由于分类的标准难以达成一致,陨石的分类比较困难。分类标准包括化学组成、矿物组成、陨石的内部结构以及颜色等。根据分类依据的不同使得陨石的分类或简单或复杂,这与研究者的倾向性有关。20 世纪初叶,德国学者Rose依据陨石的矿物组成和结构对陨石进行了分类,其后奥地利维也纳大学的Tschermak 和维也纳自然历史博物馆的Brezina修改和扩大了Rose的分类,由Brezina在1904年提出,称为Rose-Tschermak-Brezina分类,将陨石分为8 大类、76 个亚类。该分类在20 世纪中期得到很好的使用 (Norton,2002)。但是终因该分类方法过于复杂而被新方法取而代之。1916年,英国博物馆的George TPrior根据陨石之间的化学和矿物学关系,使用铁-镍金属的变化和橄榄石、辉石中铁含量的变化,将陨石分为5 族、19 类,分别为球粒陨石、贫钙无球粒陨石和富钙无球粒陨石、石-铁陨石和铁陨石 (Norton,2002)。这一分类体系一直被沿用至20 世纪60年代。直至 1967年,美国加利福尼亚大学圣地亚哥分校的Klaus Keil和Kurt Fredriksson使用电子显微镜首次对陨石组成进行显微分析后,使得陨石学家能够精确地确定陨石的元素组成,特别是测量铁陨石中微量元素的组成,进而形成了一种全新的分类体系 (Norton,2002)。
陨石分类主要是根据它们的矿物学组成、化学组成与内部的结构构造。首先根据陨石中的金属含量,将陨石划分为三种主要类型:石陨石、石铁陨石和铁陨石。石陨石又根据有无球粒分为球粒陨石和无球粒陨石两类,还可以根据是否发生过熔融或分异作用将陨石分为分异型和未分异型两类 (表1-4)。未分异型陨石由那些从未被加热到熔融温度的微星体 (planetesimals)的碎屑所组成,它们的化学和同位素组成可以代表它们所源自母微星体总体的化学和同位素组成。分异型陨石是由那些熔融并分异为核、幔和壳的微星体碎屑所组成,这样的陨石不是行星的代表性样品,不能代表原始母体的组成。至少在一定程度上,未分异陨石反映了它们从中形成的太阳星云的组成 (Palme et al,2004),球粒陨石就是这样的未分异型陨石。进一步还可以根据陨石中所含有的主要矿物进行更详细的分类 (表1-5)。
表1-4 陨石的基本分类
表1-5 陨石的分类
续表
(据Brownlow,1996)
铁陨石由两种主要矿物组成,其一为铁纹石 (Kamacite,立方体心格子的α铁,又称自然铁),另一种为镍纹石 (taenite,立方面心格子的γ铁)。此外,常常还含有少量石墨、陨磷铁镍石、陨硫铬铁、陨碳铁、铬铁矿和陨硫铁等矿物。所以,除Fe和Ni外,在铁陨石中还含有少量 (<2%)Co、S、P、Cu、Cr和C等元素 (表1-5)。根据矿物晶体结构和Ni/Fe比值,铁陨石可以分为三个亚类:六面体式陨铁、八面体式陨铁和富镍中陨铁陨石。
石铁陨石大致由等体积的硅酸盐相和铁镍相组成,根据两相比例可以划分为橄榄陨铁和中铁陨铁两类。在橄榄陨铁中,橄榄石、陨硫铁和陨碳铁呈镶嵌状分布在铁镍金属之中,铁镍相中镍含量为 10%~15%。中铁陨石由大致相等的硅酸盐相和金属相组成,金属中含镍约 7%。
