在人们的珠宝奢侈品中,钻石是指抛光钻石,也是爱情和忠诚的象征。人们对钻石形成的原因很好奇。我来给你详细解释一下钻石是怎么形成的。钻石形成的原因钻石的结构特征:钻石由碳元素组成,是碳元素的一种晶体,硬度为10。它是自然界中最坚硬的天然矿物,密度为3。53(001)克/立方厘米,折射率为2。417,离散度为0。044它是钻石经过切割、研磨后的产物,在钻石矿物中约有五分之一可以达到宝石级,被称为宝石级钻石,在国外被称为“毛坯钻石”或“钻坯”。毛坯切割打磨成切割形状后,称为裸钻,国外称为成品钻或抛光钻。英文名Diamond来源于希腊语amount,意思是“坚硬、不可侵犯、不可战胜”。金刚石和石墨都是由碳组成的。金刚石和石墨是在不同的温度和压力条件下形成的,它们在温度和压力条件的变化下可以相互转化。钻石属于立方晶体,硬度为10,石墨属于六方晶体,硬度为1。它们具有不同的晶体结构,并且是结晶碳的两种同质多晶型物。只有在一定的压力和温度下,碳才能结晶成金刚石。钻石的形成:最早的天然钻石形成于地球内部,温度为900-1600℃,压力为(45-6)×109Pa,相当于地下130-200km的深度。理论上,只要满足条件,钻石随时都可以形成。目前开采的钻石大多形成于33亿年前和12-17亿年前。形成钻石的碳来自地幔中熔化的岩浆,或者是因为地壳的运动。地壳中的碳带聚集在地球深处,在合适的条件下结晶成钻石。还有一种外在的方式产生钻石。陨石撞击大陆时,瞬间产生的高温高压也可能产生钻石。但这种方式生产的钻石往往比较小,质量差,一般没有经济价值,不能作为珠宝加工的钻石。钻石的发现:钻石首先在印度被发现。随着人们对钻石的渴望,钻石的勘探和开采越来越受欢迎。金刚石矿床分为原生矿和次生矿。原生矿石是由地球的地质运动产生的。地震和火山活动将富含金刚石的矿物带到地表或地表附近的区域,其中大部分是富含金刚石的金伯利岩和煌斑岩,以及火山口附近的填充物和岩壁和基岩中的根部沉积物。在自然的作用下,次生矿石由原生矿石搬运沉积而成。大部分经风化和雨水冲刷,残留在山坡、河流和海岸形成矿床,多为砂矿。钻石的形成和发现过程大致是这样的,不像黄金等贵金属。21世纪以来,钻石价格一直保持稳定增长的趋势,逐渐成为投资者的首选。钻石的鉴定方法简单识别钻石的简单鉴别方法:需要10-20倍的放大镜辅助,做几个简单的观察。观察钻石的腰部。腰部用沙子磨的话最好用这个方法。因为钻石比任何仿制品都硬,不会有仿制品那样的细线。钻石的腰部是颗粒状的。钻石比仿制品坚硬,仿制品的刻面往往比钻石钝,但钻石的刻面一定要锋利。因为钻石比仿制品坚硬,仿制品的刻面边缘经常磨损。如果钻石有自然表面,就有机会在自然表面找到钻石独特的“三角形生长线”。如果一颗钻石破碎,它的外观通常是阶梯状的,而仿制品是弯曲的或贝壳状的。硬度检查钻石是已知最坚硬的天然物质,没有任何东西可以标记它们。如果可以,那就不是钻石了。热传导试验呼吸的同时对钻石和其他类似的项目进行辩论。如果是钻石,其表面凝结的水雾应该比其他物品上的水雾蒸发得快。这是因为钻石的导热性很高。观察法反射光用放大镜可以观察到钻石的腰部呈现非常精细的磨砂状,反射光闪闪发光。钻石的这一特性是独一无二的。看生长点在放大镜下观察,真钻的晶面上往往有凹槽和三角形生长点,而假货有三种:①普通玻璃加氧化铝,因折射率和色散增加,容易误入,但硬度较低。②由化学合成的蓝宝石和无色尖晶石仿制,硬度相近,但折射率低且有双折射现象,放大镜下可见重影。铅笔标识铅笔的化学成分是碳,就像钻石一样,只是物理结构不同,所以很多人用一支铅笔来检测钻石的真伪,这是比较实用有效的方法。鉴定时,他们要先用水打湿钻石,然后用铅笔轻轻划线。在真钻石的晶面上,铅笔划到的地方是没有痕迹的,而如果不是钻石,而是玻璃、水晶等材料,就会在表面留下痕迹。一般会用铅笔标注,以鉴别钻石的真伪。这个它硬度高,折射性好,但是旋转时会反射更多的彩色光,和正品旋转时只反射微弱的**和蓝色光有明显区别。钻石切割程序一颗钻石毛坯看起来不起眼,必须经过精心的切割、打磨、加工,才能成为我们习以为常的闪亮钻石。所以钻石的车削直接影响钻石的价值,下面详细介绍。当然,理想的切割效果是保持钻石的最大重量,最大限度减少瑕疵,充分展示钻石的美,使其熠熠生辉。一般切割过程包括以下步骤:1划线(Marking):这是钻石切工的第一步。首先,检查钻坯,在钻石表面做标记。做这项工作的人经验丰富,精通加工技术。最终目标是生产出最大、最干净、最完美的钻石,从而尽可能高的体现钻石的价值。抄写员必须注意两点:保持最大重量,尽量减少夹杂物。划线员用放大镜研究钻坯的结构。如果是大钻石,这个工作可能需要几个月,而对于普通钻坯,则需要几分钟。但是,再小的钻石毛坯,每颗钻石都必须经过详细的检验,才能做出正确的判断。抄写员用印度墨水在钻坯上做了记号,表示钻坯要沿着这条线分。通常情况下,线尽可能沿着钻石的自然纹理方向画。裂开切割者将画好线的钻坯放在夹持器上,然后用另一颗钻石沿分割线切割出一个凹痕,再在凹痕上放一把方形刀,用手适当用力敲击。钻石会沿着纹理方向分裂成两块或更多块。锯切大部分钻石不适合劈开,需要用锯子切割。由于只有钻石才能切割钻石,所以锯片是磷青铜圆片,边缘涂有金刚石粉和润滑剂。钻石固定在夹具上,锯盘高速旋转切割钻石。将现代激光技术引入金刚石切割,大大提高了钻坯的加工效率。采取想要的形状锯好或劈好的钻石送到磨圆部进行磨圆整形,即根据设计要求,将钻石做成圆形、心形、椭圆形、尖形、祖母绿形等常见的切花形状,或其他特殊形状。由于钻石是迄今为止人类公认的最坚硬的天然物质,只有钻石才能打磨钻石,钻石的硬度在各个方向都略有不同。所以打磨的时候要靠经验来把握钻石的基本形态:三面体、八面体、十二面体和晶体特征。一般方法是在车床上高速转动钻坯,然后用另一只手臂上的金刚石把转动的钻坯磨圆。擦亮在涂有钻石粉和润滑油的铸铁圆盘上,所有的刻面(刻面)都被转动,使钻石闪闪发光。打磨工艺通常是,先在底层做8个大面,再做16个小面。有尖底,有25个刻面,从这些刻面延伸出三角刻面、风筝刻面、腰刻面,共33个刻面。这样的圆形钻石一共有58个刻面,如果没有尖底刻面,则有57个刻面。并不是每个钻坯都要经历以上所有的工序,这取决于钻坯的特性和要达到的目标。例如,上述“扁平”钻坯可能不需要分割,或者祖母绿钻石可能不需要倒圆。然而,对于任何一颗毛坯钻石来说,都有两个必不可少的过程,即“划线”、“削片”和抛光。一颗精雕细琢的钻石所产生的花瓣表面的位置和角度都是经过精确计算的,这使得钻石最闪耀。随着科技的进步,激光技术和计算机技术的引入,可以使钻坯的设计和切割更加精确。钻石的化学成分钻石的化学成分是碳,碳是宝石中唯一的单一元素,属于等轴晶系。它往往含有005%-02%的杂质元素,其中最重要的是N和B,它们的存在与钻石的种类和性质有关。大多数晶体是八面体、菱形十二面体、四面体及其集合体。纯钻无色透明,因微量元素的混合而呈现不同的颜色。强烈的钻石光泽。折射率为2417,色散适中,为0044。各向同性物体。热导率为035卡/厘米/秒/度。用热导仪测试,反应最灵敏。硬度为10,是目前已知最硬的矿物。其绝对硬度是应时的1000倍,刚玉的150倍。它害怕重重的一击,重重的一击之后就会被劈碎。一组完全裂开。密度为352克/立方厘米。钻石是会发光的,当暴露在阳光下时,它们在夜间会发出淡淡的青色磷光。x射线照射会发出天蓝色的荧光。钻石的化学性质非常稳定,在常温下不容易溶于酸和碱,酸碱也不会对其产生作用。钻石与同类宝石和人造钻石的区别。宝石市场常见的替代品或赝品有无色宝石、无色尖晶石、立方氧化锆、钛酸锶、钇铝石榴石、钇镓石榴石、人造金红石等。人造钻石最早由日本在1955年研制成功,但没有批量生产。因为合成钻石比天然钻石贵,所以合成钻石在市场上很少见。钻石可以通过其独特的硬度、密度、色散和折射率来区别于类似的宝石。如类金刚石立方氧化锆无色,分散性强(0060),光泽强,密度高,为58g/cm3,手感厚重。钇石榴石的分散性较软,肉眼很难与钻石区分。看看钻石是如何形成的,看看:1金矿是怎么形成的?2月光石是如何形成的?3雷电是如何形成的?4泻湖是如何形成的?5贝壳的珍珠是如何形成的?
