物理性质
一种金属元素。硬度适中 ,富有延展性。
元素信息 钽的性质CAS号:7440-25-7
系列:过渡金属。
相对原子质量:180947 88 (12C = 120000)
密度16650 kg/m3 16654 g/cm3
硬度65
元素分区5族,6,d
颜色: 蓝灰色
价电子排布:[氙]4f5d6s
原子体积:(立方厘米/摩尔)
1090
元素在海水中的含量:(ppm) 0000002
钽铁矿地壳中含量: 1(ppm)
2
氧化态:
Main Ta+5
Other Ta-3, Ta-1, Ta+1, Ta+2, Ta+3
晶体结构:晶胞为体心立方晶胞,每个晶胞含有2个金属原子。
晶胞参数:
a = 33013 pm
b = 33013 pm
c = 33013 pm
α = 90°
钽条β = 90°
γ = 90°
维氏硬度(电弧熔炼并冷作硬化):230HV
维氏硬度(再结晶退火):140HV
维氏硬度(经一次电子束熔炼):70HV
维氏硬度(经二次电子束熔炼):45-55HV
熔点:2995℃
声音在其中的传播速率:(m/S) 3400
电离能 (kJ /mol)
M - M+ 761
M+ - M2+ 1500
M2+ - M3+ 2100 M3+ - M4+ 3200
M4+ - M5+ 4300
钽电容发现人:1802年由瑞典化学家安德斯·古斯塔法·埃克博格发现。
元素命名: 埃克博格根据古希腊神话中中第比斯城皇后尼奥比的父亲坦塔罗斯的名字命名了该元素。
来源:主要存在于钽铁矿中,同铌共生。
还可以用做电子元件的电容。
元素概述化学符号Ta,钢灰色金属,在元素周期表中属VB族,原子序数73,原子量1809479,体心立方晶体,常见化合价为+5。
钽是由瑞典化学家埃克贝里 (AGEkeberg)在1802年发现的,按希腊神话人物Tantalus(坦塔罗斯)的名字命名为 tantalum。1903年德国化学家博尔顿(Wvon Bolton)首次制备了塑性金属钽用作灯丝材料。1940年大容量的钽电容器出现,并在军用通信中广泛套用。第二次世界大战期间,钽的需要量剧增。50年代以后,由于钽在电容器、高温合金、化工和原子能工业中的套用不断扩大,需要量逐年上升,促进了钽的提取工艺的研究和生产的发展。中国于60年代初期建立了钽的冶金工业。
钽的硬度较低,并与含氧量相关,普通纯钽,退火态的维氏硬度仅有140HV 。它的熔点高达2995℃ ,在单质中 ,仅次于碳,钨,铼和锇,位居第五。钽富有延展性,可以拉成细丝式制薄箔。其热膨胀系数很小。每升高一摄氏度只膨胀百万分之六点六。除此之外,它的韧性很强,比铜还要优异。
化学性质钽还有非常出色的化学性质,具有极高的抗腐蚀性,无论是在冷和热的条件下,对盐酸、浓硝酸及"王水"都不反应。但钽在热的浓硫酸中能被腐蚀,在150℃以下,钽不会被浓硫酸腐蚀,只有在高于此温度才会有反应,在175度的浓硫酸中1年,被腐蚀的厚度为00004毫米,将钽放入200℃的硫酸中浸泡一年,表层仅损伤0006毫米。在250度时,腐蚀速度有所增加,为每年被腐蚀的厚度为0116毫米,在300度时,被腐蚀的速度则更加快,浸泡1年,表面被腐蚀1368毫米。在发烟硫酸(含15%的SO3)腐蚀速度比浓硫酸中更加严重,在130度的该溶液里浸泡1年,表面被腐蚀的厚度为156毫米。钽在高温下也会被磷酸腐蚀,但该反应一般在150度以上才发生,在250度的85%的磷酸中,浸泡1年,表面被腐蚀20毫米,另外,钽在氢氟酸和硝酸的混酸中能迅速溶解,在氢氟酸中也能被溶解。但是钽更害怕强碱,在110度40%浓度的烧碱溶液里,钽会被迅速溶解,在同样浓度的氢氧化钾溶液中,只要100度就会被迅速溶解。除上面所述情况外,一般的无机盐在150度以下一般不能腐蚀钽。实验证明,钽在常温下,对碱溶液、氯气、溴水、稀硫酸以及其他许多药剂均不起作用,仅在氢氟酸和热浓硫酸作用下有所反应。这样的情况在金属中是比较罕见的。