球粒陨石的最大特征是含有球体,具有球粒构造。球粒一般由橄榄石和斜方辉石组成,而球粒间的基质常为镍铁、陨硫铁、斜长石、橄榄石、辉石等组成。1967年,Van Schmus et al提出了球粒陨石的化学-岩相学分类。根据化学组成,将球粒陨石分为:普通球粒陨石 (O群),碳质球粒陨石 (C 群)和顽火辉石球粒陨石 (E 群)三群。普通球粒陨石又分为三个亚群,即 H (高铁)、L(低铁)和LL(低铁低金属)亚群。根据其产出地 (英文单词首个字母)将碳质球粒陨石分为 CI、CM、CO、CV、CK、CR、CH、CB八群。顽火辉石球粒陨石又可分为EH 和EL两个亚群。从E群到O 群再到 C群,橄榄石和辉石的FeO/(FeO+MgO)逐渐增高 (表1-6)。
表1-6 球粒陨石族的特征
续表
注:硅酸盐中 Fe/(Fe+Mg)、平均Mg/Si、平均Al/Si、平均 Ca/Si为特色摩尔数比值。 (据White,2013)
根据陨石的岩相学特征,球粒陨石又可以分为六种岩相学类型 (表1-7,Norton, 2002)。
表1-7 球粒陨石族的岩相学类型及特征
R:指具有浅色碎屑和深色基质的球粒陨石。碎屑的岩相学类型较高,为5~6型;基质的岩相学较低,为3~4型。
表1-7 表明,所有的球粒陨石组都可以根据化学和岩相学特征进行分类。化学类型代表了不同的小行星带的母体。岩相学类型反映母体上或内部发生的热变质作用或水溶蚀变作用。普通球粒陨石呈现出热变质作用,而碳质球粒陨石的各个亚类的岩相学类型从水溶蚀变到热变质作用都有。由表1-8,从 1~6,代表着递进的重结晶作用和变质作用。
表1-8 球粒陨石的重结晶和变质作用
平衡指共生矿物处于稳定状态;不平衡指在高温下一起受热但仍未达到稳定的共生矿物。
(据格拉斯,1986)
碳质球粒陨石,顾名思义,以其高含量的挥发元素与挥发性化合物,包括水、硫、稀有元素,以及大多数高含量的碳为特征。根据其化学成分,碳质球粒陨石又分为Ⅰ、Ⅱ、Ⅲ类 (表1-9),分别与表1-8 中的1、2、3 型球粒陨石对应。从Ⅰ类到Ⅲ类,碳、水与易挥发痕量元素逐渐减少。如果把该分析都换算为不挥发基,那么,碳质球粒陨石的成分实质上彼此相同。
表1-9 不同类型碳质球粒陨石的分析结果 单位:wB/%
(据米勒等,1982)
碳质球粒陨石,以其暗黑色或褐色、相对密度小,以及几乎不含镍-铁金属等特征,而易与其他陨石相区分。Ⅰ型碳质球粒陨石本身并不含陨石球粒,之所以把它与其他碳质球粒陨石归在一起,乃是因为它们彼此之间的化学性质与矿物成分相似。
在陨石球粒和一些被称为富钙铝包体、直径 1~2 mm 的不规则颗粒中,都发现高温矿物,与此相反,碳质球粒陨石的基质所含的却主要是低温矿物,如类似蛇纹石的层状硅酸盐。这正是碳质球粒陨石属于未分异型陨石的证据。
碳质球粒陨石含有多种不同种类的碳氢化合物,包括氨基酸等。研究表明,这类化合物的起源是非生物成因的。这些有机化合物可能是从简单的分子如 CO、H2 与 NH3 ,受尘埃粒子表面上的镍铁和磁铁矿的催化作用形成的。因此,碳质球粒陨石包含了太阳系早期复杂碳化物的非生物合成作用的信息,而且可能与地球上的生命起源有关。甚至有人认为,生命分子的前驱并非诞生于地球,而是诞生于小行星,这种小行星后来落到地球上,从而“播”下生命的种子 (格拉斯,1986)。