1、大部分钻石是在地质的高温高压下形成的:
钻石形成条件的压力在45到6Gpa,温度在1100到1500℃。
碳元素在较高的温度、压力下,结晶形成石墨,而在高温、极高气压及还原环境中则结晶为珍贵的钻石。当碳原子呈六方环状的层状排列时,形成的是低硬度的高温耐火材料石墨; 当碳原子呈立方最紧密堆积, 彼此以共价键相连时, 就形成了自然界最硬的宝石—钻石。
2、陨石撞击形成钻石:
当携带石墨的陨石撞上地球时,撞击产生的高温高压能把石墨转变成稀有且极端坚硬的金刚石。2008年,一块橄辉无球粒陨石掉落在苏丹努比亚沙漠中,研究发现,它不仅仅是一块普通的陨石,仔细分析后,科学家确定这块陨石里含有金刚石——钻石的原石。
:
天然钻石形成于地表下超过100公里深处,再伴随着火山喷发等地质活动上升到地面。 地幔中的高温高压使碳元素结晶形成钻石,偶尔会将周围的尘埃或液体杂质包裹进去。包裹杂质的钻石通常含有少量的钠、钾和其他能揭示其形成环境信息的矿物质。
钻石是一种天然矿物质,是在未受到人为干预的情况下完全在大自然中形成的。重量一般在0015ct-110ct之间,多数在02ct-04ct之间,颜色多为白色至浅黄系列,在G色-J色之间,彩色系列为浅色的红、黄、蓝等。在紫外荧光下,多数短波下为中等至弱的**、黄绿色,少数为惰性(无荧光)。
1有关口袋妖怪绿宝石的常识
1这一点是肯定的因为自己练的怪兽会得到努力值,从而影响怪兽的能力值另一方面招式可以自己定而野生的怪招式都不怎么样
2亲密度一方面影响某些精灵的进化另一方面影响怪兽是否听话亲密度低的话怪兽常常会不听话,而某些精灵亲密度满了就会进化例如小丑鱼进化成美丽龙
3怪兽的个性会对其本身的能力值起到一方面加一方面减的效果另一方面和选美有关
性格和选美的关系
4怪兽盒在卡依市的选美会场一小女孩处取得
2怎样判别和选购祖母绿宝石首饰
祖母绿是世界四大珍贵宝石之一,一粒哥伦比亚产的高档祖母绿宝石戒面,其售价常在数万元以上。
因而人工合成的祖母绿就应运而生,且与天然祖母绿比较相似,很难区别。加以世界各地所产祖母绿的特征有很大差别,因此鉴别祖母绿的难度很大。
如购买价格昂贵的祖母绿首饰,应有珠宝检测单位的鉴定证书,以防吃亏上当。 根据严阵先生的研究,天然祖母绿可分为两种类型: (1) 美洲型:包括哥伦比亚、巴西及美国等地所产的祖母绿。
其特点是折射率低,比重较小,紫外线(长波)照射发荧光,用查尔斯滤色镜观察,颜色变红。 (2) 非洲型:包括津巴布韦、南非、赞比亚、坦桑尼亚及亚洲的印度、巴基斯坦等地所产的祖母绿。
其特点是折射率高,比重大,紫外线照射一般不发光,滤色镜观察仍为绿色或灰绿色。因此,有的书刊上所写“从查尔斯滤色镜里观察,如宝石呈绿色,那一定不是祖母绿,因为从镜中看到的祖母绿应为红色”的说法是只知其一,不知其二,因而是片面的。
另外,在国内珠宝市场或展销会上出售的低档祖母绿蛋形光身戒面,系我国云南某地所产绿宝石原料加工而成,一般透明度较差,大都有微裂纹(为了掩盖缺陷,常用雪松油或人工合成的液状环氧树脂浸渍)。 但其售价低廉,可满足一部分低档消费者的要求。
3绿宝石有什么特点
绿宝石喜林芋等大多原产于美洲热带和亚热带地区,攀援生长在树干和岩石上。
性喜温暖湿润和半阴环境。生长适温为20—28℃,越冬温度为5℃。
绿宝石喜林芋盆栽基质以富含腐殖质且排水良好的壤土为佳,一般可用腐叶土1份、园土1份、泥炭土1份和少量河沙及基肥配制而成。种植时可在盆中立柱,在四周种3—5株小苗,让其攀附生长。
它喜高温多湿环境,须保持盆土湿润,尤其在夏季不能缺水,而且还要经常向叶面喷水;但要避免盆土积水,否则叶片容易发黄。一般春夏季每天浇水一次,秋季可3—5天浇一次;冬季则应减少浇水量,但不能使盆土完全干燥。
生长季要经常注意追肥,一般每月施肥1—2次;秋末及冬季生长缓慢或停止生长,应停止施肥。它喜明亮的光线,忌强烈日光照射,一般生长季需遮光50%一60%;但它亦可忍耐阴暗室内环境,不过长时间光线太弱易引起徒长,节问变长,生长细弱,不利于观赏。
4绿宝石到底有什么的传说
绿宝石小常识 植物绿宝石:喜林芋
绿宝石是所有绿色透明石中的代表,说到有关鲜艳色彩时,甚至会用到“绿宝石的绿”这种词句。绿宝石比重较低,因此即使颗粒小,但还是比相同克拉数的钻石或红宝石看起来大,这是它的特征。在绿宝石里面,常常会有很多肉眼即看得见的“墨西”这种内含物,因此常会被误认为是瑕疵,实际上这种物质跟会损害宝石价值的瑕疵完全不同。它是结晶形成过程中所必然会产生的内含物,也可以算是天然宝石的一项证据,更是令绿宝石蒙上一层神秘面纱的要素。可是这也跟程度问题有关,若多到有损宝石美丽的程度时亦不佳。绿宝石切割法通常呈长方形,偶尔也有正方形。这是因为绿宝石和蓝晶本身为六角柱形结晶的缘故,以上述的方式切割,最能发挥效益,显现出最美的一面。 [编辑本段]同名宝石 定义:
除祖母绿、海蓝宝石外,其它颜色的宝石级绿柱石统称为绿宝石(Greem gem)。
分类:
由于含痕量或微量过渡族元素常使绿柱石呈现不同的颜色。主要品种如下:
(1)**绿宝石(亦称金色绿柱石):英文名称为Heliodor,源自希腊语,意思是“太阳”。日文名称为エメラルド。它是一种绿柱石的透明晶体,由于其化学成分中含有铁而呈**、金**、淡柠檬**。玻璃光泽。折射率1570-1575,双折射率0005。具有弱绿**至**的多色性。硬度75,密度268-270克/立方厘米。韧性良好。
(2)玫瑰绿宝石[2](亦称红色绿柱石或铯绿柱石):英文名称为Morganite,取名于美国宝石爱好者J P Morgan的名字。它也是一种绿柱石的透明晶体。因含锂、铯或锰而呈桃红、玫瑰红色。晶体多呈不规则板状。颜色具明显分带现象。玻璃光泽。折光率1572-1592,双折射率0006-0008,随铯含量而递增。多色性显著,淡红到深蓝红。硬度75,密度 271-290克/立方厘米。紫外线下发出的荧光呈弱的亮红色。韧性良好。
此外,还有紫晶绿宝石(亦称紫红绿柱石),是一种紫红色的绿柱石,颜色很像水晶;海蓝绿柱石,是一种黄绿色的绿柱石,颜色很像黄绿色的橄榄石;透绿柱石为一种无色透明的绿柱石;暗褐色绿柱石,是一种具有星光效应和古铜闪光的绿柱石。
产地:
绿宝石主要产于伟晶岩型、气成热液形、热液型、砂矿型矿床内。世界上出产绿宝石的国家有马达加斯加、巴西、阿富汗、美国等国。
是西班牙的国石。
绿宝石的价值评价
绿宝石
[1]绿宝石又称为绿柱石,化学式为Be3Al2(SiO3)6,其中含有氧化铍(BeO)141%,氧化铝(Al2O3)19%,氧化硅(SiO2)669%。六方晶系,晶体呈六方柱形,柱面有纵纹,晶体可能非常小, 体有时呈晶簇或针状,有时可形成伟晶,长可达5米,重达18吨。硬度为75-8,比重为263-280。
纯净的绿宝石是无色的,甚至可以是透明的。当绿宝石富含铯时,呈粉红色,称为玫瑰绿宝石,又叫摩根石;含三价铁时,呈**,称为**绿宝石。含铬时,呈鲜艳的翠绿色,称为祖母绿,含二价铁时,呈现浅天蓝色,称为海蓝宝石。英语绿宝石一词来源于希腊语“海水般的蓝绿色”(beryllos)。玻璃光泽,解理不完全。绿宝石在上个世纪20年代以前只被人们当作一种宝石,后来人们发现绿宝石中含有稀有元素铍,它便成为一种具有工业用途的矿物。绿宝石是铍-铝硅酸盐组成的矿物,是铍的工业来源。