但高温下,钽表面的氧化膜被破坏,因此能与多种物质反应,常温下钽能与氟反应。在150度时,钽对氯溴碘均呈惰性,在250度时,钽对干燥的氯气仍然有抗腐蚀能力,在含有水蒸气的氯气中加热到400度,仍然能保持光亮,在500度则开始被腐蚀,在300度以上钽与溴反应,对碘蒸汽则当温度达到赤热之前均呈惰性。氯化氢在410度时和钽反应,生产五氯化物,溴化氢则在375度与钽反应。当加热到200度或者更低的温度下,S能与Ta作用,碳及烃类在800-1100度与钽作用。
元素套用钽所具有的特性,使它的套用领域十分广阔。在制取各种无机酸的设备中,钽可用来替代不锈钢,寿命可比不锈钢提高几十倍。此外,在化工、电子、电气等工业中,钽可以取代过去需要由贵重金属铂承担的任务,使所需费用大大降低。 钽被制造成了电容装备到军用设备中。美国的军事工业异常发达,是世界最大军火出口商。世界上钽金属的产量一半被用在钽电容的生产上,美国国防部后勤署则是钽金属最大的拥有者,曾一度买断了世界上三分之一的钽粉。
主要吸收线及其主要参数:
λ/nm
f
W
F
S
CL
G
2715
0055
02
N-A
30
10
2609(D)
02
N-A
23
21
2657
02
N-A
25
2934
02
N-A
25
2559
02
N-A
25
2648
02
N-A
x
2653
02
N-A
27
2698
02
N-A
27
2758
02
N-A
31
2776
02
N-A
58
λ:波长
f:振子强度
W:单色器光谱通带
N-A(氧化亚氮-乙炔焰)
S:元素的特征浓度(1%吸收灵敏度)
CL:元素的检测极限
R·S:同一元素主要吸收线间的相对灵敏度
F:火焰类型
资源简介钽是稀有金属矿产资源之一,是电子工业和空间技术发展不可缺少的战略原料。
钽和铌的物理化学性质相似,因此共生于自然界的矿物中。划分钽矿或铌矿主要是根据矿物中钽和铌的含量,铌含量高时称为铌矿,钽含量高时则称为钽矿。铌主要用于制造碳钢、超级合金、高强度低合金钢、不锈钢、抗热钢及合金钢;钽则主要用于电子原器件及合金的生产。钽铌矿物的赋存形式和化学成分复杂,其中除钽、铌外,往往还含有稀土金属、钛、锆、钨、铀、钍和锡等。钽的主要矿物有:钽铁矿[(Fe,Mn)(Ta,Nb)2O6]、重钽铁矿(FeTa2O6)、细晶石[(Na,Ca)Ta2O6(O,OH,F)]和黑稀金矿[(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6]等。炼锡的废渣中含有钽,也是钽的重要资源。已查明世界的钽储量(以钽计)约为134000短吨,萨伊占首位。1979年世界钽矿物的产量(以钽计)为 788短吨(1短吨=9072公斤)。中国从含钽比较低的矿物中提取钽的工艺,取得了成就 。