直到20 世纪80年代早期,人们认识到的碳质球粒陨石只有四种。今天,随着在南极球粒陨石的大量发现,数目已经上升到八种 (表1-6)。词头C指的是碳质,其后的字母指被目击降落的地点,如CI中的I指在1938年降落在坦桑尼亚Ivuna小镇上质量为704g的陨石,具有这种特征的陨石都被称为CI型球粒陨石。
无球粒陨石是相当不均匀的石陨石,它们都缺乏陨石球粒,一般比球粒陨石结晶粗,且基本不含镍铁。它们具有类似于地球上火成岩的结构和组成,可能具有岩浆的分异作用。许多无球粒陨石是强分异岩石,因此它们几乎是单矿物岩 (米勒等, 1982)。放射性年龄测定表明,球粒陨石是早期太阳系保留下来最古老的样品,年龄约为 456 亿年。
由于存在三类迥然不同的陨石——石陨石、石铁陨石和铁陨石,这使得人们设想陨石来自某种曾经分异成一个富金属核和一个硅酸盐包裹层的行星体,这种天体破裂导致各类陨石的形成;石铁陨石来自金属核与硅酸盐幔界面,石陨石来自富硅酸盐幔。成为依据陨石资料推测地球内部结构和化学成分的重要根据之一。有证据表明,“一个母体形成陨石”的假说不可取。因为各类陨石年龄有差异,而陨石群之间也有年龄差异。其二,各群球粒陨石和铁陨石之间均存在成分间隔和氧同位素 (18 O/16 O 和17 O/16 O)比例差别。每群陨石应分别形成于不同的行星母体,火星与木星间的小行星带有众多小行星,是陨石的来源。
陨石的特征及鉴别方法:
一、特征
1、熔壳:就是陨石在经过大气层时,极高的温度导致陨石表面熔融,产生了一层微米至毫米级别的玻璃质层。当陨石在地表存在时间较长后,熔壳容易被风化甚至消失。
2、气印:陨石表面有大小不一、深浅不同的凹坑,有些呈浅而长条形的气印,就好似在揉好的面团上用手指轻轻按压后留下的印记。
3、熔流线:是分布在陨石表面的放射性线条,是判断定向陨石的一个重要标准。
二、鉴别方法
1、观察表面法。首先陨石一般是呈不规则的形态,其次陨石在降落过程中穿过大气层发生摩擦产生高温,因而陨石表面有燃烧过形成的一层黑色熔壳以及气流摩擦留下的气印,同时还具有流纹或流线构造。
2、吸铁石实验法。陨石基本分为三大类,分别为石陨,石铁云和铁陨。其中石陨的磁性相对来说会比较小,不容易被磁铁吸引。而石铁陨和铁陨中含铁量比较多,磁性则比较强。
3、观察球粒法。球粒陨石的新鲜断面上一般用放大镜可以观察到细小的球粒及球粒之间的基质,并可见到Fe-Ni金属及陨硫铁。铁陨石如用含2%浓硝酸的酒精溶液腐蚀铁陨石抛光表面,则可显示维氏台登构造。陨石的结构致密,不可能具有泡沫状,多孔的或炉渣构造等构造。
4、成份检测法。陨石由于含有Fe-Ni金属,比重一般大于地球的岩石(一般27g/cm),陨石比重至少33g/cm。
一、陨石的特征
1、外表熔壳因大气层摩擦变薄。
2、表面有气印。
3、内部有金属。
4、可以被磁铁吸附。
5、圆形球状。
6、比重高。
二、鉴别方法
1、观察表面法
首先陨石一般是呈不规则的形态;其次陨石在降落过程中穿过大气层发生摩擦产生高温,因而陨石表面有燃烧过形成的一层黑色熔壳以及气流摩擦留下的气印,同时还具有流纹或流线构造。
2、火烧法
在高温炉火中投入一小块样品,如果发生爆裂和粉碎而不是融化,基本可以确定为陨石。
3、用水打湿气味法