绿宝石由于有几个变种被当作宝石,所以长期受人注意。这些变种是海蓝宝石(淡绿色)、祖母绿(深绿色)、金绿宝石(金**)和铯绿宝石(粉红色)。绿宝石是许多花岗岩质岩石及与其伴生的伟晶岩脉的次要组分,见于片麻岩和云母片岩。绿柱石的宝石变种(除祖母绿外)一般见于伟晶岩的晶洞中,而祖母绿产于云母片岩和沥青质石灰岩中。非宝石级的普通绿宝石出现在许多伟晶岩中,往往成浸染状小晶体,但也发现过200吨的晶体。20世纪20年代前,绿宝石只用作宝石,后来发现了铍的许多重要用途,普通绿宝石便
5钻戒知识
一,品牌很重要 通灵翠钻,周生生,金伯利 谢瑞麟的售后服务绝对是最好的,全国任何一地点都可以免费维修和保养 周大福的钻石切割比较好 二:挑选很重要 钻石等级由"重量、颜色、净度、切工"四部分组成,是这四部分的一个综合评判来确定钻石的价值。
圆形钻石是有个标准切割比例的,当达到这个比例时,钻石能完全反射照射光线,从而在肉眼观看时给人以灿烂夺目的感觉。反之则不能很好反射光线而黯淡,因此切工关系到钻石是否璀璨夺目,所以切工是第一位的。
大多数钻石都含瑕疵,这些瑕疵可在珠宝匠的放大镜下看到。 真正明净的钻石是非常罕见的,因而所有钻石根据不同的明净度分为以下不同级别:F1级:完美无瑕;IF级:表面有瑕疵,但内部完好;VVS1及VVS2级:非常细小的瑕疵;SI1及SI2级:细小的瑕疵;I1,I2及I3级:有一定瑕疵。
钻石的重量通常以"克拉"来衡量。 一克拉分为100分,一颗10分的钻石,它的重量为一克拉的十分之一,一颗50分的钻石,重为一克拉的一半,可依次推算。
以前最经典的六爪皇冠是比较坚固的镶嵌方法,也可以减少到4爪,3爪,3点固定也是比较牢固的,2爪镶嵌的钻石容易脱落。 戒托的材料有18K白金,PT950,PT900。
其中18K白金价格便宜且硬度最大,也最牢固,缺点是18K白金佩戴1年后会微微发黄。PT950和PT900是表示含量95%和90%的铂金,但是100%的纯金属大多数都很软,铂金也是如此,因此含量90%的PT900铂金为最佳的钻石镶嵌用金属,即有较强的硬度,又保证大颗粒钻石的牢固。
钻戒是新娘饰品的关键,但是不是每个新娘都有一双完美的手来佩带戒指。不过无需紧张,只要了解自己的状况,参考下面的原则来选购,就可以了。
修长美丽的手:任何款式及及切割形状的钻石都可与之完美搭配,若是款戒,配上大粒钻石,饱满而挺秀;若是细环,托起清丽的单粒美钻,秀雅气息尽显手指。 粗短型的手:简洁纤长的单粒榄尖钻石可在视觉上显出手指的修长,使其平添一份秀美。
细瘦型的手:正方形,长方形和圆形的钻石可助其增显敦实之感,若在主钻旁配镶一些璀璨的小钻,可使手指异彩纷呈。 三;保养也很重要! 1。
不配戴钻戒的时候,一定将其小心旋转在首饰盒中。 2。
钻石首饰应该单独存放,避免因与其它首饰摩擦而造成划痕。 3。
使用含氯的漂白剂时,应避免配戴钻戒。它不会损坏钻石,却可能令承受钻石的底托变色。
4。 做重活,粗活时候,应该避免配戴钻戒。
5。 请值得信任的宝石匠清洗钻戒。
6。 每年专业人员检查一次你的钻戒,看看其镶嵌的齿脚是否依然坚固。
牢靠,有没有勾拉现象。 7。
为你的钻戒做一次价值鉴定。然后加入你的个人财产保险之列。
6怎样区别红宝石与绿宝石喜林芋
红宝石喜林芋与绿宝石喜林芋均为天南星科喜林芋属(蔓绿绒 属)常绿藤本观叶植物。
茎粗壮,节上长有气生根,叶长心形,全 缘,长20 ~30厘米,宽10〜15厘米。花单性,由佛焰苞及白色的肉 穗花序组成。
二者的区别为:红宝石喜林芋的新梢为红色,叶柄紫红 色,叶浓绿色,带有紫红色的光泽,嫩叶及叶鞘为玫瑰红色;绿宝石 喜林芋的茎、叶柄、嫩梢和叶鞘均为绿色,叶片无紫红色光泽。 在栽培上,二者均喜温暖、潮湿的环境,虽喜光,但怕阳光直 射,耐阴。
生长季节可经常浇水,向叶子喷水,每两周施1次液体氮 肥。越冬温度应在15C以上。
每年春天换盆1次,盆土要求肥沃,含 腐殖质丰富,且排水良好,否则会因盆中积水而使叶子发黄。 红宝石喜林芋和绿宝石喜林芋的繁殖方法相同,常用扦插法。
在 20〜25C的条件下保持较高的空气湿度,置于半阴处,极易生根。若 大量繁殖,可用芽插法。
7祖母绿宝石鉴定方法有哪些
祖母绿宝石鉴定方法有: 1。
切尔西滤镜 为了更专业地识别祖母绿真假,我们可以利用切尔西滤镜来帮助我们进行更准确的判断,由于切尔西滤镜在业内经常被用于对祖母绿宝石的识别,因此也被叫做“祖母绿滤色镜”,当我们光是凭借肉眼去观看祖母绿宝石时,我们能看到的颜色是非常靓丽的黄绿色,而使用了切尔西滤镜观看的效果是红色,通过这一点我们就能有效地对眼前的宝石进行真假的识别,如果并非祖母绿宝石,那么它就会在切尔西滤镜下“现出原形”。 2。
重液法 关于祖母绿宝石和其他类似的绿色宝石鉴定方法,我们还可以利用重液法来进行相关的化学识别。只要并非祖母绿宝石,它们的密度相对来说都会较大,这时我们只需拿上一瓶三溴甲烷重液,就能对真假祖母绿宝石进行明显的区分。
如果是真的祖母绿宝石,它被投入溶液偶将会漂浮在水面上,而下沉的那些宝石均为赝品。 这种办法在进行大量的宝石原料颗粒分选时更加方便快捷。
3。舌头舔舐 说到和绿色玻璃的区别,大家可不要掩嘴偷笑,觉得这是不可能弄混淆的事,绿色玻璃从外形上看就像是祖母绿宝石的一个“孪生姐妹”。
这时我们可以通过用舌头舔的方式来测试二者的温度,如果是舔舐祖母绿宝石,舌头上会感受到长时间的冰凉感,而玻璃则是微弱的温热感。 用其在与水晶硬度相等标准的物体上进行划拨,能出现划痕的就是真正的祖母绿宝石啦。
钻石是以矿物金刚石为材料的宝石,即是在大小、颜色、净度等方面达到宝石学要求的金刚石。钻石的英文名称为diamond,起源于希腊语adams,有“坚硬无比”之意。钻石是自然界最硬的物质,它能刻划所有物质,可谓无坚不摧,因此,钻石坚硬耐久。
除此之外,钻石是世界上透明物质中折射率最高的少数几种材料之一,因此,钻石反射光的能力很强,具有典型的金刚光泽。而且,钻石按科学设计的款式切磨,能把表面以及入射到内部的光全部反射出来,使整个钻石闪烁着耀眼的光芒。钻石的色散很大,即对不同波长的单色光,折射率的差别也很大。当白光射入切磨好的钻石中时,因白光中不同波长的单色光折射率不同,将使不同颜色的单色光分开,经多次内部反射透出钻石时,其分开的程度会更大。这种色散现象使钻石呈现五颜六色的闪光,即火彩,显得异常美丽迷人。钻石十分稀少,即便是南非产钻石的富矿,平均也要大约开采20吨矿石,才能获得1克拉宝石级钻石。钻石之所以如此珍贵、如此具有魅力,由此可见一斑。钻石有着“宝石之王”的美誉。围绕钻石的阴谋、战争、冒险故事和传说流传不断,是其他任何宝石都无法比拟的。
一、基本性质
(一)结晶学性质
晶系 等轴晶系。
结晶习性 常为八面体、菱形十二面体和立方体等,还有几种单形组成的聚形 (图6-1)。
