钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。
钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。
一、钻石的化学成分和分类
1化学成分
钻石是具有立方结构的碳。主要成分是C,其质量分数可达9995%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。
2分类
钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。
1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。
表14-1-1 钻石的分类
天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。
二、钻石的结构与形态
1晶体结构
钻石属等轴晶系, ;a0=035595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为01542nm,C-C-C键角109°28′16″。
图14-1-1 钻石的晶体结构
2形态
钻石属六八面体晶类,Oh-m3m(3L44L36L29PC),常见单形:八面体o{111},菱形十二面体d{110}、立方体a{100}及其聚形(图14-1-2a和图14-1-2b)。
图14-1-2a 钻石的常见晶形
钻石晶体通常呈歪晶,由于溶蚀作用使晶面棱弯曲,晶面常发育阶梯状生长纹、生长锥或蚀象,且不同单形晶面上的蚀象不同,八面体晶面上可见倒三角形凹坑,立方体晶面上可见四边形凹坑,十二面体晶面上可见线理和显微圆盘状花纹。
钻石的双晶依(111)最普遍,可成接触双晶、星状穿插双晶或轮式双晶。其中三角薄片(macle)接触双晶具有典型的扁平三角形外观,在双晶两个平面结合处环绕钻石有明显的青鱼骨刺纹,在钻石贸易中称为结节。
三、钻石的光学性质
1颜色
钻石的颜色分两个系列:即无色—浅**系列和彩色系列。无色—浅**系列钻石的颜色为:无色至浅黄、浅褐;彩色系列钻石的颜色一般为深黄、褐、灰及浅至深的蓝、绿、橙黄、粉红、红、紫红色,偶见黑色。
图14-1-2b 钻石晶体不同聚形示意图
大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。
(1)黄至棕**钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于22eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列**、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对4772nm有弱吸收,由于人们对4772nm吸收反应灵敏,4772nm蓝光被吸收后,钻石呈现**。
(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。
(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。
(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。
2光泽
钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。
3透明度
钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。
4光性
钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。
5折射率
钻石为单折射宝石,在钠光(5893nm)中折射率为2417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。
6色散
钻石的色散强,色散值为0044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。
7发光性
(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、**、橙**、粉色等荧光,通常长波较短波的荧光强。
(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。
(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。
8吸收光谱
无色—浅**的钻石,在紫色区4155nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的**钻石可能在498nm,504nm和592nm处有吸收带。
四、钻石的力学性质
1解理
钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。
图14-1-3 钻石{111}方向解理示意图
2硬度
钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。
钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。
3密度
钻石的密度为352(±001)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。
五、钻石的内含物
钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。
六、钻石的电学性质和热学性质
1电学性质
Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(00024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。
2热学性质
(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。
根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。
(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。
(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。
3其他性质
(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。
(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。
依次来回答你的问题。
第一,有没有可以鉴别钻石闪烁度的证书啊?当然有,Sarine钻石光性能证书就是评判钻石“闪不闪”的专业证书,它将从明亮度、闪耀度、火彩、光对称性四个维度去评估一颗钻石,提供给普罗大众都能理解的分级标准。
第二,钻石更闪烁价钱越贵吗?不一定。钻石价值会受到多种因素的影响,包括4C参数、品牌溢价、检测机构、市场供求关系等等,钻石光性能只是其中一项标准,如果其他因素相同的情况下,光性能更高的钻石,它的价值也相对更高。
钻石只看大小?当然不是,很多朋友再买钻石时只注意到了钻石的大小和重量,觉得钻石越大理所当然会更好。但这个观念是非常错误的,购买钻石时要综合考虑这颗钻石的各项指标,切勿盲目注重钻石的大小,可以参考评级证书做出购买决定。
钻石闪不闪是和钻石切工有关的。
高折射率造就了钻石的璀璨光芒,使其闻名于世。许多人会把钻石切磨型式等同于钻石的形状(圆形、祖母绿式-方形、梨形)。 实际上钻石切工等级取决于其刻面与光线的相互作用结果。
从原石到成品钻石,需要复杂的工序和精湛的切割技艺。只有经过精心雕琢的切磨比率、对称性和打磨抛光,才能完美展现钻石独有的璀璨光芒。
扩展资料:
为了确定一颗标准圆形明亮式钻石的切工等级(钻石首饰上最常见的形状),GIA会计算出各个刻面的比例, 这些比例会影响钻石正面朝上的外观。由此,GIA可以鉴定每一颗钻石在光线与刻面相互作用下形成璀璨的视觉效果的程度:
明亮度:由钻石内部及外部反射出来的白光
火彩:白光被分析成七彩的光谱色
闪光:一颗钻石所产生的闪烁度和由于光线反射所造成的钻石内部明暗区域的形式
此外,GIA的切工等级鉴定还包括了对钻石与直径的相对比例、腰围厚度(可影响钻石的耐久性)、刻面的对称性和各刻面的抛光质量等钻石设计和切割技术的评鉴。
—钻石4C分级
钻石可以呈现多种颜色的荧光。包括橙**、**、橙色、红色、白色和绿色。原子结构的不同,会引起这一现象。不过,蓝色的确是最常见的钻石荧光颜色。
大多数钻石不会发出荧光。研究人员在对提交给GIA进行分级的两万多颗钻石进行检测后发现,在标准长波紫外线灯下,只有大约不到四成的钻石会呈现一定程度的钻石荧光。所以,不是所有钻石都会发出荧光。
扩展资料:
金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些**,这主要是由于金刚石中含有杂质。 金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。
金刚石在X射线照射下会发出蓝绿色荧光。金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。
-钻石
会影响。
首先,光对称性是钻石光性能综合评级的四大指标之一;
其次,我有看到一篇文章讲光性能的,分享一下,文中Sarine CEO David说:“美学研究表明,我们对美的感知与对称性有直接联系。光对称性关注钻石均匀反射光的能力,它会受到钻石内外部 “胎记”以及钻石切割精度的影响,在切工极其对称的圆形明亮型钻石中,它的“心箭图案”会很明显。切工越完美,光对称性就越精确,光性能等级也越高。”
以前技术还不成熟的时候,钻石闪烁度基本靠销售人员或业内专业人士的肉眼和经验评估。4C分级证书在实际的应用中,大家逐渐发现它的不足——对钻石光性能的评估缺失。钻石的闪烁度其实专业一点来说就是钻石光性能,钻石的光性能就是和你最直观的blingbling的感觉直接相关的,可以说光性能参数高低决定了钻石能有多闪。
现在Sarine光性能证书可以从明亮度,闪耀度,火彩,光对称性4项钻石光学特性单项检测!钻石闪不闪看这4个方面不会出错~
它开发了一套全新的钻石光性能检测理论并且研发了一种叫Sarine Light设备可以对其进行量化测量。如今,在许多先进国家,如日本、美国等,钻石光性能的概念已经非常普及。然后钻石光性能测定是对钻石传统4C的一大“补全”,而且这方面更能让普通人直观的感受到!
