资珠宝。但是不论铂金钻、白金或宝石首饰,都必须具备一些关于珠宝首饰的护理常识!做好珠宝首饰的护理,对珠宝首饰保持原有的美感是很重要的!

1在运动或做粗重工作时,不要穿戴珠宝首饰,以免碰击或磨损。

2脆弱的宝石如绿宝石等容易碎裂,佩戴时须特别小心。

3经常穿戴的珠宝首饰应每月检查一次,察看是否有磨损或镶嵌松脱的现象,然后加以补救修理。

4不要把各种珠宝首饰随意放置在同一个抽屉或首饰盒内,因为各种宝石和金属 的硬度不同,会因为互相磨擦而导致耗损。

5性质温和的肥皂水及软毛刷是最简单方便的清洁方法。此外,也可用清水冲洗珠宝首饰。清洗后的首饰,可放在不含棉绒的毛巾上风干。不含蜡质的牙线或牙签可以清宝石上及托爪之间的污垢。

6不要在厨房或有蒸气的地方穿戴有气孔的宝石,否则宝石吸收蒸气和汗水后会变色。金饰、银饰和其它珠宝首饰一样,只要沾上人体分泌的油脂或汗酸,便会失去光亮,因此经常配戴的首饰,宜每星期清洗一次。

7清洁珠宝首饰的溶液:大部分首饰清洁剂都含有亚摩尼亚,它除了能清洁宝石外,也可令金属更明亮。亚摩尼亚对大多数宝石都是安全的,但珍珠和有气孔的宝石(如松石、闪山云)则例外。 最后,购买时一定要商家出具书面单据或购物凭证,应详细标注珠宝名称、等级、价格等信息。如买的是金饰,应列明纯度、重量、当日金价(因金价随时变动)等,以便日后 或回购时使用。

4 介绍一下钻戒的常识啊

还有会有戒托材质的字母,不同于铂金),另外黄金还有足金(含金量99%以上)和千足金(含金量99。

戒托内壁一般会刻有几个字母和数字,比如006ct,就是钻石的克拉数,有的有多个钻石,会刻一个主钻重和配钻总重、切工,这四个标准英文都是C开头。 钻石的单位是克拉,可以有很多形状,方形心形菱形都可能,最常见的是圆形,也就是圆钻,1克拉=02g,银只有几块钱一克,黄金要300多。

还有用钯金的,材质就越软,18K。18K金可以是**,所以叫4c,24K含金量99%以上、颜色、净度,18K也叫Au750,就是含金量18/24,每一个都影响到价格高低,黄金有18K,24K等,圆钻大概是6mm直径,当然有的钻石切割的扁就更宽一些。

钻石评价有4个标准,通常叫“4C”,重量,Pt900等。 最后金属的含金量越高,最贵的是铂金Pt,铂金按照铂的含金量分Pt900,Pt950等。

戒托一般用贵重金属:戒托和钻石钻戒由两部分组成9%以上)的说法。 戒托还有用银的,就比较便宜了,18K黄金比铂金硬好多、红色、白色(好多人叫白金或K白,比如Au750,900就是含金90%。

还有就是黄金Au。

5 珠宝保养知识,有哪些保养小常识,珠宝保养常识

1、在运动或做粗重工作时,不要佩戴珠宝首饰,以免碰撞造成不可补救的损失。即使在日常佩戴中,也要小心避免磨损和突然打击,不然会损坏哪怕是最不易磨损的宝石。

2、存放珠宝时,将珠宝首饰存放在盒子或软布中,使其不至于与其他首饰互相接触。大多数宝石比金、银或铂硬,如果不分开放置,可能会划伤其他首饰的表面。

3、佩戴珠宝首饰时,应注意每月检查一次,如果有镶嵌松脱的现象,应及时修理。珠宝沾上人体分泌的油脂和汗水,便会失去光亮。因此,如果经常佩戴,宜每月清洗一次。

扩展资料:

分类

珠宝:分为天然珠宝玉石(天然宝石、天然玉石、天然有机宝石)和人工宝石(人造宝石、再造宝石、拼合宝石、合成宝石)。

天然宝石:金刚石、红宝石、蓝宝石、金绿猫眼、绿柱石、祖母绿、碧玺、蛋白石、冰彩玉髓、和氏璧等17种。

天然玉石:黄龙玉、玛瑙、碧玉、灵壁玉、和田玉、青花翠玉、岫岩玉、南阳玉、冰彩玉髓、佘太翠、金丝玉、翡翠、蓝田玉、孔雀石、绿松石、东陵玉、汉白玉、准噶尔玉、夜光玉、硅孔雀石、绿冻石、青金石、金黄玉、冰花玉、英石等。

天然彩石:寿山石、田黄石、青田石、鸡血石、五花石、长白石、端石、洮石、松花石、雨花石、巴林石、贺兰石、菊花石、紫云石、磬石、燕子石、歙石、红丝石、太湖石、昌化石、蛇纹石、上水石、滑石、花岗石、大理石等。

6 卖珠宝需要知道一些什么常识

首先要了解珠宝制成的材料以及材料名称,其次要知道该公司的主打商品以及销售情况。要了解一些珠宝的名称,要会识别。最后了解一下现在各种珠宝的市场价格。

由于珠宝首饰价值相对较高,对于顾客来讲是一项较大的开支,因此,往往在最后的成交前压力重重,忧郁不决,甚至会暂时放置,一句“再转转看看”而可能一去不回。这就需要营业员采取分心的方法减轻顾客的压力,比如给自己的同事或顾客的同行者谈一下有关首饰流行的话,也可拿出几种档次的首饰盒让顾客挑选。