表面特征 由于钻石晶体发育三个方向完全的八面体解理,因此在表面具有明显的解理纹,成为鉴定钻石原石重要的依据。
图6-1 等轴晶系晶体几何外形
(二)化学成分
钻石为单质矿物,化学分子式为C。C原子之间以共价键相联结,其结合十分牢固,因此钻石具有高硬度、高熔点、高绝缘性和强化学稳定性等特征。除C外,钻石还可能含N、B等微量成分,并据此将钻石分为两种类型,即Ⅰ型和Ⅱ型。
Ⅰ型钻石 含微量N。按N 的存在形式进一步分为Ⅰa 型和Ⅰb 型。
Ⅰa型:N以原子对或N3 为中心,其含量越多,钻石越黄。在自然界中,大部钻石属于此类。
Ⅰb型:N以单原子形式出现,在自然界中少见。这种钻石的颜色为黄、黄绿和褐色。
Ⅱ型钻石 不含N,这种钻石导热性很好,在自然界少见。按含 B 与否及导电性可进一步分为Ⅱa型和Ⅱb型。
Ⅱa型:不含B,不导电,具最高的导热率,室温下导热率是铜的65倍。
Ⅱb型:因含微量B而成为电的半导体,颜色多为蓝色。
钻石的化学稳定性较高。但在CrSiO4 中加热至200℃,可使之变成CO2,在氧化环境中加热至650~870℃,也可使之变成CO2。
(三)物理性质
1光学性质
颜色 变化大,常为无色、黄、黑等;少量为绿、红、蓝等色。
光泽 为典型的金刚光泽。
透明度 透明 不透明。
光性 为各向同性,因此,在偏光镜下为全消光,但钻石常受构造作用影响发生晶格畸变,因而有些钻石在偏光镜下可显异常消光。
折射率 2417~2419;无双折射。
色散 0044,较高,因此,钻石具较高的火彩。
多色性 无。
发光性 在强度和颜色上均有较大变化。无色及**钻石多数呈蓝-白色,约有1/15的钻石在紫外光下发荧光;棕色及绿色钻石常见绿色荧光。
吸收光谱 不同颜色的钻石具有不同的吸收光谱。无色 **钻石在478nm、465nm、451nm、435nm、402nm、423nm、416nm、390nm处具有吸收线。蓝 绿色钻石在537nm、504nm、498nm处具有吸收线。
2力学性质
解理 具有三个方向完全的八面体解理。所以抛光钻石在腰部常见 V 字形缺 (破)口,该性质是鉴别钻石与其仿制品的重要特征之一。加工时劈开钻石正是利用这一特性(图6-2)。
图6-2 利用钻石的解理劈开钻石
硬度 钻石为自然界中最硬的物质,摩氏硬度为10,刻划硬度为刚玉的140多倍。钻石的硬度具有各向异性的特征,不同方向硬度不同:八面体方向>菱形十二面体方向>立方体方向的硬度。此外,无色透明钻石硬度比彩色钻石硬度略高。切磨钻石是利用钻石较硬的方向去磨另一颗钻石较软的方向,只有用钻石才能磨动钻石。虽然钻石是自然界中最硬的物质,但其解理发育、性脆,所以在成品钻石的鉴定中,一般禁止进行硬度测试,以免造成不可挽回的损失。
密度 352g/cm3。
3其他物理性质
热膨胀性 热膨胀性非常低,因此,温度的突然变化对钻石的影响极小。无裂隙或无包裹体的钻石,在真空加热至1800℃而后快速冷却,不会给钻石带来任何损害。但在氧气中加热,则只需达到较低的温度(650℃),钻石即缓慢燃烧而变为CO2 气体。激光打孔和切磨便是利用这一原理。
导热性 是所有已知物质中最高的。利用这一性质制成的热导仪成为钻石检测中最快捷有效的工具,这一性质也使钻石在电子工业中被用作散热片和测温热感应器件等。
电学性质 除少数罕见的天然蓝色钻石 (Ⅱb 型) 外,一般是绝缘体。钻石越纯净,其晶格越完美,其电绝缘性就越好。若钻石被X射线或γ射线辐射,其结构将被破坏并产生一些自由电子,由此产生极小的电导率。
亲油性 钻石表面不能被水湿润,但具特殊的亲油性。这一特性常被用于钻石鉴定和选矿中。
(四)包裹体
钻石内部的包裹体除金刚石外,还有石墨、石榴子石、单斜辉石、斜方辉石、硫化物、橄榄石、蓝晶石、刚玉、红柱石、方解石、云母、长石、角闪石、钛铁矿、铬透辉石、绿泥石、锆石、透辉石等。此外,放大观察还可见钻石的生长纹、解理等。在原石和成品上还常见与解理有关的三角座、“V”字形缺口、胡须等。
二、鉴定
钻石的鉴定非常重要,因为钻石评价、贸易、市场营销、购买等必须首先以钻石的准确鉴定为前提。随着科学技术的发展,越来越多的钻石仿制品不断进入市场,如苏联钻(立方氧化锆)、美国钻(钇铝榴石)、瑞士钻(钛酸锶)、莫桑石等。许多材料按比例切磨加工,会显示出与钻石同等甚至更高的亮度和火彩,完全可鱼目混珠。更为严重的是:越来越多的合成钻石、新方法处理钻石不断进入市场,对它们的正确鉴定,即使是专业的珠宝鉴定师,有时也会感到困惑。钻石的准确鉴定需要专业人员借助各种鉴定仪器才能完成。但一般来讲,钻石鉴别需重点解决下列的问题:①钻石与仿制品的鉴别;②天然钻石与合成钻石的鉴别;③未处理钻石与处理钻石的鉴别。
(一)钻石与仿制品的鉴别
市场上钻石的仿制品很多,典型的有钇铝榴石、钆镓榴石、锆石、立方氧化锆、钛酸锶、合成金红石、合成碳硅石(莫桑石)、玻璃等。但和其他宝石相比,钻石与仿制品的真假鉴别相对较容易(表6-1),最方便的方法是借助于热导率仪就能将钻石与其他仿制品区别开来,因为除莫桑石外,所有钻石仿制品的热导率都远比钻石低。在此基础上,重点解决莫桑石的鉴别问题即可。
表6-1 钻石及其仿制品的物理性质
续表
莫桑石是1997年由美国C3公司生产并投放到市场的一种人造宝石,其化学成分是SiC。与其他钻石仿制品相比,它具有更大的欺骗性,原因在于其热导率较高,用传统的热导仪无法将它与钻石区分开来。其实,这种仿制品的鉴别并不太难,第一,这种材料是非均质体,并具有较大的双折射,用十倍放大镜便可将此区分开来;第二,利用已投入市场的反射率仪等,很容易将两者区别开来。
(二)天然钻石与合成钻石的鉴别
自从40多年前第一粒合成钻石问世以来,合成钻石的技术一直不完善,多数合成金刚石只具有工业用途,达到宝石级的很少,而且合成钻石成本比开采天然钻石昂贵,所以过去合成钻石很少流入市场,人们似乎高枕无忧,看到钻石理所当然地认为是天然的。但是近十多年,随着合成技术的不断提高,成本随之降低,产量成倍增长,品质越来越好,近无色干净者处处可见。合成钻石已开始冲击市场,当务之急是如何鉴别它们。基于现在的研究成果,天然钻石与合成钻石的鉴别可依据一些明显的特征综合对其作出鉴定(表6-2)。
表6-2 天然钻石与合成钻石的区别
(三)天然钻石与处理钻石的鉴别
由于客观原因,大多数天然产出的钻石均带有这样或那样的缺陷,有的甚至不能直接切磨成成品。为此,人们一直在努力将低级别钻石通过一系列方法进行处理,使其外观得到改善,使其质量明显提高,并最大限度地实现其价值。处理钻石的鉴别也就随之成为钻石鉴定中一个十分重要的方面。常见的钻石处理方法及其成品鉴别方法如下:
1激光处理
该方法是用激光消除钻石中的明显黑点、包裹体等,激光留下的通道用玻璃来充填。鉴定这种方法处理的钻石时,其中白色线状包裹体是其重要依据。
2辐射和加热处理
某些颜色较差的钻石可用辐射和热处理的方法使其颜色得到改善。对它作出正确鉴别需专门知识和仪器。残余放射性以及因辐射而产生的特殊颜色图案是最重要的鉴别标志。对辐射而产生的蓝色钻石,不导电是鉴别的重要依据。
3涂色处理
某些稍带**的钻石可在腰棱或亭部小面涂上蓝色而使**消退。鉴别的办法是先用清水或丙酮擦后再作检查。