钻石无法使用手机灯光鉴别,鉴别真假钻石方式如下:
1、看火彩
一般人辨别钻石真假最简单的方法就是从视觉上看。肉眼观察的主要就是观察钻石的“火色”,即钻石能反射出彩色的色光,基本意思是蓝光为主。钻石切割得越完美,色泽就越鲜艳。高折射率的副本会发出坚硬的光泽。
2、硬度检验
钻石是已知的最坚硬的自然形成的物质,没有任何标记。如果有什么东西标记它们,就没有什么东西标记它们。
3、导热性试验
让我们同时在钻石和其他类似的物体上喘口气。以钻石为例,由于钻石的高导热性,其表面的水蒸气比其他物体上的水蒸气蒸发得更快。
4、观察反射光
用放大镜你可以看到,钻石有一个非常精细的磨砂和闪亮的反射光周围的腰部。钻石的这一特性是独一无二的。
5、看生长点
在放大镜下观察,真钻石的纹理表面往往有沟纹和三角形生长点,而赝品有三种:普通的添加了氧化铝的玻璃,由于折射率和分散性提高,易进入,但硬度低。化学合成蓝宝石和无色尖晶石模仿,硬度接近,但低折射率和双折射现象,可见双放大镜下的影子。
扩展资料:
钻石的特点:
1、钻石的化学性质
钻石在高温下燃烧产生二氧化碳。
实验结果表明,金刚石在大气中的燃烧程度为850℃-1000℃,纯氧的燃烧温度为720℃-800℃。钻石燃烧时发出蓝光,表面出现雾膜。在无氧状态下被加热到2000度-3000度时,钻石会变成石墨。
钻石对所有酸都是稳定的,不溶于盐酸、硫酸、硝酸和王水。金刚石在很长一段时间内会受到强碱和强氧化剂的轻微腐蚀。
2、钻石硬度
钻石的硬度是刚玉的10,100倍,而刚玉的硬度是9倍,水晶的硬度是7倍。
金刚石的高硬度保证了金刚石的耐久性,耐久性是通过金刚石的耐磨性来衡量的。相对韧性,在外力冲击下容易断裂的性能称为脆性。
3、钻石的颜色
纯金刚石是透明无色的,但如果它包含其他杂质或结构性缺陷,钻石将在各种各样的颜色。例如,含有微量铬的钻石会呈现天蓝色。铝或氮会变成**,极少数钻石会变成红色、蓝色、绿色或紫色。
4、钻石折射率
钻石的折射率表示光在介质中通过该物质时的折射。钻石的折射率为2.417,是折射率最高的透明矿物。折射率越高,光在介质中的传播越慢,阻力越大,因此反射光的能力也就越大。
金刚石表面光泽度高的主要原因是金刚石具有较高的折射率和较强的色散特性,从而产生彩色的光学效果。
5、钻石的光泽
宝石的反射光能力是宝石的光泽,折射指数越高,光泽越强。在矿物学中,宝石光泽按折射率由高到低分为4个层次,即钻石光泽、金属光泽、半金属光泽、玻璃光泽。
有些金刚石还具有荧光性,荧光性是介质在不可见光照射下能发出可见光的性质。在紫外线照射下,它会发出蓝、绿、黄、红等颜色的光。
钻石能反射出五光十色、光怪陆离的彩光,尤其以柔和冷艳的蓝光为主,这种现象是钻石色散作用的结果。在所有的天然宝石中钻石的色散度是比较强的(色散值为0044)。
因此,钻石会出现火焰般冷艳、璀璨夺目的美丽光彩。如果转动钻石,就会发现钻石上的奇彩光芒能迅速改变、闪烁不定、异常的迷人。
火彩的产生必须满足两个条件:首先宝石材料必须有足够高的“色散”值,其次该材料在加工中必需遵循一定的角度和比例,这一点因材料不同而有所差异。
扩展资料
金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些**,这主要是由于金刚石中含有杂质。金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。
金刚石在X射线照射下会发出蓝绿色荧光。金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。
金刚石矿物晶体构造属等轴晶系同极键四面体型构造。碳原子位于四面体的角顶及中心,具有高度的对称性。单位晶胞中碳原子间以同极键相连结,距离为154pm。常见晶形有八面体、菱形十二面体、立方体、四面体和六八面体等。
-金刚石
-钻石火彩
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)