扩展资料:

珠宝销售基础是专业知识,要从头学起。即:要了解所销售的产品黄金,铂金,钯金,钻石,翡翠,银饰等的含量、硬度、镶嵌、切工,雕刻等的的基本知识。这些资料无论从哪里获取的,都首先要牢记。

珠宝销售技巧的基础,和其他行业一样,首先要掌握的还是沟通的艺术。如何用自己的专业知识辅以巧妙的沟通技巧,让顾客完全信赖自己是最重要的。

推销产品首先要做到的就是推销自己,可是,如何能让顾客信赖你,从而选择你推荐的商品,这一点才是销售能否成功的重点,要好好揣摩揣摩。

7 销售黄金应懂哪些知识

镀金 工业用途镀金的多,一般为电镀,用的就是金水,大部分PCBA或电子芯片都是在锡上镀金,大概可以用来镀金的材料可以在购买时得到说明,网上买的也会有说明一般金属铁,铜,锌,钢,锡都可以镀 铂金 矿物分类中,铂族元素矿物属自然铂亚族,包括铱、铑、钯和铂4种自然元素矿物。

它们彼此之间广泛存在类质同象置换现象,从而形成一系列类质同象混合晶体。同时,其成分中常有铁、铜、镍、银等类质同象混入物,当它们的含量较高时,便构成相应的殓种。

铂族元素旷物均为等轴晶系,单晶体极少见,偶而呈立方体或八面体的细小晶粒产出。一般呈不规则粒状、树枝状、葡萄状或块状形态。

颜色和条痕为银白色至钢灰色,金属光泽,不透明,无解理,锯齿状断口,具延展性,为电和热的良导体。由铂族元素矿物熔炼的金属有钯金、铱金、铂金、铑金、等。

1钯金 主要由自然钯熔炼而成。颜色银白色,外观与铂金相似,金属光泽。

硬度4~45。相对密度12。

熔点为1555℃。化学性质较稳定。

因产量比铂金和黄金大,故价值低,很少用来制作首饰。 2铑金 主要由自然铑提炼而成,是一种稀少的贵金属。

颜色为银白色, 金属光泽,不透明。硬4~45,相对密度125。

熔点高,为1955℃。 化学性赏稳定。

由於铑金耐腐蚀,而且光泽好,因此主要用於电镀业,将其电镀在其它金属表面,镀层色泽坚固,不易磨损,反光效果好。 3铱金 主要由自然铱或铱矿提炼而成。

颜色为银白色,具强金属光泽,硬度7 。相对密度2240 ,性脆但在高温下可压成箔片或拉成细丝,熔点高,达2454℃。

化学性质 非常稳定。主要用於制造科学仪器、热电偶、电阻绫等。

高硬度的铁铱和铱铂合金,常用来制造笔尖和铂金首饰。 4 铂金 由自然铂、粗铂矿等矿物熔拣而成。

因"铂"由"金"和"白"两字组合,颜色又为银白色,故亦称“白金”。色泽银白,金属光泽,硬度4~45, 相对密度为2145。

熔点高,为1773℃。富延展性,可拉成很细的铂丝,轧成极薄的铂箔。

化学性质极稳定,不溶於强酸强缄,在空气中不氧化。广泛用於珠宝首饰业和化学工业中,用以制造高级化学器皿、铂金坩锅以及加速化学反应速度的催化剂等。

二、铂金的种类 1纯铂金 最高成色的铂金。常用於制作订婚戒指,以表示爱情的纯贞和天长地久。

在国外,许多人认为用黄金镶嵌钻石,可能导致钻石泛黄,从而大大降低钻石的价格。而用铂金镶嵌钻石,可以保持钻石的纯白颜色,特别是作订婚戒指,用铂金镶嵌钻石,既洁白又晶莹,象征纯洁的爱情永恒长久。

然而,尽管铂金的硬度比黄金高,但镶嵌钻石和珠宝仍感不够,往往需掺入金,制成铂合金来镶嵌钻石等。 2铂依金 铱与铂组成的合金。

颜色亦为银白色,具强金属光泽。硬度较高。

相对密度亦大,化学性定,是极好的铂合金首饰材料。根据铰和铂的含量不同,一般可分为三种: 10%铱-铂合金2154 1788℃ 15%铱-铂合金2159 1821℃ 5%铱-铂合金2150 1779℃ 3K白金 黄金和其它金属熔炼而成的白色合金。

选用黄金和钯金或镍 、银、铜、锌等金属熔炼成一种白色的合金,称之为“K白金”。K白金的成色与K黄金标识一样,如18K白金、14K白金,其中黄金的含量分别为75%和585% 四、铂金与类似金属的鉴别 铂金 银白色和条痕,硬度4~ 45,相对密度2145,化学性质稳定,不溶於普通酸类为其鉴定特征,易与其相似金属鉴别。

铂金与白银以相对密度大小、硬度高低、化学性质稳定区别之。 白银虽为银白色,但相对密度为1053,只有铂金的1/2 ;而且硬度低,无弹性,因此用指甲轻划亦可留下痕迹,箔薄片用手轻也易变折,且难於复原;加上白银的化学性质不稳定,遇硝酸会溶解,并放出二氧化氮气体。