4镀层处理
即在钻石上用合成金刚石方法镀上一薄层,它可增加重量,改善净度或成色。鉴别的办法是:放大检查或用浸液检查,镀层较易显现出来。
5拼合处理
钻石拼合处理常见有下列三种情况:①以合成无色蓝宝石作冠部粘合到钛酸锶的亭部上。用蓝宝石作冠部以保证硬度,用钛酸锶作亭部以提高火彩。这种拼合石可用热导仪来鉴别。②以钻石作冠,粘合到其他无色透明的材料上。冠部的钻石薄层以保证拼合石的光泽和硬度。这种拼合只测试冠部难以确定真假,必须测定亭部才能作出正确鉴别。③两颗较小的钻石粘合起来形成较大的钻石。这种拼合用热导仪不能作出鉴定,必须观察其拼合缝中存在的胶和气泡等特征。
三、质量评价
钻石的价格与钻石的品质息息相关。同样都是天然钻石,因品质的细微差别就会引起钻石价格的较大波动,可以说钻石是日常生活中价格差别最大的商品之一。其实,目前珠宝市场上,经常引起纠纷的往往不是在于钻石的真假与否,而绝大多数在于钻石品质的分歧上。由于大家希望所购钻石物有所值,由此希望制定一个统一的标准来对钻石的品质进行分级。经过国际钻石业的努力,已制定出一个目前在国际上较为统一的公认的钻石品质评价标准,它们是:克拉重量(carat weight)、颜色(color)、净度(clarity)和切工(cut)。由于这4个评价标准的英文字母均以“C”开头,所以行业中习惯将此称为“4C”标准。
(一)克拉重量(carat weight)
1重量的表示
克拉 (carat) 公制克拉是表示钻石重量最常用的单位,常简称为克拉,习惯上克拉缩写成“ct”。在宝石学中,1ct=02g=200mg。
分 (point) 对于不足1ct 的钻石,其重量常用分来表示,通常写成 pt。宝石学规定1ct的1/100为1pt,即1ct=100pt。
格令(grains) 25pt称1格令。这个单位用来表示钻石的近似重量,例如1/2ct的钻石称大约2格令等。
每克拉多少颗 对于小的钻石,行业中习惯不说其重多少克拉或多少分,而是用每克拉有多少颗表示。例如一包钻石共有50颗,大小近乎一致,总重量1ct,在描述这批钻石时说“50颗/克拉”,而不说每颗2pt,因为每颗小钻石的重量不可能完全相同。
2钻石的称重
对于未镶钻石,其重量可用天平精确称得。但天平有许多种,每种天平的精度存在差异,因此,我们在使用天平时,还是要十分注意天平的精度。不过目前宝石行业中使用的专门电子克拉天平,其精度可达到0001ct,完全能满足要求。对于已镶的钻石,其重量的精确测定就存在困难了。一般的做法是根据其大小尺寸,对其作出初步的估算。其中关键在于钻石切割精度,精度越高,其重量估算就越精确,反之,则可能存在较大误差。常用的计算公式如下:
标准圆钻 重量=平均直径 2 ×高度×00061
椭圆钻 重量=平均直径 2 ×高度×00062
心形钻 重量=长×宽×高×00059(长︰宽)
祖母绿形钻 重量=长×宽×高×00080(100︰100)
×00092(150︰100)
×00100(200︰100)
×00106(250︰100)
马眼形钻 重量=长×宽×高×000565(150︰100)
×000580(200︰100)
×00585(250︰100)
×000595(300︰100)
梨形 重量=长×宽×高×000615(125︰100)
×000600(150︰100)
×000590(166︰100)
×000575(200︰100)
上述长度、宽度和高度等可用各种量具、卡规等测量,单位是毫米(mm)。钻石的重量单位是克拉(ct)。
3克拉重量与价格
对于成品钻而言,在其他条件(颜色、净度和切工)都相同的情况下,重量越大,其价格越高。在钻石行业中,钻石的价格是用“每克拉多少价”(price per carat)来表示。通常缩写成PC。例如,价格是¥22000元/ct,一颗重050ct的钻石,那么,其售价就为050×22000=11000(元)。
由于自然界越大的钻石越稀少,同时,社会上广泛存在拥有1ct、2ct、3ct的钻石比拥有稍小于1ct、2ct、3ct整数钻石更加感到荣幸的心理。这两种因素被清楚地反映在每颗钻石价格报价上。因而,市场上钻石价格与克拉重量之间并不是简单的线性关系,而是一条在克拉溢价处出现台阶的线(图6-3)。
图6-3 钻石价格与重量的关系示意图
溢价台阶还出现在025ct、050ct和075ct重量处,更大的则出现在1、2、3等整克拉处
(二)颜色(color)
1钻石颜色的等级特征
基于行业习惯,钻石根据颜色可划分为两个系列,一个是带颜色的异彩钻石系列(fancy colour diamonds),如红色、蓝色、紫色和棕色等。这个系列的钻石在自然界非常稀少,故在价值上也较高,评价需单独进行。另一个是数量相当大的无色系列,这个系列的钻石要求越是无色,价值越高。但由钻石中或多或少含少量氮等杂质元素,因而或多或少带**调。为了评价这个系列的钻石,国际上提出了许多分级体系。目前世界上主要的钻石分级体系是GIA和CIBJO的分级体系。GIA的分级体系是一英文字母体系,这一体系从最好颜色D开始,终结于Z。CIBJO分级体系则用简单的术语来描述色级。中国传统的钻石分级体系则采用100制的方法,即将最好的颜色定为100,其他依次类推。
2颜色分级的实践
钻石的成色分级一般要求有以下4个基本条件,即一套标准比色石、合适的灯源、中性的分级环境以及经验。
标准比色石 每一个实验室应有一套共7颗的比色钻石,称为标准 “比色石”(master stones)。其中的每一颗钻石都代表一种标准“颜色”,对应于一个色级的下限或上限。将一颗未知钻石的颜色与某一比色石相比,即能得到该钻石的颜色色级。需要注意的是,一个色级代表着一个颜色范围,许多被评为同一色级的钻石,经仔细观察,其色调仍有细微差异。
合适的光源 在颜色分级时,需要一种标准的、无紫外线的人造光源。钻石颜色分级中推荐使用的光源是5000/5500K,这种光源是在相对于绝对零度(-273℃)温度下产生的。
中性的分级环境 分级的环境也会影响到对钻石颜色的感觉。来自非标准屋顶灯的散射光和从四周窗户进来的日光都会使钻石发荧光,另外,如墙壁及顶棚的颜色色调比较鲜艳,也会妨碍眼睛观察并影响分级,要求有一个中性的分级环境,在黑暗房间中使用标准光源是最理想的,或是一间半暗的房间,其墙壁和顶棚为中性淡色。
经验 钻石分级要求有经验丰富的钻石分级师,掌握各种分级标准,准确地为钻石分级。
3成色分级步骤
成色分级一般采用比色法,即将待评价钻石与标准的比色样石进行比较,以决定待比未知样品的成色级别。
4颜色与价格
钻石的颜色对其价格影响较大。在其他条件(重量、净度和切工)相同的情况下,颜色级别越高,其价格越高。例如,1998年的国际报价,重量为1ct、净度为VS、切工相同,成色为D的钻石价格约为15000美元/ct,颜色为K的钻石,价格约为5000美元/ct,相差近3倍。
(三)净度(clarity)
1净度的分级体系