电容器是钽的主要最终消费领域,约占总消费量的60%。美国是钽消费量最大的国家,1997年消费量达500吨,其中60%用于生产钽电容器。日本是钽消费的第二大国,消费量为334吨。21世纪初,随着电容器生产的发展迅速,市场供不应求。预计,世界钽电容器的生产量达250亿件,需消费钽1000吨。据美国地质调查局的统计,钽在地壳中的自然储量为15万吨,可开采储量超过43万吨。2004年,世界钽开采量为1510吨, 其中,澳大利亚730吨,莫三比克280吨,巴西250吨,加拿大69吨,刚果60吨。 中国资源量,主要分布在江西、福建、新疆、广西、湖南等省。从未来发展的需求看,电容器仍是钽的主要套用领域。如果按储量基础24000吨计算,也只能保证24年的需求。尽管如此,钽资源的前景仍然是看好的。首先,在世界十分丰富的铌矿床中,伴生有大量的钽资源。其中,格陵兰南部加达尔铌、钽矿的钽资源量就达100万吨。其次,西方已开始利用含Ta2O5 3%以下的大量锡炉渣。此外,代用品的研究和利用也有了很快的发展,如铝和陶瓷在电容器领域代替钽;矽、锗、铯可在电子仪器用途上,代替钽制造整流器等。
性质用途钽的线胀系数在0~100℃之间为65×10-6K-1,超导转变临界温度为438K,原子的热中子吸收截面为213靶恩。
在低于150℃的条件下钽是化学性质最稳定的金属之一。与钽能起反应的只有氟、氢氟酸、含氟离子的酸性溶液和三氧化硫。在室温下与浓碱溶液反应,并且溶于熔融碱中。致密的钽在200℃开始轻微氧化,在280℃时明显氧化。钽有多种氧化物,最稳定的是五氧化二钽(Ta2O5)。钽和氢在250℃以上生成脆性固溶体和金属氢化物如:Ta2H,TaH,TaH2,TaH3。在800~1200℃的真空下,氢从钽中析出钽又恢复塑性。钽和氮在300℃左右开始反应生成固溶体和氮化合物;在高于2000℃和高真空下,被吸收的氮又从钽中析出。钽与碳在高于2800℃下以三种物相存在:碳钽固溶体、低价碳化物和高价碳化物。钽在室温下能与氟反应,在高于250℃时能与其他卤素反应,生成卤化物。
元素用途钽在酸性电解液中形成稳定的阳极氧化膜,用钽制成的电解电容器,具有容量大、体积小和可靠性好等优点,制电容器是钽的最重要用途,70年代末的用量占钽总用量2/3以上。钽也是制作电子发射管、高功率电子管零件的材料。钽制的抗腐蚀设备用于生产强酸、溴、氨等化学工业。金属钽可作飞机发动机的燃烧室的结构材料。钽钨、钽钨铪、钽铪合金用作火箭、飞弹和喷气发动机的耐热高强材料以及控制和调节装备的零件等。钽易加工成形,在高温真空炉中作支撑附属档案、热禁止、加热器和散热片等。钽可作骨科和外科手术材料,例如用钽条替代人体中的骨头肌肉还会在钽条上生长,所以它有一个"亲生物金属"。碳化钽用于制造硬质合金。钽的硼化物、矽化物和氮化物及其合金用作原子能工业中的释热元件和液态金属包套材料。氧化钽用于制造高级光学玻璃和催化剂。1981年钽在美国各部门的消费比例约为:电子元件73%,机械工业19%,交通运输6%,其他2%。
制备方法冶炼方法:钽铌矿中常伴有多种金属,钽冶炼的主要步骤是分解精矿,净化和分离钽、铌,以制取钽、铌的纯化合物,最后制取金属。
矿石分解可采用氢氟酸分解法、氢氧化钠熔融法和氯化法等。钽铌分离可采用溶剂萃取法〔常用的萃取剂为甲基异丁基酮(MIBK)、磷酸三丁酯(TBP)、仲辛醇和乙酰胺等〕、分步结晶法和离子交换法。