而铂金不溶於硝酸,在加热的王水中才能较快溶解,在常温下其溶解速度极慢,一般肉眼难於察觉。 铂金是很好的催化剂,利用这一特性,可快速鉴定铂金 常用双氧水反应法,具体方法是:取少许待测物粉未,置於盛双氧水(H2O2)塑料瓶中,若系铂金则双氧水立即翻滚起泡,分解出大量氧气,反应后的铂金仍原封不动一,还可回收(它只起加速分解作用);苦系其它白色金属,如铅、银、铝等则无此反应。

纯金 理论上24K金为百分之百的纯金,但一般达到9999 %就称为足金即24K金;18K金,是指金的成分占18/24, 14K金,指金的比例为14/24。习惯上会在首饰上打印14K或18K的字样,表示金的成分。

铂金是金属中强度最大、最纯的金属,当然也是价格最昂贵的。每次黄金或银划伤或抛光时总是有一点点损失,而铂金不会。

控制钻石和其它宝石的黄金和银的爪子随着不断的使用,也会磨损,因此它们需要更多的金属来加强,但是铂金爪子却不会。 铂金珠宝首饰大多含90-95%的纯铂金,其余部分由铱或钯构成。

由于铂金具有很强的抗破坏性和耐用性,铂金珠宝首饰都能终生使用。文字“pt数”系指每件铂金首饰中其金属纯度或数量,pt950金为纯100%的铂金。

黄金 , 这种金属不会失去光泽、生锈或腐蚀。然而,虽然它很强,但是它也有很强的延展性。

纯金太软,不能承受每天穿戴的张力,黄金首饰具有不同纯金。

8 钻石知识有哪些

钻石简介

1矿物名称为「金刚石」,英文为Diamond,源于古希腊语Adamant,意思是坚硬不可侵犯的物质,是公认的宝石之王。钻石的化学成份有9998%的碳。也就是说,钻石其实是一种密度相当高的碳结晶体。

2钻石的摩氏硬度:10,是天然矿物中的最高硬度。但千万别认为钻石硬度高,就永不破损。其实钻石脆性也相当高,用力碰撞仍会碎裂。

3钻石是依据其原石的外形,来切割成各种不同形状的钻石。其中,受大家欢迎的八种形状有:圆形、椭圆形、榄尖形、心形、梨形、方形、三角型及绿柱石形。圆钻,是最常见的形状。

4钻石属天然矿物。钻石的主要产地是澳大利亚、南非、印度;而美国、印度,以色列、比利时则是钻石加工切割的基地。尤其比利时,是全球公认的雕琢钻石贸易中心。

钻石的化学成成份

钻石的化学成分是碳,这在宝石中是唯一由单一元素组成的。属等轴晶系。晶体形态多呈八面体、菱形十二面体、四面体及它们的聚形。纯净的钻石无色透明,由于微量元素的混入而呈现不同颜色。强金刚光泽。折光率2417,色散中等,为0044。均质体。热导率为035卡/厘米?秒?度。用热导仪测试,反应最为灵敏。硬度为10,是目前已知最硬的矿物,绝对硬度是石英的1000倍,刚玉的150倍,怕重击,重击后会顺其解理破碎。一组解理完全。密度352克/立方厘米。钻石具有发光性,日光照射后 ,夜晚能发出淡青色磷光。X射线照射,发出天蓝色荧光。钻石的化学性质很稳定,在常温下不容易溶于酸和碱,酸碱不会对其产生作用。

钻石与相似宝石、合成钻石的区别。宝石市场上常见的代用品或赝品有无色宝石、无色尖晶石、立方氧化锆、钛酸锶、钇铝榴石、钇镓榴石、人造金红石。合成钻石于1955年首先由日本研制成功,但未批量生产。因为合成钻石要比天然钻石费用高,所以市场上合成钻石很少见。钻石以其特有的硬度、密度、色散、折光率可以与其相似的宝石区别。如:仿钻立方氧化锆多无色,色散强(0060)、光泽强、密度大,为58克/立方厘米,手掂重感明显。钇铝榴石色散柔和,肉眼很难将它与钻石区别开。

形成原因

现代科学技术 、手段为探索钻石的形成提供了新思路和方法。钻石是世界上最坚硬的、成份最简单的宝石,它是由碳元素组成的、具立方结构的天然晶体。其藏宝图 钻石成份与我们常见的煤、铅笔芯及糖的成份基本相同,碳元素在较高的温度、压力下,结晶形成石墨(黑色),而在高温、极高气压及还原环境(通常来说就是一种缺氧的环境)中则结晶为珍贵的钻石(白色)。为了便于理解钻石的起源,先看一看含有钻石的原岩。

自从钻石在印度被发现以来,我们不断听到人们在河边、河滩上捡到钻石的故事,这是由于位于河流上游某处含有钻石的原岩,被风化、破碎后,钻石随水流被带到下游地带,比重大的钻石被埋在沙砾中。钻石的原岩是什么?1870年人们在南非的一个农场的黄土中挖出了钻石,此后钻石的开掘由河床转移到黄土中,黄土下面就是坚硬的深蓝色岩石,它就是钻石原岩——金伯利岩(kimberlite)。什么是金伯利岩?金伯利岩是一种形成于地球深部、含有大量碳酸气等挥发性成份的偏碱性超基性火山岩,这种岩石中常常含有来自地球深部的橄榄岩、榴辉岩碎片,主要矿物成份包括橄榄石、金云母、碳酸盐、辉石、石榴石等。研究表明,金伯利岩浆形成于地球深部150公里以下。由于这种岩石首先在南非金伯利被发现,故以该地名来命名。