目前世界各国流行的钻石净度分级体系主要依据钻石内部及外部瑕疵的多少。钻石净度分级在国际上有统一的名称、标志及颜色。外部瑕疵统一用绿色笔标识,主要有多余刻面、原晶面、伤痕、小白点、磨痕、磨痕等。内部瑕疵特征统一用红色笔标识,主要有毛边、碎伤、破洞、缺口、云状物、羽状裂纹、结晶包裹体、内部生长线等。
2净度分级的必要条件
清洁 由于钻石具有亲油性,在检测前至关重要的是将所有的油脂和脏物从钻石表面清除掉,否则将影响评价结果;
放大倍数 对净度分级,国际上约定采用经过校正的10倍放大镜;
照明 要求有尽可能多的光进入钻石亭部。
3净度分级的步骤
首先,每个小面逐一检查;然后确定净度的级别。需要考虑的主要因素如下:
包裹体数量 包裹体的数量越多,净度级别越低。
包裹体大小 包裹体越大,钻石的亮度越低,净度级别越低。
包裹体位置 包裹体所在位置越靠中部,对净度的影响越大。
包裹体明亮度 包裹体越暗,其清晰度越高,因而净度级别越低。
包裹体类型 若别的因素相同,那么,具有相似大小和位置的模糊的云雾比暗色晶体对净度的影响小。
(四)切工(cut)
为了最大限度地体现钻石的美,按理想比例精确加工十分重要。钻石的各个部分都要求有一定的比例。圆多面型钻石切工分级的评价指标有:台面百分比、冠部角度、亭部深度百分比、腰部厚度、尖底大小尺寸、修饰(指抛光程度和对称程度)度等。具体内容如下:
台面大小的估计 台面宽度约占整个腰直径的56%。
冠角 在理想琢型中,有三种琢型其冠角大致都在33°~34°30′之间。
冠部高度 约占腰部直径的144%。在评价切工时,一般不单独评价冠部高度,它主要受台面大小和冠角的控制。
腰棱厚度 几乎所有的圆多面型钻石的腰棱厚度变化都是有16处最厚16处最薄,这取决于做工的对称性。沿着钻石的腰棱线观察,可以很容易地观察到波浪形腰棱。
亭部深度 亭部深度一般约为腰部直径的43%。
底面 一般50分以上的钻石,底部都要求有小面,这种钻石共有58个面。底面只是一个非常小的面,要求位置正。若底面偏离中心,会造成部分漏光的现象。
切工的好坏对价格影响极大,美国ALMatlins (1999)认为,切工是4C中对钻石价格影响最大的,而我国钻石消费者对此往往不太重视,因此一些珠宝商往往将成色和净度尚好,但切工低劣的钻石销售给消费者,并由此给消费者带来损失,应引起高度重视。
四、矿床成因及产地
1矿床成因
构成钻石的矿物金刚石是如何形成的?至今仍存在争议。到目前为止,已提出的相关假说有:地幔捕获晶成因说、幔源岩浆结晶说、陨石冲击成因说、油储爆破成因说和变质成因说等。地球科学结合现代科学实验研究表明,上述形成金刚石假说均可能是正确的,但达到宝石级的金刚石——钻石只产于金伯利岩、钾镁煌斑岩两种类型原生矿以及它们的次生砂岩之中。
根据对所含包裹体的研究,钻石的形成温度为900~1300℃,压力为45~60GPa,相当于地球深处130~180km的深度。根据包裹体测年分析,钻石的形成年代通常比携带它至地表的金伯利岩或钾镁煌斑岩的年代要早得多,如南非金伯利钻石矿,金伯利岩形成于距今90~100Ma,而该矿床中的钻石却形成于3300Ma前。世界各地的钻石矿均具有相同的特征,因此,可以认为钻石是在较古老的地质历史时期形成于地幔深处,在后期火山活动中,被金伯利岩浆或钾镁煌斑岩岩浆捕获,被带至地表,并赋存在金伯利岩和钾镁煌斑岩中,形成钻石原生矿。原生矿经过风化剥蚀作用,钻石被带至河流或滨海环境沉积下来,则形成钻石的次生砂矿。到1871年为止,全球所有的钻石均发现于次生砂矿,至今次生砂矿仍是世界钻石的主要来源。第一个钻石原生矿于1870年发现于南非的金伯利城,以后相继在博茨瓦纳、刚果(金)、澳大利亚、俄罗斯、巴西和中国等发现金伯利岩型或钾镁煌斑岩型原生钻石矿床。
2产地
到18世纪为止,除了少数钻石开采自婆罗洲外,大部分钻石开采自印度,包括历史上几乎所有的名钻。南美大陆的巴西于1725年发现钻石,此后一百多年的历史中,巴西的钻石产量居世界首位,这一格局直到19世纪末期才被南非钻石的大量发现所打破(周祖翼等,2001)。
1866年,在南非Orange附近,人们发现了第一颗“尤利卡”钻石,成千上万的人因此涌到此处淘沙寻找钻石。逆河而上,历经4年之久,人们终于在金伯利城旁的Dutoits⁃pan岩筒中发现产钻石的母岩——一种蓝绿色的喷出岩,并命名其为金伯利岩。今天,人们在南部非洲找到了成千上万个金伯利岩筒,但大多数并不含钻石,或虽有钻石产出,但由于品位太低而无开采的工业价值。著名的南非钻石矿有金伯利矿和普列米尔矿等。其他如刚果(金)、博茨瓦纳、俄罗斯西伯利亚雅库特、坦桑尼亚的姆瓦杜伊和我国辽宁的瓦房店等,都是十分典型的金伯利岩型钻石矿床产地。
1979年在澳大利亚发现了含金刚石的钾镁斑岩,又称超钾金云火山岩,这是一种新的金刚石产出类型。这种类型是后期的岩浆岩侵入到早期的火山岩中,使侵入岩与火山岩紧密共生。钾镁煌斑岩属铁质、偏碱性至强碱性基性-超基性岩。澳大利亚的煌斑岩岩管不仅为寻找新的金刚石资源提供了基础资料,而且是红钻的重要产地。为了避免坠石的危险,今天金伯利岩筒钻石的开采已从露天开采转为地下开采。钻石的回收则采用了一系列特殊的分选工艺和设备,如回旋破碎机、碾磨机、重介质分选法、旋转淘洗盘、油脂回收、磁选、X射线分选机等。各金伯利岩筒的钻石品位变化不等,一般每2吨含钻石金伯利岩产出1克拉钻石,在某些岩筒,每吨矿石提取02克拉钻石即具开采价值。金刚石砂矿是世界上金刚石的主要来源。世界各国砂矿中金刚石储量约占世界金刚石总量的40%,但约占总产量的60%。金刚石砂矿包括滨海砂矿、河流冲积砂矿和残坡积砂矿,分布在寒武纪、晚古生代、中生代和新生代等各个地质历史时期。著名的南非维特瓦特斯兰德含金刚石砾岩、南非普列米尔和博茨瓦纳的奥拉帕岩筒上的残积砂矿,都是金刚石砂矿的重要产地。我国湖南沅江流域两侧也发现有工业价值的金刚石砂矿分布。金刚石砂矿的开采除了采用传统的淘沙方法外,主要的方法和工具有船上回收(挖泥船)、吸扬式挖泥船、河流改道、海上开采等。
目前在世界上进行商业性生产钻石的国家有20多个,但产量居前五位的钻石生产国依次是澳大利亚、刚果(金)、博茨瓦纳、俄罗斯、南非。其他生产钻石的国家有安哥拉、巴西、中国、科特迪瓦、加纳、几内亚、圭亚纳、印度尼西亚、利比亚、莱索托、纳米比亚、坦桑尼亚、委内瑞拉、中非共和国、塞拉里昂、印度、美国等。中国于1965年先后在贵州和山东找到了金伯利岩和钻石原生矿床。1971年辽宁瓦房店找到钻石原生矿床。目前仍在开采的两个钻石原生矿床分布于辽宁瓦房店和鲁中蒙阴地区。钻石砂矿则见于湖南沅江流域、西藏、广西以及跨苏皖两省的郯庐断裂等地。
学习指导 钻石被称为宝石之王,是国际珠宝市场占有率最高的宝石品种。本任务中有关钻石的基本性质(包括结晶学性质、化学成分、物理性质和包裹体特征等)必须熟记。钻石鉴定重点需要掌握三个方面的内容:一是钻石与仿制品的鉴别;二是天然钻石与合成钻石的鉴定;三是未处理钻石与处理钻石的鉴别。钻石质量主要掌握4C评价标准和有关方法。对于钻石与金刚石的关系、钻石的成因及产地等也必须有充分的了解。
练习与思考
1何为钻石?钻石与金刚石的关系如何?钻石为何被称为宝石之王?