分离:首先将钽铌铁矿的精矿用氢氟酸和硫酸分解钽和铌呈氟钽酸和氟铌酸溶于浸出液中,同时铁、锰、钛、钨、矽等伴生元素也溶于浸出液中,形成成分很复杂的强酸性溶液。钽铌浸出液用甲基异丁基酮萃取钽铌同时萃入有机相中,用硫酸溶液洗涤有机相中的微量杂质,得到纯的含钽铌的有机相洗液和萃余液合并,其中含有微量钽铌和杂质元素,是强酸性溶液,可综合回收。纯的含钽铌的有机相用稀硫酸溶液反萃取铌得到含钽的有机相。铌和少量的钽进入水溶液相中然后再用甲基异丁基酮萃取其中的钽,得到纯的含铌溶液。纯的含钽的有机相用水反萃取就得到纯的含钽溶液。反萃取钽后的有机相返回萃取循环使用。纯的氟钽酸溶液或纯的氟铌酸溶液同氟化钾或氯化钾反应分别生成氟钽酸钾(K2TaF7)和氟铌酸钾(K2NbF7)结晶,也可与氢氧化铵反应生成氢氧化钽或氢氧化铌沉淀。钽或铌的氢氧化物在900~1000℃下煅烧生成钽或铌的氧化物。
钽的制取:
①金属钽粉可采用金属热还原(钠热还原)法制取。在惰性气氛下用金属钠还原氟钽酸钾:K2TaF7+5Na─→Ta+5NaF+2KF。反应在不锈钢罐中进行,温度加热到900℃时,还原反应迅速完成。此法制取的钽粉,粒形不规则,粒度细,适用于制作钽电容器。金属钽粉亦可用熔盐电解法制取:用氟钽酸钾、氟化钾和氯化钾混合物的熔盐做电解质把五氧化二钽(Ta2O5)溶于其中,在750℃下电解,可得到纯度为998~999%的钽粉。
②用碳热还原Ta2O5亦可得到金属钽。还原一般分两步进行:首先将一定配比的Ta2O5和碳的混合物在氢气氛中于1800~2000℃下制成碳化钽(TaC),然后再将TaC和Ta2O5按一定配比制成混合物真空还原成金属钽。金属钽还可采用热分解或氢还原钽的氯化物的方法制取。致密的金属钽可用真空电弧、电子束、等离子束熔炼或粉末冶金法制备。高纯度钽单晶用无坩埚电子束区域熔炼法制取。
金属钽作为一种稀有金属,它的价格很昂贵,在2600元每千克左右。
钽开发较晚,所以有时还称为新金属。第二次世界大战以来,由于新技术的发展,需求量的增大,稀有金属研究和应用迅速发展,冶金新工艺不断出现,这些金属的生产量也逐渐增多。
扩展资料:
由于钽和钶性质非常相似,人们曾一度认为它们是同一种元素。1809年,英国化学家威廉·海德·沃拉斯顿(William Hyde Wollaston)对钽和钶的氧化物分别做了对比,虽然得出不同的密度值,但他认为两者是完全相同的物质。
钽的硬度较低,并与含氧量相关,普通纯钽,退火态的维氏硬度仅有140HV。它的熔点高达2995℃ ,在单质中,仅次于碳,钨,铼和锇,位居第五。
钽,原子序数73,原子量1809479,元素名来源于古希腊神话中宙斯之子的名字。1802年瑞典化学家厄克贝里再钽铁矿中发现这一元素,1903年俄国化学家博尔顿分离出纯钽。钽是一种稀有金属,在地壳中的含量为00002%,在自然界中常与铌共存。主要矿物有钽铁矿、细晶石等。钽有两种天然同位素:钽180、181。
钽为黑灰色金属,有延展性,熔点2996°C,沸点5425°C,密度166克/厘米³,金属钽具有体心立方结构。
钽的化学性质特别稳定,常温下除氢氟酸外不受其它无机酸碱的侵蚀;高温下能溶于浓硫酸、浓磷酸和强碱溶液中;金属钽在氧气流中强烈灼烧可得五氧化二钽;常温下能与氟反应;高温下能与氯、硫、氮、碳等单质直接化合。
钽最早用于制灯丝,后被钨丝代替;化学工业中钽用于制造耐酸设备;由于钽不被人体排斥,可用作修复骨折所需的金属板、螺钉等,还用于制造外科刀具和人造纤维的拉线模等。
属于重金属
钽。
钽多用于电子原件的制造。稀有难熔金属。加工分为热加工和冷加工。热加工时需要真空或者稀有气体保护,加工程序较多且较为复杂,需要消耗更多的资源,人工费以及机器的费用较高,铌是一种化学元素,加工时也比较简单,所以钽贵一些。