另一种含有钻石的原岩称钾镁煌斑岩(lamproite),它是一种过碱性镁质火山岩,主要由白榴石、火山玻璃形成,可含辉石、橄榄石等矿物,典型产地为澳大利亚西部阿盖尔(Argyle)。

科学家们经过对来自世界不同矿山钻石及其中原生包裹体矿物的研究发现,钻石的形成条件一般为压力在45-60Gpa(相当于150-200km的深度),温度为1100-1500摄氏度。虽然理论上说,钻石可形成于地球历史的各个时期/阶段,而目前所开采的矿山中,大部分钻石主要形成于33亿年前以及12-17亿年这两个时期。如南非的一些钻石年龄为45亿左右,表明这些钻石在地球诞生后不久便已开始在地球深部结晶,钻石是世界上最古老的宝石。钻石的形成需要一个漫长的历史过程,这从钻石主要出产于地球上古老的稳定大陆地区可以证实。另外,地外星体对地球的撞击,产生瞬间的高温、高压,也可形成钻石,如1988年前苏联科学院报道在陨石中发现了钻石,但这种作用形成的钻石并无经济价值。

9 关于购买戒指的常识

大拇指:

据古罗马文献记载,将戒指戴在此指可助你达成心愿,迈向成功之路。

█ 食指:

指示方向的手指,把戒指戴在此指个性会变得开朗而独立,最适合从事自由业的人戴。

█ 中指:

次于无名指最适合戴婚戒的手指,戒指戴在其上最能营造自由爽朗的气氛,能让你灵感涌现,变得更有魅力、有异性缘。

█ 无名指:

从古罗马时代以来习惯将婚戒戴在其上,相传此指与心脏相连,最适合发表神圣的誓言。而无名指上有重要穴道,戒指戴其上可以适度按压肌肉,有安定情绪之效。

█ 小指:

小指传达的是一种媚惑性感的讯息,戒指戴在其上将会有意想不到的事发生,特别推荐给直觉敏锐、从事流行时尚相关工作者。

戴戒指是爱的语言。戒指一般戴在左手(戴右手做事不太方便)

按照我国的习惯,订婚戒一般戴在左手的中指,结婚戒指戴在左手的无名指;若是未婚姑娘。应戴在右手的中指或无名指,否则,就会令许多追求者望而却步了。

在国外,不戴戒指也表示“名花还无主,你可以追我”。 按西方的传统习惯来说,左手上显示的是上帝赐给你的运气,它是与心相关联的,因此,讲戒指戴在左手上是有意义的。国际上比较流行的戴法是:

食 指--想结婚,表示未婚;

中 指--已在恋爱中;

无名指--表示已经订婚或结婚;

小 指--表示独身。

至于右手,在传统上也有一个手指戴戒指时是有意义的:那就是无名指。据说戴在这里,表示具有修女的心性。

大拇指上一般不戴戒指,如戴即表示正在寻觅对象;戴在食指上表示想求婚;戴在中指上表示已订婚或已有对象;戴在无名指上表示已订婚或已结婚;戴在小指上表示独身主义或已离婚。有人用更简单的“追、求、订、婚、离”五个字说明将戒指分别戴在5个手指上的含义和暗示 。

若是未婚姑娘。应戴在右手的中指或无名指,否则,就会令许多追求者望而却步了。在国外,不戴戒指也表示“名花还无主,你可以追我”。而现代人已经不太拘泥于这套规矩,只要自己喜欢,戴在哪个手指都无所谓。

对男士来说——戴纯银戒指表示性情温和,易迁就他人。戴金戒指者较重视利益,往往会有精明的生意头脑。戴翡翠玉石者注重品位素质,处事严谨。

对女士来说——喜爱粉红钻或粉红色珊瑚者,感情丰富而浪漫。喜爱红宝石者热情似火。喜爱蓝宝石或海蓝宝石者,较内向冷淡。喜爱祖母绿或土耳其石者,情感纤弱。

手指与戒指——戒指戴在不同的手指上,能体现与性格有关的心理含义。喜戴在食指者,性格较偏激倔强。喜戴在右中指者,崇尚中庸的人生观念。喜戴在左中指者,有责任感,重视家庭。喜戴在小手指者,有自卑感。喜戴在无名指者,无野心,随和,不计较得失

嵌宝石的戒指又有不同的意义。钻石象征永恒,在欧洲和美国,每逢结婚周年纪念日,做丈夫的一般都要向自己的妻子赠送钻石戒指和贵重金属,以示爱情的忠贞。翡翠表示爱情,珍珠表示高贵,紫晶表示健康,机敏和幸运。

(一)碳化硅(SiC)

碳化硅的晶体结构和金刚石相近,属于原子晶体,它的熔点高(2827℃),硬度近似于金刚石,故又称为金刚砂。将石英和过量焦炭的混合物在电炉中锻烧可制得碳化硅。

纯碳化硅是无色、耐热、稳定性好的高硬度化合物。工业上因含杂质而呈绿色或黑色。

工业上碳化硅常用作磨料和制造砂轮或磨石的摩擦表面。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。

(二)氮化硼(BN)