2钻石的基本性质是什么?
3何为Ⅰ型钻石?何为Ⅱ型钻石?确定的依据是什么?
4简述钻石为何硬度是自然物质中最大的,但韧度并不是最高的原因。
5钻石的热导率是自然物质中最高的,它的具体用途是什么?
6简述如何充分应用钻石三个方向完全的解理特性。
7何为钻石的4C评价?具体包括哪些内容?
8钻石的鉴别主要解决哪些问题?
9克拉重量如何表示?如何称重?钻石重量与价格的关系如何?
10如何大致确定钻石的颜色?钻石颜色分级的条件是什么?
11净度有哪些分级体系?其适用性如何?净度分级的条件是什么?
12确定钻石净度主要考虑哪些因素?
13对于十分常见的圆多面型切工钻石而言,评价其切工好坏的主要指标有哪些?
14钻石的主要仿制品有哪些?如何鉴别它们?
15处理钻石和合成钻石如何鉴别?
16钻石拼合石有哪几种情况?如何鉴定钻石拼合石?
17何为莫桑石?它给钻石市场带来的影响是什么?
18简述钻石的成因,说明目前国际主要的钻石产地。
碧玺的绿色有很多细分品种:深绿色的铬碧玺、近年爆火的蓝绿色的拉贡碧玺、黄绿碧玺、清新的薄荷绿碧玺、小众的绿色帕拉伊巴碧玺等等。
如果说有一种颜色最贴近大自然,且会让人们身心舒畅,那一定非绿色莫属。心理学家普遍认为,绿色的波长比较长,可以让人产生平静的感觉,这也是为什么当人感到疲惫的时候,看到绿色能感到轻松不少。
但在珠宝中,提到绿色,往往人们的第一反应都是豪横。实际上在宝石和玉石中,绿色不仅仅是一种“豪横”的颜色,根据饱和度不同绿色宝石也有很多种不同的视觉感受,今天我们就来盘点一下珠宝世界里“可盐可甜”的绿色。
极为罕见
绿色和蓝绿色钻石通常都是由于钻石形成过程中,长期受天然辐射作用影响,使钻石的电子结构发生变化而形成的。绿钻极为罕见,它的绿色往往只分布在最表面的那一小层上,稍加切磨就被去掉了,通体浓绿的绿钻简直是万里挑一。
即使是宝石级的绿钻,能呈现明显的绿色体色的也是极少。当淡绿色的绿钻中带有微微的一丝蓝调,会形成一种薄荷绿色的绿钻。祖母绿,国际珠宝界公认的“五大名贵宝石”之一,是绿柱石家族中的“顶梁柱”,因其特有绿色让人一见倾心,是绿色宝石中最著名的一种。
一、传统宝石学颜色成因
传统宝石学主要基于宝石的化学成分和外部构造特点,将宝石颜色划分为自色、他色和假色。
1自色
由作为宝石矿物基本化学组分中的元素而引起的颜色,这些致色元素多为过渡金属离子,如铁铝榴石、绿松石、孔雀石、蓝铜矿等。
2他色
由宝石矿物中所含杂质元素引起的颜色。他色宝石在十分纯净时呈无色,当其含有微量致色元素时,可产生颜色,不同的微量元素可以产生不同的颜色。如尖晶石,其化学成分主要是Mg Al2O4,纯净时无色,含微量的Co元素时呈现蓝色,含微量Fe元素时呈现褐色,而含微量Cr元素时呈现红色。另外同一种元素的不同价态可产生不同的颜色,如含Fe3+常呈棕色,含Fe2+则呈现浅蓝色。同一元素的同一价态在不同的宝石中也可引起不同的颜色,如Cr3+在刚玉中产生红色,在绿柱石中产生绿色。
3假色
假色与宝石的化学成分和内部结构没有直接关系,而与光的物理作用相关。宝石内常存在一些细小的平行排列的包裹体、出溶片晶、平行解理等。它们对光的折射、反射等光学作用产生的颜色就是假色。假色不是宝石本身所固有的,但假色能为宝石增添许多魅力,这一方面的具体内容已在宝石的特殊光学效应一节里进行了较详细的叙述。
二、近代科学宝石颜色的成因
随着科学的发展,人们发现宝石的颜色不仅仅取决于其化学组成,更重要的是取决于其内部结构。近代科学颜色成因理论打破了传统颜色成因理论中的自色、他色的界限,从晶体场理论、分子轨道理论和能带理论等的角度揭示了宝石颜色成因的本质。
(一)离子内部的电子跃迁呈色(晶体场理论)
晶体场理论研究的对象是处于宝石晶体结构中的过渡金属元素和某些镧系、锕系元素。它把晶体场看成一种正负离子间的静电作用,将带有正电荷的阳离子称为中心离子,把带有负电荷的阴离子和络阴离子统称为配位离子,或简称配位体。晶体场理论与其他理论的区别在于,它把配位体处理为一个点电荷,点电荷作用的实质是产生静电势场力,这种静电势电场又被称之为晶体场。晶体场跃迁包括d-d跃迁和f-f跃迁。元素周期表中第四、五周期的过渡金属元素分别含有3d和4d轨道,镧系和锕系元素分别含有4f和5f轨道。在配位体的存在下,过渡元素五个能量相等的d轨道和镧系元素七个能量相等的f轨道分别分裂成几组能量不等的d轨道和f轨道。当它们的离子吸收光能后,低能态的d电子或f电子可以分别跃迁至高能态的d或f轨道,这两类跃迁分别称为d-d跃迁和f-f跃迁。由于这两类跃迁必须在配位体的配位场作用下才可能发生,因此又称为配位场跃迁。
过渡金属元素的d-d电子跃迁引起宝石颜色变化的最好例子是红宝石、祖母绿及变石,图1-4-11为三者的紫外可见吸收光谱。
图1-4-11 红宝石、祖母绿及变石的UV吸收光谱
A——红宝石;B——变石C——祖母绿
红宝石中致色离子为Cr3+,从Cr3+的3d3电子组态导出的自由离子谱项为:基谱项为4F,激发谱项为4P、2G、2D等。八面体场中,由基谱项4F分裂为三个能级,即4A2、4T2、4T1。红宝石的吸收光谱特征表明,在可见光区域内,出现两个强而宽的吸收带,分别由4A2→4T2、4A2→4T1能级之间的跃迁所致。d电子在4A2→4T2、4A2→4T1能级间跃迁的过程中,分别吸收225和302e V能量,其余吸收后的残余能量组合成红宝石的颜色(见图1-4-12)。
祖母绿吸收光谱特征表明(见图1-4-13),在可见光区域内,出现两个强而宽的吸收带,分别由4A2→4T2、4A2→4T1能级之间的跃迁所致。d电子在4A2→4T2、4A2→4T1能级间跃迁的过程中,分别吸收204和292e V能量,其余吸收后的残余能量组合成祖母绿的颜色。
图1-4-12 红宝石的UV吸收光谱
图1-4-13 祖母绿的UV吸收光谱
变石的化学式组成(BeAl2O4)介于红宝石和祖母绿之间,影响铝氧八面体的金属离子只有Be一种,因此Cr3+离子与周围配位体电场强度低于红宝石而高于祖母绿,它的金属氧离子之间化学键的性质也介于红宝石和祖母绿之间。变石中Cr3+离子4A2→4T2跃迁吸收的能量为216eV,介于红宝石(225eV)和祖母绿(204eV)之间,而4A2→4T1跃迁所吸收的能量(298eV)与红宝石和祖母绿相差不大。在可见光区域内,变石中红光和蓝绿光透过的几率近于相等,于是外部环境的光源条件(色温)就决定了变石的颜色。例如,色温较高的日光灯中蓝绿色成分偏多,导致变石中蓝绿色成分的叠加,而呈现蓝绿色。反之,白炽灯光源中色温偏低,导致变石中红色成分的叠加,而呈现红色(见图1-4-14)。
图1-4-14 变石的UV吸收光谱
(二)离子间的电荷迁移呈色(分子轨道理论)
分子中单个电子的状态函数称为分子轨道。根据分子轨道模型,认为一个分子中所有的轨道都扩展至整个分子上。占据这些轨道的电子不是定域在某个原子上,而是存在于整个分子之中。根据分子轨道理论,电子可以从这一个原子轨道上跃迁到另一个原子轨道上去,这种电子跃迁称为电荷迁移。
某些分子既是电子给体,又是电子受体,当电子受辐射能激发从给体外层轨道向受体跃迁时,就会产生较强的吸收,这种光谱称为电荷迁移光谱。伴随电荷转移,在吸收光谱中产生强吸收带,如果电荷转移带出现在可见光范围内,则产生相应的颜色。电荷迁移有多种形式,它可以发生在同核原子价态之间,也发生在异核原子价态之间。