铌单质是一种带光泽的灰色金属。高纯度铌金属的延展性较高,但会随杂质含量的增加而变硬。铌对于热中子的捕获截面很低,因此在核工业上有相当的用处。
稀有金属就是在地壳含量少的金属,通常包括,钛、铍、铯、锂、铌、钽、铷、锆、锶等
金与银都属于稀有的贵重金属它们具有美丽的光泽,质地柔软,易于加工,因而成为工艺匠人最受欢迎的加工材料与其他材料相比,这种易于加工的特点,使金银器还能够加工改制、花样翻新,从而形成多种形式的金银制品比如,我们可以按已所好,将一条金链再加工改制,以形成项圈、手镯或戒指、耳环等其他所需饰品但另一方面,由于金银质软,其制品便容易在挤压或碰撞后变形或损坏此外,与其他一般金属材料比,金、银又都具有耐大气氧化和腐蚀的特性,可以历经千年,都仍然新亮如初所以不少金银制品历代相传,成为传世之宝特别是黄金,这种特性更佳,既不会锈蚀,又不易失去光泽与金相比,银的这种性能则稍差潮湿的臭氧会使银表面氧化,这是我们所见到的,银制品使用或搁置时久了,其色泽会由白亮转达为灰或黑色的原因另外,银抗硫化物腐蚀的特性也不及金
金银器的真伪鉴别,主要包括两个方面,一是对其材料质地的鉴别,二是对其制造年代的鉴别
根据现在的科学技术手段,对金、银器质地的鉴别已能做出比较精确的测定比如器物金银含量的成色测定,对金银器内所含其他金属的成分及其含量的测定,甚至对一件金银器不同部位的金银含量,亦能分别做出测定如湖北曾侯乙墓出土的战国金器,经测定其含金量均在85%以上,并含有少量银和微量铜又如浙江龙游县石佛乡出土的明代金杯,其上部含金量为73%,足与把含金量却只有60%,此外,其足为空足,为使金杯内盛放液体后,不至于重心不稳,空足内还加铁以配重再如河北满城汉墓中出土的银器,经测定,含银量为6610%
,铜278%,锡、铅各25%这种银铜合金,具有银铜共晶组织最低熔点由此可知,当时对银铜合金已有较深刻的认识
对金银器的材料质地的鉴别,从经验,亦积累了一些简便易行的方法
(1)金的密度大一般说来,对于相同体积的金属品,金制品要重得多,太轻的制品必是伪品
(2)金银的硬度小,质地软,延展性强若用金属物在金银制品上轻轻划试,一般留下凹痕的真品,留下划痕的是伪品
(3)金、银的化学性质较稳定,特别是金,在空气中不易氧化,而铜铁制品均易氧化生锈金在酸性液体中(如稀盐酸、硝酸等),其颜色不变,而铜制品只在触及硝酸,便会失去光泽如是镀金,表层镀金容易脱落,不仅脱落部分易生锈,即使镀金表面也易被铜覆盖
钽及其合金坯料可用粉末冶金工艺或熔炼工艺生产。粉末冶金工艺多用于生产小型钽制品和加工用的坯料。用热还原法或电解法制得的粉末钽原料,经压制成型后进行真空烧结。烧结工艺取决于对产品的使用要求。一次烧结(1600~2200℃)用于生产熔炼用电极和多孔阳极。二次烧结用于生产锻造、轧制和拉拔等塑性加工用的坯料。两次烧结之间常进行锻造或轧制,加工率约50%。二次烧结温度为2000~2700℃。
真空自耗电弧和电子束熔炼工艺是制取钽及其合金铸锭的常用方法。电子束熔炼工艺主要用于钽的提纯,自耗电弧熔炼工艺可制取大直径和合金成分更均匀的铸锭,自耗电弧熔炼的电极可用烧结棒或电子束熔炼锭制成,熔炼法得到的铸锭晶粒粗大,常需开坯破碎铸态晶粒以提高塑性。为使钽进一步提纯或制备单晶可使用电子束区域熔炼法。
问题一:稀有金属是什么意思 稀有金属释义:
地壳中储藏量少,矿体分散的金属。如锂、铍、铷、钛、钒、钽、铌、镓、铟等。