氮化硼是白色、难溶、耐高温的物质。将B2O3与NH4Cl共熔,或将单质硼在NH3中燃烧均可制得BN。通常制得的氮化硼是石墨型结构,俗称为白色石墨。另一种是金刚石型,和石墨转变为金刚石的原理类似,石墨型氮化硼在高温(1800℃)、高压(800Mpa)下可转变为金刚型氮化硼。这种氮化硼中B-N键长(156pm)与金刚石在C-C键长(154pm)相似,密度也和金刚石相近,它的硬度和金刚石不相上下,而耐热性比金刚石好,是新型耐高温的超硬材料,用于制作钻头、磨具和切割工具。

(三)硬质合金

IVB、VB、VIB族金属的碳化物、氮化物、硼化物等,由于硬度和熔点特别高,统称为硬质合金。下面以碳化物为重点来说明硬质含金的结构、特征和应用。

IVB、VB、VIB族金属与碳形成的金属型碳化物中,由于碳原子半径小,能填充于金属品格的空隙中并保留金属原有的晶格形式,形成间充固溶体。在适当条件下,这类固溶体还能继续溶解它的组成元素,直到达到饱和为止。因此,它们的组成可以在一定范围内变动(例如碳化钛的组成就在TiC05~TiC之间变动),化学式不符合化合价规则。当溶解的碳含量超过某个极限时(例如碳化钛中Ti:C=1:1),晶格型式将发生变化,使原金属晶格转变成另一种形式的金属晶格,这时的间充固溶体叫做间充化合物。

金属型碳化物,尤其是IVB、VB、VIB族金属碳化物的熔点都在3273K以上,其中碳化铪、碳化钽分别为4160K和4150K,是当前所知道的物质中熔点最高的。大多数碳化物的硬度很大,它们的显微硬度大于1800kg·mm2(显微硬度是硬度表示方法之一,多用于硬质合金和硬质化合物,显微硬度1800kg·mm2相当于莫氏一金刚石一硬度9)。许多碳化物高温下不易分解,抗氧化能力比其组分金属强。碳化钛在所有碳化物中热稳定性最好,是一种非常重要的金属型碳化物。然而,在氧化气氛中,所有碳化物高温下都容易被氧化,可以说这是碳化物的一大弱点。

除碳原子外,氮原子、硼原子也能进入金属晶格的空隙中,形成间充固溶体。它们与间充型碳化物的性质相似,能导电、导热、熔点高、硬度大,同时脆性也大。

(四)金属陶瓷

随着火箭、人造卫星及原子能等尖端技术的发展,对耐高温材料提出了新的要求,希望既能在高温时有很高的硬度、强度,经得起激烈的机械震动和温度变化,又有耐氧化腐蚀、高绝缘等性能。无论高熔点金属或陶瓷都很难同时满足这些。金属具有良好的机械性能和韧性,但高温化学稳定性较差,易于氧化。陶瓷的特点是耐高温,化学稳定性好,但最大的缺点是脆性,抗机械冲击和热冲击能力低。金属陶瓷是由耐高温金属如Cr、Mo、W、Ti等和高温陶瓷如Al2O3、ZrO3、TiC等经过烧结而形成的一种新型高温材料,它兼有金属和陶瓷的优点,密度小,硬度大,耐磨,导热性好,不会由于骤冷骤热而脆裂。是具有综合性能的新型高温材料,适用于高速切削刀具、冲压冷拉模具、加热元件、轴承、耐蚀制件、无线电技术、火箭技术、原子能工业等。

二、新型陶瓷材料

传统陶瓷主要采用天然的岩石、矿物、粘土等材料做原料。而新型陶瓷则采用人工合成的高纯度无机化合物为原料,在严格控制的条件下经成型、烧结和其他处理而制成具有微细结晶组织的无机材料。它具有一系列优越的物理、化学和生物性能,其应用范围是传统陶瓷远远不能相比的,这类陶瓷又称为特种陶瓷或精细陶瓷。

新型陶瓷控化学成分主要分为两类:一类是纯氧化物陶瓷,

如Al2O3、ZrO2、MgO、CaO、BeO、ThO2等;另一类是非氧化物系陶瓷,如碳化物、硼化物、氮化物和硅化物等。按照其性能与特征又可分为:高温陶瓷、超硬质陶瓷、高韧陶瓷、半导体陶瓷。电解质陶瓷、磁性陶瓷、导电性陶瓷等。随着成分、结构和I:艺的不断改进,新剂陶瓷层出不穷。按其应用不同又可将它们分为工程结构陶瓷和功能陶瓷两类。

在工程结构上使用的陶瓷称为工程陶瓷,它主要在高温下使用,也称高温结构陶瓷。这类陶瓷具有在高温下强度高、硬度大、抗氧化、耐腐蚀、耐磨损、耐烧蚀等优点,是空间技术、军事技术、原子能、业及化工设备等领域中的重要材料。工程陶瓷有许多种类,但目前世界上研究最多,认为最有发展前途的是氯化硅、碳化硅和增韧氧化物三类材料。