陨石遇到湿气会产生一种特殊的焦糊味。
4、暴晒法
把疑似陨石与普通石头放在太阳下暴晒一个小时左右,陨石热度明显比普通石头高。
5、手感比重
陨石经过了高温高压,其中的杂志被燃烧,密度也变得更大,所以陨石明显沉。
6、吸铁石是实验法
陨石基本分为三大类,分别为石陨,石铁云和铁陨。其中石陨的磁性相对来说会比较小,不容易被磁铁吸引。而石铁陨和铁陨中含铁量比较多,磁性则比较强。
7、观察球粒法
球粒陨石的新鲜断面上一般用放大镜可以观察到细小的球粒及球粒之间的基质,并可见到Fe-Ni金属及陨硫铁。铁陨石如用含2%浓硝酸的酒精溶液腐蚀铁陨石抛光表面,则可显示维氏台登构造。陨石的结构致密,不可能具有泡沫状,多孔的或炉渣构造等构造。
陨石的形成过程
陨石太空时称为流星体,当他进入大气层时,撞击压力使这个物体被加热和放射出光线,于是成为火球,即所谓的流星。火球这个名词显示这是来自地球之外并与地球碰撞的一个物体,或是极端明亮,类似火球这样的流星最终将撞击到地球的表面。
更通俗的说陨石是来自太空中任何地方,落在表面上的自然天体。月球和火星上也发现到了陨石。陨石因为撞击或经过大气层时发光成为流星时被观测到而被寻获的称为墬落陨石,所有其它的陨石都称为发现陨石。
陨石是指从星际空间穿过大气层烧蚀后到达地表的流星体残核。陨石的形态多种多样,个体大小不等,陨石表面一般都有一层很薄的(小于1毫米)黑色或者深褐色的熔壳,是陨石在大气层内降落过程中由于高温使表面熔化,在速度降低时冷却凝固而成。
一般将陨石分为三大类:石陨石,铁陨石和石铁陨石。石陨石以硅酸盐矿物为主的陨石,铁陨石是以铁镍金属为主的陨石,石铁陨石是铁质和石质的量各占一半的陨石。石陨石又可根据是否出现球粒,进一步分为相对原始的球粒陨石和发生分异的无球粒陨石。
1)石陨石:是降落陨石中最为丰富的类型,相似于地球上的某些岩石,但是石陨石的重量稍微重些。如果陨石破碎的时间不长,最常见的普通球粒陨石其内部可以看到分布的亮银色的金属铁的颗粒,含量较多的硅酸盐的球粒也能被观察到。
2)铁陨石:铁陨石主要由铁镍金属组成,具有不规则的形态,密度很大,铁陨石磁性很强,在一些新鲜的铁陨石表面会有一些“指印”状的结构。下面是一些铁陨石的。
3)石铁陨石:石铁陨石相对较少,主要包括两种类型:中铁陨石和橄榄陨铁。橄榄陨铁主要是由浅绿**橄榄石结晶体和铁镍基质组成。换句话说,中铁陨石是由块状和脉状的金属,不含球粒玄武岩质和玻璃基质组成。 钻石,化学成分是碳,这在宝石中是唯一由单一元素组成的。属等轴晶系。晶体形态多呈八面体、菱形十二面体、四面体及它们的聚形。纯净的钻石无色透明,由于微量元素的混入而呈现不同颜色。强金刚光泽。折光率2417,色散中等,为0044。均质体。热导率为035卡/厘米·秒·度。用热导仪测试,反应最为灵敏。硬度为10,是目前已知最硬的矿物,绝对硬度是石英的1000倍,刚玉的150倍,怕重击,重击后会顺其解理破碎。一组解理完全。密度352克/立方厘米。钻石具有发光性,日光照射后 ,夜晚能发出淡青色磷光。X射线照射,发出天蓝色荧光。钻石的化学性质很稳定,在常温下不容易溶于酸和碱,酸碱不会对其产生作用。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)