钻石晶体在生成过程中总会或多或少搀杂其他元素,甚至在钻石晶体中还会搀杂地幔矿物,这些地幔矿物均以包裹体的形式存在,例如石榴子石(Garnet)和橄榄石(Olivine)等。在钻石晶体中最常见的搀杂元素是氮,极少数钻石晶体中搀杂有硼。氮和硼元素与碳元素的化学性质最为近似,在钻石晶体生长过程中可替代碳元素。搀杂氮元素者呈现**;搀杂硼元素者呈现蓝色,并且使得钻石成为电的半导体。根据钻石晶体中是否含氮元素,钻石可分为两种类型:Ⅰ型钻石,含氮;Ⅱ型钻石,不含氮。钻石中是否含氮可以由红外光谱来确定:两种钻石在红外波长范围具有特征吸收峰,Ⅰ型钻石在1400~1000 cm-1范围具有氮的吸收峰,Ⅱ型钻石因为不含氮而不具有氮的吸收峰。
图1-6 天然Ⅰa型**钻石晶体和刻面**钻石(Robert Weldon/Courtesy of Aurora Gem Collection)
Ⅰa型钻石的**是由聚合氮原子引起的
钻石又根据含氮的状态不同分为Ⅰa和Ⅰb型。
1Ⅰ型钻石
当钻石刚生成时,晶体内的氮元素是以单原子的离散状态存在。在漫长地质年代的高温高压作用下,钻石晶体内的单个氮原子逐渐聚合在一起形成氮原子的聚合体。氮原子的聚合体可能是2个、3个或4个氮原子的聚合体,也可能更多。具有氮原子聚合体的钻石属于Ⅰa型钻石。Ⅰa型钻石占天然钻石的绝大部分,约占98%。Ⅰa型钻石的颜色与含氮量有关,含氮量极低时,钻石为无色,含氮量越高**的饱和度越高。图1-6所示为一颗亮圆形切工的彩**钻石和一颗天然**钻石晶体。
(1)Ⅰa型钻石
Ⅰa型钻石中存在诸多种类的氮聚合体,对钻石颜色产生贡献的是由3个氮原子组成的聚合体,其余氮聚合体在可见光范围不产生吸收,对钻石的颜色没有贡献。3个氮原子组成的聚合体是一个颜色中心(简称色心),记作N3色心,是钻石中最重要的色心。
Ⅰa型钻石晶体中的2个氮原子聚合体被称为A 聚合体,4个氮原子聚合体为B聚合体。Ⅰa型钻石晶体中的A 聚合体和B聚合体的比例不尽相同。根据A 聚合体和B聚合体的比例,Ⅰa型钻石又可细分为几个次类型:①当Ⅰa型钻石中只有A 聚合体时,为ⅠaA型;②当只有B聚合体时,为ⅠaB型;③当Ⅰa型钻石中同时具有A 聚合体和B聚合体并且比例相近时,为ⅠaA B型;①当Ⅰa型钻石的A 聚合体多于B聚合体时,为ⅠaA> B型;⑤当A 聚合体远远多于B聚合体时,为ⅠaA>>B型;⑥当Ⅰa型钻石的A 聚合体少于B聚合体时,为ⅠaA< B型;⑦当A 聚合体远远少于B 聚合体时,为ⅠaA<<B型。Ⅰa型钻石的次类型可以由A 聚合体和B聚合体的红外吸收峰强度加以确定。
(2)Ⅰb型钻石
Ⅰb型钻石所含的氮元素以单原子的状态随机分布在钻石的晶体中,这些单个氮原子被称为离散氮原子。Ⅰb型钻石的含氮量很低,氮原子在钻石晶体之间的距离较大,即使在很长地质年代的高温高压作用下也不能聚合在一起。Ⅰb型天然钻石极少,只占天然钻石的01%。未经高温高压处理的合成钻石几乎都属Ⅰb型。Ⅰb型钻石的颜色也与含氮量有关,含氮量越高**的饱和度越高。当Ⅰa型钻石和Ⅰb型钻石的含氮量相同时,Ⅰa型钻石的颜色饱和度要远小于Ⅰb型的饱和度。
2Ⅱ型钻石
Ⅱ型钻石不含氮元素,或含有可忽略不计的氮,但可能含硼元素,又分为Ⅱa型和Ⅱb型。
(1)Ⅱa型钻石
Ⅱa型钻石的氮元素含量小于10×10-6,不含有硼元素。Ⅱa型钻石约占天然钻石总量的2%。若Ⅱa型钻石没有任何晶体缺陷,则颜色为无色。许多Ⅱa型钻石呈现粉红色、红紫色和棕色,主要是由于晶体缺陷塑性变形所造成的。Ⅱa型棕色钻石经高温高压处理后可变成无色钻石或较浅的棕色及其他颜色。