精密陶瓷氨化硅代替金属制造发动机的耐热部件,能大幅度提高工件温度,从而提高热效率,降低燃料消耗,节约能源,减少发动机的体积和重量,而且又代替了如镍、铬、钠等重要金属材料,所以,被人们认为是对发动机的一场革命。氮化硅可用多种方法制备,工业上普遍采用高纯硅与纯氮在1600K反应后获得:

3Si+2N2 Si3N4

也可用化学气相沉积法,使SiCl4和N2在H2气氛保护下反应,产物Si3N4积在石墨基体上,形成一层致密的Si3N4层。此法得到的氮化硅纯度较高,其反应如下:

SiCl4+2N2+6H2→Si3N4+12HCl

氯化硅、碳化硅等新型陶瓷还可用来制造发动机的叶片、切削刀具、机械密封件、轴承、火箭喷嘴、炉子管道等,具有非常广泛的用途。

利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料称为功能陶瓷。功能陶瓷种类繁多,用途各异。例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料,用于制作电容器、电阻器、电子工业中的高温高频器件,变压器等形形色色的电子零件。利用陶瓷的光学性能可制造固体激光材料、光导纤维、光储存材料及各种陶瓷传感器。此外,陶瓷还用作压电材料、磁性材料、基底材料等。总之,新剂陶瓷材料几乎遍及现代科技的每一个领域,应用前景十分广阔。

三、磁性材料

磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。

铁氧体磁性材料按其晶体结构可分为:尖晶石型(MFe2O4);石榴石型(R3Fe5O12);磁铅石型(MFe12O19);钙钛矿型(MFeO3)。其中M指离子半径与Fe2+相近的二价金属离子,R为稀土元素。按铁氧体的用途不同,又可分为软磁、硬磁、矩磁和压磁等几类。

软磁材料是指在较弱的磁场下,易磁化也易退磁的一种铁氧体材料。有实用价值的软磁铁氧体主要是锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFeO4。软磁铁氧体的晶体结构一般都是立方晶系尖晶石型,这是目前各种铁氧体中用途较广,数量较大,品种较多,产值较高的一种材料。主要用作各种电感元件,如滤波器、变压器及天线的磁性和磁带录音、录像的磁头。

硬磁材料是指磁化后不易退磁而能长期保留磁性的一种铁氧体材料,也称为永磁材料或恒磁材料。硬磁铁氧体的晶体结构大致是六角晶系磁铅石型,其典型代表是钡铁氧体BaFe12O19。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而已在医学、生物和印刷显示等方面也得到了应用。

镁锰铁氧体Mg-MnFe3O4,镍钢铁氧体Ni-CuFe2O4及稀土石榴型铁氧体3Me2O3·5Fe2O3(Me为三价稀土金属离子,如Y3+、Sm3+、Gd3+等)是主要的旋磁铁氧体材料。磁性材料的旋磁性是指在两个互相垂直的直流磁场和电磁波磁场的作用下,电磁波在材料内部按一定方向的传播过程中,其偏振面会不断绕传播方向旋转的现象。旋磁现象实际应用在微波波段,因此,旋磁铁氧体材料也称为微波铁氧体。主要用于雷达、通讯、导航、遥测、遥控等电子设备中。

重要的矩磁材料有锰锌铁氧体和温度特性稳定的Li-Ni-Zn铁氧体、Li-Mn-Zn铁氧体。矩磁材料具有辨别物理状态的特性,如电子计算机的"1"和"0"两种状态,各种开关和控制系统的"开"和"关"两种状态及逻辑系统的"是"和"否"两种状态等。几乎所有的电子计算机都使用矩磁铁氧体组成高速存贮器。另一种新近发展的磁性材料是磁泡材料。这是因为某些石榴石型磁性材料的薄膜在磁场加到一定大小时,磁畴会形成圆柱状的泡畴,貌似浮在水面上的水泡,泡的"有"和"无"可用来表示信息的"1"和"0"两种状态。由电路和磁场来控制磁泡的产生、消失、传输、分裂以及磁泡间的相互作用,即可实现信息的存储记录和逻辑运算等功能,在电子计算机、自动控制等科学技术中有着重要的应用。

压磁材料是指磁化时能在磁场方向作机械伸长或缩短的铁氧体材料。目前应用最多的是镍锌铁氧体,镍铜铁氧体和镍镁铁氧体等。压磁材料主要用于电磁能和机械能相互转换的超声器件、磁声器件及电讯器件、电子计算机、自动控制器件等。

四、超导材料

金属材料的电阻通常随着温度的降低而减小,当温度降低到一定数值的时候,某些金属及合金的电阻会完全消失,这种现象称为超导现象。具有超导性的物质称为超导体或超导材料。超导体电阻突然消失时的温度称为临界温度(Tc)。

荷兰物理学家H·K昂尼斯(Onnes)成功地制取了液体氦,获得了42K的低温。1911年他发现水银的电阻在42K附近突然下降到零,这就是人类第一次发现了超导现象。随着进一步的研究发现周期表中有26种金属具有超导性,单个金属的超导转变温度都很低,最高的超导金属是Nb,Tc一92K。因此,人们逐渐转向研究金属合金及化合物的超导性。