问题二:有色金属是什么意思 金属是具有光泽、有良好的导电性、导热性与机械性能,并具有正的温度电阻系数的物质。金属,是个大家庭,现在世界上有86种金属。通常人们把金属分成两大类,黑色金属和有色金属。
黑色金属和有色金属这名字,常常使人误会,以为黑色金属一定是黑的,其实不然。黑色金属只有三种:铁、锰与铬。而它们三个都不是色的!纯铁是银白色的;锰是银白色的;铬是灰白色的。因为铁的表面常常生锈,盖着一层黑色的四氧化三铁与棕褐色的三氧化二铁的混合物,看去就是黑色的。怪不得人们称之为“黑色金属”。常说的“黑色冶金工业”,主要是指钢铁工业。因为最常见的合金钢是锰钢与铬钢,这样,人们把锰与铬也算成是“黑色金属”了。
除了铁、锰、铬以外,其他的金属,都算是有色金属。
在有色金属中,还有各种各样的分类方法。比如,按照比重来分,铝、镁、锂、钠、钾等的比重小于5,叫做“轻金属”,而铜、锌、镍、汞、锡、铅等的比重大于5,叫做“重金属”。象金、银、铂、锇、铱等比较贵,叫做“贵金属”,镭、铀、钍、钋等具有放射性,叫做“放射性金属”,还有像铌、钽、锆、镥、金、镭、铪、铀等因为地壳中含量较少,或者比较分散,人们又称之为“稀有金属”。
问题三:稀有金属的稀解释是什么 稀有金属就是在地壳含量少的金属,通常包括,钛、铍、铯、锂、铌、钽、铷、锆、锶等金与银都属于稀有的贵重金属
问题四:中国有什么特有的稀有金属! 稀有金属:中国资源战略的一大致胜利器!
铟:我国储量居世界第一。占全球供应量的80%。主要用于平板显示器、合金、半导体数据传输、航天产品的制造。主要伴生在铅锌矿中,2005年我国原生 铟产量也只有410吨。铟它是一种伴生的金属,它只是锌精矿里面的含量都是用PPM(百万之)计算的,非常的少,不能再生。
钨:我 国世界储量第一。占全球供应量的为85%。主要用于硬质合金、特种钢等产品,并被广泛用于国防工业、航空航天、信息产业,被称为“工业的牙齿”。钨能耐高 温,所以钨合金被大量用在机械、武器工业中。比如枪、炮的发射管中都会用到钨的合金。 军事方面用做穿甲弹的弹丸,都是用比坦克装甲硬得多的高密度合金钢、碳化钨等材料制成的。钨合金的机械性能与贫铀相差无几,而且贫铀的缺点反而是它的优 点。
没有放射性,钨的化学性能也非常稳定,甚至在1000℃以上的高温下也不会氧化,而且硬度也不会明显下降。这点对防破甲弹的高温金属射流十分有利。钨 的硬度极高,主要用于钢铁金属的合金,加入钨后钢的硬度会有极大的提高,在金属加工领域的刀具材料高速钢就是含钨的合金。如果一个国家没有钨的话,在目前 技术条件下的金属加工能力就会出现极大的缺失,直接导致机械行业的瘫痪,所以称之为战略金属。此外在照明领域也必须使用钨做为灯丝。
钼:我国储量居世界第二。占全球供应量的24%。用于炼制各类合金钢、不锈钢、耐热钢、超级合金,在军事工业中应用广泛,被称作“战争金属”。
稀土:我国储量居世界第一。供应量占全球总量的80%以上。用于制造复合材料,镁、铝、钛等合金材料,被形象地比喻为“工业味精”,这个大家说的最多,都知道,就不用说了
锗:储量居世界第一。产量占全球的50%。主要用于夜视仪、热成像仪、石油产品催化剂、太阳能电池等生产,并被广泛用于光纤通讯领域。
此外钽、锶、 锑、镉、铱、铋、铑、钛、镍、锆、铬、钴等等及镍铬、镍铬硅、镍铝、钛铝、铁镍等等,在欧洲这些很多都是战略金属在国防建设中也有广泛的用途有些已经用 于宇宙飞船的制造及军事应用如金属钽不仅在火炮上有大用处,而且是以后宇宙空间探索必要的材料,其奇特的物理化学性能至今科学家还在研究, 钽合金的特殊用途目前仍在研究、开发。