图1-7 天然Ⅱb型蓝色钻石(Tino Hammid/Courtesy of Aurora Gem Collection)
北极光钻石集第7号,027ct; Ⅱb型钻石的蓝色是由搀杂硼元素造成的
(2)Ⅱb型钻石
Ⅱb型钻石含有微量的硼元素,呈现蓝色,如图17所示。Ⅱb型天然钻石十分罕见,价格相当昂贵。因硼原子外层有3个电子,在钻石晶体内产生1个电子空穴。这一电子空穴在钻石的能级中生成1个受子能带,可以吸收长波可见光,也可使 Ⅱb型钻石变成半导体。
钻石的简单分类如表1—l所列。Ⅰa型钻石大约占全部天然钻石的98%,颜色为无色到**。Ⅰb型钻石只占全部天然钻石的01%,颜色为无色到**。Ⅱa型钻石占全部天然钻石的2%,颜色为无色。Ⅱb型钻石只含硼不含氮,极为稀少,颜色为蓝色。
表1-1 钻石的简单分类
3鉴定特征
不同类型的钻石具有不同的红外吸收光谱,图1-8所示为典型的不同类型的钻石红外吸收光谱。Ⅰa型与Ⅰb型钻石红外吸收光谱的主要在1400~1000cm-1的波数区间有所区别:Ⅰa型钻石在1282cm-1处11有一A 聚合体的吸收峰,在1175cm-1处有一个B聚合体的吸收峰;Ⅰb型钻石在1344和1130cm-1处具有两个离散氮原子的吸收峰。Ⅱa型钻石在1400~1000cm-1的区间没有吸收峰。Ⅱb型钻石特征吸收峰位于2930,2800,2455和1300cm-1处。实际的钻石红外吸收光谱可能比图1—8所示的典型的钻石分类光谱要复杂得多,主要是由于钻石的类型可能有混合,另外,其他各种钻石晶体缺陷也可能产生红外吸收。
图1-8 不同类型钻石的红外光谱图
由于不同形式的氮可以同时存在于钻石之中,氮和硼也可能同时存在,钻石的类型也可以混合。当钻石中同时具有聚合氮和离散氮时,其类型为混合型Ⅰa+Ib。如果钻石中同时含有离散氮原子和硼原子,其类型应为Ib和Ⅱb的混合型Ib+Ⅱb,人工合成绿蓝色钻石常有这种混合类型。
由于含搀杂元素的种类和浓度的不同,不同类型的钻石对紫外和可见光的吸收也不同。Ⅰ型钻石在紫外波长范围的截止波长为330nm,Ⅱ型钻石的紫外截止波长为220nm。Ⅰ型钻石紫外截止波长较长的原因是由氮元素造成的,硼元素并不改变紫外截止波长的位置。另外,钻石搀杂氮的浓度对截止波长没有影响。
莫桑钻与钻石的区别是什么呢?我来给大家简单科普一下莫桑钻与钻石的区别。
1、重量:一般莫桑钻的重量比钻石更轻便一些,钻石的比重为352,而莫桑钻的比重仅322对未镶嵌的材料,用甲基碘比重液比重332)很容易将两者区分。
2、火彩:钻石的昂贵源于此独有诱人的火彩,色散指数火彩)0044,莫桑钻的魅力在于它高于钻石的色彩指数火彩)高达0104,在不同的环境中呈现的火彩闪烁高于钻石且呈七彩色。而且莫桑钻与天然钻石与合成钻石一样,特别是在阳光底下,火彩更加炫目夺人。
3、导电性:据GIA的报告,80%的莫桑石均为电导体。常见的白/浅**系钻石是不导电的天然钻石中仅蓝色、蓝灰色IIb型钻石具导电性),因此可用电导仪或者莫桑仪区分和鉴别钻石与莫桑石,不过普通的导热测钻笔是可以通过的。
4、硬度:真钻的硬度是摩氏10度,莫桑钻的硬度为925度。
5、价格:莫桑钻的价格有几百到几千不等,不同的价格代表不同的质量,而这其中的佼佼者当属魔星钻。
6、质量:莫桑钻的主石成色参差不齐,主石成色D-N色从高到低依次排序;钻石也是如此分级
而莫桑钻能真正达到D色的目前市场只有比利时魔星钻。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)