1986年4月瑞士科学家J.G贝德诺兹等发现由钡、镧、铜、氧组成的氧化物可能是高Tc的超导材料,并获得了Tc为30K的超导体,这是对超导材料的研究取得的第一次重大突破。在这之后,各国科学家对这一类材料进行了广泛研究。1987年2月美同科学家发现钡把铜氧材料的超导转变温度高达98K,从而突破了液氦温区而进入液氮温区。中国科学院物理所、化学所、北京大学等也都分别研制成功Tc为837K的超导线材和超导薄膜。日本研制成功钇一钡一铜一氧陶瓷高温超导材料,其成分为06Ba~04Y~1ICu~3O,在123K开始显示超导电性,在93K时出现零电阻。目前新的氧化物系列不断出现,如Bi-Sr-Ca-CuO,Tl-Ba-Ca-CuO等,它们的超导转变温度超过了120K。这些研究成果为超导材料早日付诸实用开辟了途径。

值得注意的是,人们发现碳的第三种同素异形体——C60碱金属作用形成AxC60(A代表钾、铷、铯等),它们都是超导体,其超导转变温度列于下表。从表中可看到,大多数AxC60超导体的转变温度比金属合金超导体高。这使人们看到C60这类有机超导体的巨大潜力,同时因其加上性能优于金属氧化物(陶瓷)超导体,因此AxC60类超导体将是很有发展前途的超导材料。

AxC60的超导转变温度

K2 C60:19 Tc/K

Rb3C60:28 Tc/K

Cs3C60:30 Tc/K

Rb2CsC60:30 Tc/K

RbCs2C60:33 Tc/K

超导材料的应用范围极为广泛,用超导材料制造的超导磁体,可产生很强的磁场,且体积小,重量轻,损耗电能小,比目前使用的常规电磁铁优异得多。应用超导材料还可以制造大功率超导发电机、磁流发电机、超导储能器、超导电缆等。超导技术最引人注目的应用是超导磁悬浮列车,其车速可高达500km/h。在海洋航行中利用超导电磁推进器,即不用电动机而实现高速、高效、无噪音航行。利用超导的完全抗磁性可制造超导无摩擦轴承。无论是在能源、电子、通讯、交通,还是由防军事技术、空间技术、受控热核反应以及医学等各个领域中,超导材料将以其特有的性能发挥出神奇的作用。

五、光导纤维与激光材料

(一)光导纤维

光导纤维简称光纤,是近10年来蓬勃发展起来的新型材料。光纤的中心是用高折射率的超纯石英或特种光学玻璃拉制成的晶莹细丝,称纤维芯。纤维芯的外皮是一层低折射率的玻璃或塑料制成的纤维皮。光纤具有传导光波的能力。

光纤的纤维芯是一种光密介质,外皮是一种光疏介质。当光线进入纤维芯,就只能在纤维芯内传播(全反射),经无数次全反射,呈锯齿形向前传播,最后到达纤维芯的另一端。这就是光纤传递信号的原理,如下图所示:

目前应用较多的有高纯石英光纤、组分玻璃光纤和塑料光纤。石英光纤所需的主要原料是经过精制的石英(SiO2),它由SiCl4水解而得到:

SiCl4+2H2O=SiO2+4HCl

工业上通常将天然石英砂在电炉中以碳还原得到粗硅或结晶硅,其硅含量为95%~99%,然后再在结晶炉中用氯气与粗硅合成四氯化硅:

SiO2+2C Si+2CO↑ Si+2Cl2 SiCl4

此法制得的SiCl4含有许多杂质,如BCl3、SiHCl3、PCl3等。需进一步精馏提纯。由于石英光纤原材料资源丰富,化学性能极其稳定,除氢氟酸外,对各种化学试剂有强的耐蚀性。因此,已实际应用在各种通讯线路上。除石英光纤外,其他类型的光纤材料也在大力开发之中。

目前光纤最大的应用是在通讯上,即光纤通讯,光纤通讯信息容量很大,如20根光纤组成的像铅笔一样大小的一支电缆每天可通话76200人次,而直径3英寸(3×254cm),由1800根铜线组成的电缆每天可只能通话900人次。此外,光纤通讯具有重量轻、抗干扰、耐腐蚀等优点,而且保密性好,原材料丰富,可大量节约有色金属。因此光纤是一种极为理想的通讯材料。

光纤制成的光学元器件,如传光纤维束,传像纤维束,纤维面板等,能发挥一般光学元件所不能起的特殊作用。此外,利用光导纤维与某些敏感元件组合或利用光导纤维本身的特性,可以做成各种传感器,用来测量温度、电流、压力、速度、声音等。它与现有的传感器相比,有许多独特的优点,特别适宜于在电磁干扰严重、空间狭小、易燃易爆等苛刻环境下使用。

(二)激光材料

激光是20世纪的重大发明之一,自1960年用红宝石作工作物质首次振荡出了激光之后,在激光的基础理论,激光的应用、激光材料和器件的研究等各个方面都有了迅速的发展。激光是利用受激辐射原理,在谐振腔内振荡出的一种特殊光。它同普通光相比,具有良好的单色性、相干性和高亮度的特点,在科学技术上有着广泛的用途。