1金属—金属原子间的电荷迁移
金属—金属原子间的电荷迁移可分为同核原子价态之间的电荷迁移和异核原子价态之间的电荷迁移。
(1)同核原子价态之间的电荷迁移
同核原子价态之间的电荷迁移来自不同价态的同一过渡元素的两个原子之间的相互作用,当两个不同价态的同核原子分布在不同类型的格点中,且两者之间有能量差时,电子可发生转移,并产生光谱吸收带,从而使宝石呈现颜色。堇青石的蓝紫色的产生是这种情况的典型实例。在堇青石中,Fe3+和Fe2+分别处于四面体和八面体位置中,两个配位体以共棱相接,当可见光照射到堇青石时,其Fe2+的一个d电子吸收一定能量的光跃迁到Fe3+上,此过程的吸收带位于17000cm-1(相当于黄光),使堇青石呈现蓝色。蓝色、绿色电气石和海蓝宝石也是由于Fe2+-Fe3+间的电荷迁移而呈的色。
(2)异核原子价态之间的电荷迁移
图1-4-15 蓝宝石的UV吸收光谱
异核原子价态之间的电荷迁移的典型实例是蓝宝石(见图1-4-15),在蓝宝石中Fe2+与Ti4+分别位于相邻的以面相连接的八面体中,Fe、Ti离子的距离为0265nm,二者的d轨道沿结晶轴重叠,当电子从Fe2+中跑到Ti4+中时,Fe2+转变为Fe3+,而Ti4+转变为Ti3+,即Fe2++Ti4+→Fe3++Ti3+。电荷迁移的这一过程,伴随着的光谱吸收能为211eV,吸收带的中心位于588nm,其结果是在蓝宝石的c轴方向只透过蓝色,呈现蓝色。当两个八面体在垂直c轴方向上以棱相连接时,这时电荷转移吸收带略向长波方向位移,使蓝宝石在非常光方向上呈现蓝绿色。异核原子价态之间的电荷迁移,也是蓝色黝帘石、褐色红柱石呈色的原因。
2其他类型的电荷迁移
除了上述两种类型的电荷迁移外,还有非金属与金属原子之间的电荷迁移和非金属与非金属原子之间的电荷迁移。
宝石中常见的非金属与金属原子之间的电荷迁移为O2-→Fe3+。02-与Fe3+之间的电荷迁移对可见光光谱中紫色、蓝色光强烈吸收,导致宝石呈金**。金**绿柱石、金**蓝宝石的颜色均由02-→Fe3+之间的电荷迁移引起。
(三)能带间的电子跃迁呈色(能带理论)
能带理论是研究宝石材料的一种量子力学模式,是分子轨道理论的进一步发展。它较好地解释了天然彩色钻石的呈色机理及其金刚光泽的产生原因。能带理论认为:固体中电子并非束缚于某个原子上,而为整个晶体所共有,并在晶体内部三维空间的周期性势场中运动。电子运动时的能量具一定的上下限值,这些电子运动所允许的能量区域就称之为能带。它与晶体场理论和分子轨道理论的区别是:晶体场理论和分子轨道理论主要适用于局部离子和原子团上的电子,电子是定域的,是局部态之间的跃迁;能带理论则与之相反,它认为电子是不定域的,是非局部态之间的电子跃迁。能带又可分为:①导带(又称空带),由未填充电子的能级所形成的一种高能量带。②带隙(又称禁带),价带最上部的面(又称为费米面)与导带最下部面之间的距离,禁带的宽度随矿物键性的不同而不同;③价带(又称满带),由已充满电子的原子轨道能级所构成的低能量带,当自然光通过宝石时,宝石将吸收能量使电子从价带跃迁至导带,所需的能量取决于带隙的宽度,即价带顶部与导带底部间的能量差,又称能量间隔,一般用ΔEg表示。不同的宝石由于能量间隔不同而呈现不同的颜色。与晶体场理论一样,电子从导带返回至价带的过程中,其吸收的能量仍以光的形式发射出来。例如,Ⅱa型钻石带隙的能量间隔(ΔEg=54e V)大于可见光的能量,即电子从价带跃迁至导带时吸收的能量为54e V,故吸收主要发生在紫外光区,对可见光能量无任何吸收,故理论上,IIa钻石为无色(见图1-4-16);由于Ⅰb型钻石中含有微量的孤氮原子,氮原子外层电子(1s22s22p3)比碳原子(1s22s22p2)多一个,额外的电子则在禁带中生成一个杂质能级(氮施主能级),由此缩小了带隙的能量间隔,电子从杂质能级跃迁至导带所吸收的能量为22e V(564nm),故该类钻石显橙**(见图1-4-17)。
(四)晶格缺陷呈色
宝石晶体结构中的局部范围内,质点的排列偏离其格子状构造规律(质点在三维空间作周期性的平移重复)的现象,称为晶格缺陷。其产生原因与宝石晶体内部质点的热振动、外界的应力作用、高温高压、辐照、扩散、离子注入等有关。
例如,在上地幔的高温高压环境中结晶出的金刚石晶体,被寄主岩浆(金伯利岩岩浆或钾镁煌斑岩岩浆)快速携带到近地表时,温压条件的迅速改变和晶体与围岩物质的相互碰撞,则易导致侵位金刚石晶体的结构局部发生改变,并诱发晶格缺陷,使一部分原本无色的金刚石的颜色发生改变,从而形成褐黄、棕**及粉红色金刚石。
图1-4-16 Ⅱa型钻石中电子跃迁图示
图1-4-17 Ⅰb型钻石中电子跃迁图示
色心作为晶格缺陷的一种特例,泛指宝石中能选择性吸收可见光能量并产生颜色的晶格缺陷。属典型的结构呈色类型。色心的种类十分复杂,但最常见的为电子心(F心)、空穴心(V心)及杂质离子心。
1电子心(F心)
电子心(F心)是由宝石晶体结构中阴离子空位引起的。就整个宝石晶体而言,当阴离子缺位时,空位就成为一个带正电的电子陷阱,它能捕获电子。如果一个空位捕获一个电子,并将其束缚于该空位,这种电子呈激发态,并选择性吸收了某种波长的能量而呈色。因此,电子心是由一个阴离子空位和一个受此空位电场束缚的电子所组成的。例如,紫色萤石晶体中的氟离子离开正常格位,而形成一个阴离子空位(缺少负电荷),该结构位显示正电性,形成一个带正电的电子陷阱。为了维持晶体的电中性,阴离子空位必须捕获一个负电子,由此产生了颜色。
2空穴心(V心)
空穴心(V心)是由晶体结构中阳离子缺位引起的。从静电作用考虑,缺少一个阳离子,等于附近增加了一个负电荷,则附近一个阴离子必须成为“空穴”才能保持静电平衡。因此,空穴心是由一个阳离子空位捕获一个“空穴”所组成的。例如,烟晶中以类质同象形式替代Si4+的Al3+杂质,在晶格位中形成正电荷不足的位置(正电荷陷阱),为了维持暂时的电中性,Al3+离子周围必须有相应的正一价阳离子存在。当水晶受到辐照后,与最近邻的O2-将失去一个多余的电子,而残留下一个空穴,形成空穴心(V心)。利用辐照源的带电粒子(加速电子、质子)、中子或射线辐照宝石,通过带电粒子、中子或Y射线与宝石中离子、原子或电子的相互作用,最终在宝石中形成电子-空穴心或离子缺陷心。如辐照处理钻石、蓝黄玉等,辐照的本质是提供激活电子、格位离子或原子发生位移的能量,从而形成辐照损伤心。
除无色透明外,钻石也可有许多种颜色,品质达到首饰级的有色钻石被称为彩色钻石,彩色钻石的颜色有:**、绿色、蓝色、褐色、粉红色、橙色、红色、黑色、紫色等,彩色钻石数量稀少,因此价值也很高,特别是那些色调鲜艳,饱和度较高的彩色钻石,更是价值连城。历史上最负盛名的“希望”、“德累斯顿”等名钻都是罕见的色调鲜艳、高饱和度的钻石。
钻石的呈色机理是一个相当复杂的问题。多年来一直是许多研究结构关注的焦点。在理想的状态下,钻石由于是完整的等轴晶系晶体,在可见光范围内没有选择性吸收,因此表现为无色。然而天然生成的无色纯净的钻石是极为稀少的,极大部分钻石因为在其漫长的生长过程中,受到外界生长环境的影响,而使它的晶格受到损伤,致使出现深浅不一的颜色。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)