如劳斯阿莫斯国立研究所开发出含有熔融钚并含有20wt%钛的钽合金。这种合金用于要求材料密度在 110g/cm3以下,对熔融钚有优异的耐腐蚀性及在800~1200℃的高温中能持续数小时的耐氧化性。被选用的T-222合金(Ta-10W- 25Hf-001C)正在被研究用作冥王星探测器发电装置的材料。目前T-111(Ta-8W-2Hf)合金被用作在宇宙空间使用的包裹热力发动机热 源的强化结构材料。可以看出,稀有金属的供应是发展原子能、宇宙探索,国防建设,电子计算机、无线电电子学等新技术所必需的条件。
本人花了许多时间,找到这些资料,还有很多没有找出来,实在是时间所限,只为尽一份心力,希望大家再补充。据统计,近年来国际铟消费量每年都在以30%的速度递增,日韩等国已经出台了具体措施,加强包括铟在内的许多小金属的战略储备。中国有色金属协会安泰科信息有限公司冯君从:
问题五:稀有金属的概念 稀有金属就是在地壳含量少的金属,通常包括,钛、铍、铯、锂、铌、钽、铷、锆、锶等
金与银都属于稀有的贵重金属它们具有美丽的光泽,质地柔软,易于加工,因而成为工艺匠人最受欢迎的加工材料与其他材料相比,这种易于加工的特点,使金银器还能够加工改制、花样翻新,从而形成多种形式的金银制品比如,我们可以按已所好,将一条金链再加工改制,以形成项圈、手镯或戒指、耳环等其他所需饰品但另一方面,由于金银质软,其制品便容易在挤压或碰撞后变形或损坏此外,与其他一般金属材料比,金、银又都具有耐大气氧化和腐蚀的特性,可以历经千年,都仍然新亮如初所以不少金银制品历代相传,成为传世之宝特别是黄金,这种特性更佳,既不会锈蚀,又不易失去光泽与金相比,银的这种性能则稍差潮湿的臭氧会使银表面氧化,这是我们所见到的,银制品使用或搁置时久了,其色泽会由白亮转达为灰或黑色的原因另外,银抗硫化物腐蚀的特性也不及金
金银器的真伪鉴别,主要包括两个方面,一是对其材料质地的鉴别,二是对其制造年代的鉴别
根据现在的科学技术手段,对金、银器质地的鉴别已能做出比较精确的测定比如器物金银含量的成色测定,对金银器内所含其他金属的成分及其含量的测定,甚至对一件金银器不同部位的金银含量,亦能分别做出测定如湖北曾侯乙墓出土的战国金器,经测定其含金量均在85%以上,并含有少量银和微量铜又如浙江龙游县石佛乡出土的明代金杯,其上部含金量为73%,足与把含金量却只有60%,此外,其足为空足,为使金杯内盛放液体后,不至于重心不稳,空足内还加铁以配重再如河北满城汉墓中出土的银器,经测定,含银量为6610% ,铜278%,锡、铅各25%这种银铜合金,具有银铜共晶组织最低熔点由此可知,当时对银铜合金已有较深刻的认识
对金银器的材料质地的鉴别,从经验,亦积累了一些简便易行的方法
(1)金的密度大一般说来,对于相同体积的金属品,金制品要重得多,太轻的制品必是伪品
(2)金银的硬度小,质地软,延展性强若用金属物在金银制品上轻轻划试,一般留下凹痕的真品,留下划痕的是伪品
(3)金、银的化学性质较稳定,特别是金,在空气中不易氧化,而铜铁制品均易氧化生锈金在酸性液体中(如稀盐酸、硝酸等),其颜色不变,而铜制品只在触及硝酸,便会失去光泽如是镀金,表层镀金容易脱落,不仅脱落部分易生锈,即使镀金表面也易被铜覆盖
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)