用于生产激光的材料叫做激光11作物质,有固体、气体和液体二种,这里着重介绍固体激光材料。内体激光工作物质包括两个组成部分:激活离子(真正产生激光的离子)和基质材料(传播光束的介质)。形成激活离子的元素有三类:第一类是过渡元素如锰、铬、钴、镍、钒等;第二类是大多数稀土元素如钕、钬、镝、铒、铥、镱、镥、钆、铕、钐、镨等;第三类是个别的放射性元素如铀。目前应用最多的激活离子是Cr3+和Nd3+。基质材料有晶体和玻璃,每一种激活离子都有其对应的一种或几种基质材料。例如,Cr3+渗入氧化铝晶体中有很好的发生激光的性能,但掺入到其他晶体或玻璃中发光性能就很差,甚至不会产生激光。目前已研制出的同体激光工作物质有上百种之多,但有实际使用价值的主要有:红宝石(Al2O3:Cr3+),掺钕钇铝石榴石(Y3Al5O12:Nd3+),掺钕铝酸钇(YAlO3:Nd3+)和钕玻璃四种。

红宝石是最早振荡出激光的材料,输出激光波长为6942nm的红色光。红宝石是以Al2O3晶体为基质材料,掺入质量分数为5×10-4的Cr2O3,激活离子是Cr3+。制备红宝石单晶用的原料必须有很高的纯度,通常用重结晶法提纯后的铵明矾[NH4Al(SO4)2·12H2O]和重 铬酸铝[(NH4)2Cr2O7],将它们以一定比例混合,加热到1050~1150℃,这时发生下列反应:

NH4Al(SO4)2·12H2O Al2(SO4)3+2NH3↑+SO3↑+25H2O↑

Al2(SO4)3 Al2O3+3SO3↑

2(NH4)2Cr2O7 4NH3↑+2Cr2O3+3O2↑+2H2O↑

制得的Al2O3和Cr2O3的混合物,再用火焰法或引上法制成红宝石单晶。

掺钕钇铝石榴石和掺钕铝酸钇是分别以Y3Al5O12和YAlO3为基质材料,掺入不同浓度的Nd3+的作为激活离子的激光工作物质。

钕玻璃的激活离子是Nd3+,以K2O-BaO-SiO2成分的玻璃为基质材料时,产生激光的性能较好。用玻璃作同体激光工作物质的最大优点是,可以熔制出尺寸大、光学均匀性良好的材料,而且激活离子的质量分数可以提高到002~004。在核聚变的研究中,用钕玻璃激光器作为引发聚变反应的强光源取得了有效的成果。

六、纳米材料

材料绝大多数是固体物质,它的颗粒大小一般在微米数量级,一个颗粒包含着无数原子和分子,这时材料显示的是大量分子的宏观性质。当用特殊的方法把颗粒尺度加工到纳米数量级大小,则一个纳米级颗粒所含的分子数大为减小,这种由颗粒尺度为纳米数量级(1~100nm)的超细微颗粒组成的间体材料称为纳米材料。纳米材料在结构上与常规的晶态和非晶态材料有很大的差别。由于纳米材料的粒子是超细微的,粒子数多,表面积大,而且处于粒子界面上的原子比例极大,一般可占总原子数的50%左右,这就使纳米材料具有特殊的表面效应、界面效应、小尺寸效应、量子效应等,因而呈现出一系列独特的物理、化学性质,在电子、冶金、化学、生物和医学等领域展示了广泛的应用前景。

纳米材料熔点低,例如金的熔点是1064℃,而纳米金的熔点只有330℃,降低了近700℃;又如纳米级银粉的熔点由金属银的962℃降低为100℃。纳米金属熔点的降低不仅使低温烧结制备合金成为现实,还将为不互熔金属冶炼成合金创造条件。

纳米材料的表面积大,表面活性高,可制造各种高性能催化剂。例如,Ni或Cu-Zn化合物的纳米颗粒对某些有机化合物的氢化反应是极好的催化剂,可替代昂贵的铂或把催化剂;纳米铂黑催化剂可使乙烯氢化反应的温度从600℃降至室温;利用纳米镍粉作火箭固体燃料反应触媒,燃烧效率可提高100倍。此外,其催化的反应选择性还表现出特异性。如用硅载体镍催化剂对内醛的氧化反应表明,镍粒直径在5nm以下时,反应选择性发生急剧变化,醛分解反应得到有效控制,生成酒精的转化率急剧增大。

陶瓷材料由于性脆、烧结温度高等缺点,限制了其应用范围。而纳米陶瓷则具有很好的韧性和延展性能。研究表明:TiO2和CaF2纳米陶瓷材料在80~180℃范围内可产生约100%的塑性变形,韧性极好,而且烧结温度降低,能在比大晶粒样品低600℃的温度下达到类似于普通陶瓷的硬度。这些特性使纳米陶瓷材料在常温或次高温下进行冷加工成为可能。如果在次高温下将纳米陶瓷颗粒加工成型,然后作表面退火处理,就可以得一种表面保持常规陶瓷硬度,而内部仍具有纳木材料延展性的高性能陶瓷。

纳米材料还可以广泛应用于生物医药领域,如进行细胞分离、细胞染色等。由于纳米粒子比红血球(6~9um)小得多,可以在血液里自由运动,因此,注入各种对机体无害的纳米粒子到人体的各部位,可检查病变和进行治疗。研究纳米生物学可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息,特别是细胞内的各种信息。利用纳米传感器,可获取各种生化反应的生化信息和电化学信息。

纳米材料的出现给物理、化学、生物等许多学科带来了新的活力和挑战,纳米科学技术必将发展成为21世纪最重要的技术,人们将在纳米尺度上重新认识和改造客观世界。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/1091513.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-12
下一篇2023-07-12

发表评论

登录后才能评论

评论列表(0条)

    保存