(1)晶体(Crystal)晶体是指钻石内所有具有明显的三维几何形态的矿物晶体晶体又可分为无色的或浅色的包裹体及深色的或黑色的包裹体它的种类繁多(据统计有20多种),形态各异,是钻石中最普遍的内含物,在众多的晶体包裹体中,小钻石出现的几率最多,其次可见橄榄石和石榴石它们常被小羽毛状裂隙环绕或单独出现,或成群分布,可大亦可小晶体的出现,意味着钻石的净度等级一般不会高于VS级除非晶体很大,否则也不会对钻石的美观及耐久性造成影响
(2)点状物(Pinponit)或称针尖,钻石内部极小的天然包裹物有无色和深色之分,单一或成群分布,它对净度级别的影响不大
(3)云状物(Cloud)钻石中朦胧状或乳状无清晰边界的包裹物,可能是由许多极细小的点状物组成,也可能由结构位错引起云状物常依钻石的对称轴分布(与钻石的成长历史有关),有时在白色的云雾里还可出现一些黑色的大小不等的点状物云雾有时清淡,分布在小的区域内,对净度的影响不大;有时浓重,散布在整个钻石中,不但降低了钻石的净度和透明度,而且也影响了钻石的美观
(4)羽状纹(Feather)钻石内由于解理或张力所造成的裂隙,形似羽毛状若羽状纹相对较大,则可称之为"裂纹"羽状纹易沿钻石的四组八面体方向裂开,分裂面平坦、光滑若沿任意方向破裂,其破裂面多成阶梯状羽状纹对净度的影响明显,通常易于观察到个别情况下,有些细小的羽状纹单独出现,且破裂面与钻石的小刻画垂直时,观察起来较困难,应特别仔细寻找,以免疏漏而造成结论上的错误
(5)须状腰(Bearding)存在于腰部的须状微裂纹深入内部的部分,形似老人的胡须它是由于过激的粗磨造成的粗糙腰围与其成因相似,但粗糙腰棱有砂粒感,常伴有很小的缺口
(6)内部纹理(Internal Graining)钻石内部因原子排列不规则所造成的生长痕迹,如双晶纹、生长纹等纹理可多可少、可粗可细、可平行也可相交纹理看上去多为白色的细线,有时可反光形成彩色条纹,它对净度的影响程度不等若纹理密集地出现在整个钻石内部时,可降低钻石的透明度,使钻石看上去有朦胧感
(7)双晶中心(Twinning Center)结晶构造发生错动的中心点,常伴生有点状物
(8)内凹原晶面(Sunken Natural)从表面凹入钻石内部的原始晶面多出现于钻石的腰围,也可出现于其他部位理论上深凹的锯齿状或三角状的天然晶面经重新打磨可以去除,但会造成质量上的损失,因此它会降低钻石的净度等级
(9)激光痕(Laser Drill mark)用激光束及化学药品去除钻石内部深色包裹物时留下的痕迹管状或漏斗状称为激光孑L常被高折射率玻璃充填
(10)吉痕(Bruise)钻石表面受外力撞击形成的根部伸入到钻石内部的痕迹击伤痕通常为白色,具一定的几何形态,尺寸可大可小
(11)破口(Chip)腰部边缘破损的小口,多呈"V¨字形
(12)坑或洞(Cavity)是钻石中较严重地从外部深入到内部的特征它们可能是由于解理崩落了小块钻石所致,也可能是钻石在抛光时造成表面的包裹体脱落而产生的坑或洞
不是
钻石zuànshí ,就是经过打磨的金刚石,又称金刚钻,矿物名称为金刚石。英文为Diamond,源于古希腊语Adamant,意思是坚硬不可侵犯的物质。
①通常指宝石级金刚石,尤指琢型宝石级金刚石,其实,钻石和金刚石在国外并无这种用词的区分,英文中均使用同一个词汇“diamond”,但国内则常把“金刚石”一词用于矿物学领域,钻石一词用于宝石学领域。但也不尽然,如“工业钻石”虽然不属于宝石学领域,只是人们已习惯于这样称呼,故在本词条中也采用之。
②宝石级钻石以无色透明为上品,但常见的多为略带微**调者。**调或褐色调愈深,品级也愈低。有一种无色透明中带一点蓝色的被称作“水火色”,却是佳品。而带深蓝、深黑、深金黄和红色、绿色者,更是少见的珍品,被称为“艳钻”或“奇珍钻石”,同一矿区的钻石带有相似的“色素”特征,以致有经验的人常可凭此认出钻石的产地。最早发明标准圆形明亮式切割的是在1914年,比利时安特卫普的钻石切割师托考夫斯基发明。判别钻石的标准被称为4C,分别是净度、颜色、切工、克拉重量。其中净度是指钻石的内含物,而不应称为瑕疵。内含物的存在正说明了钻石的天然性。当然,我们还是希望这种包裹体状的内含物越少越好,所以就有了净度的分级。即:LC、VVS、VS、SI、P级。过去人们不会琢磨钻石,只能用钻石原石作为饰品,金刚石晶体真正成为钻石,变为首饰的时代,大约在1450年。当时琢磨钻石只有17个面,1558年--1603年当政的英国女王佩戴的钻石戒,只是一个八面体钻石晶体,磨掉了一个顶尖作为戒面的。直到1919年一位住在美国的波兰人名叫塔克瓦斯墓(Tolkowsky),设计出58个翻面的钻石切割工艺,至今仍在采用,这个切工是根据钻石的折光率系数等因素而精确计算出来的,不能任意改变,否则磨出的钻石将无光彩或漏光。
密度高,硬度高,自然界最硬的物质。
脆,如果钻石上有一个缺口,可以很容易用刀就切开。原始的钻石切割就使用特制的刀劈开的
亲油,很容易沾上油污
色散率,折射率都很高,这也是钻石的火彩漂亮的原因
化学性非常稳定,基本不会腐蚀
贵哈哈
钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。
钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。
一、钻石的化学成分和分类
1化学成分
钻石是具有立方结构的碳。主要成分是C,其质量分数可达9995%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。
2分类
钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。
1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。
表14-1-1 钻石的分类
天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。
二、钻石的结构与形态
1晶体结构
钻石属等轴晶系, ;a0=035595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为01542nm,C-C-C键角109°28′16″。
图14-1-1 钻石的晶体结构
2形态
钻石属六八面体晶类,Oh-m3m(3L44L36L29PC),常见单形:八面体o{111},菱形十二面体d{110}、立方体a{100}及其聚形(图14-1-2a和图14-1-2b)。
图14-1-2a 钻石的常见晶形
钻石晶体通常呈歪晶,由于溶蚀作用使晶面棱弯曲,晶面常发育阶梯状生长纹、生长锥或蚀象,且不同单形晶面上的蚀象不同,八面体晶面上可见倒三角形凹坑,立方体晶面上可见四边形凹坑,十二面体晶面上可见线理和显微圆盘状花纹。
钻石的双晶依(111)最普遍,可成接触双晶、星状穿插双晶或轮式双晶。其中三角薄片(macle)接触双晶具有典型的扁平三角形外观,在双晶两个平面结合处环绕钻石有明显的青鱼骨刺纹,在钻石贸易中称为结节。
三、钻石的光学性质
1颜色
钻石的颜色分两个系列:即无色—浅**系列和彩色系列。无色—浅**系列钻石的颜色为:无色至浅黄、浅褐;彩色系列钻石的颜色一般为深黄、褐、灰及浅至深的蓝、绿、橙黄、粉红、红、紫红色,偶见黑色。
图14-1-2b 钻石晶体不同聚形示意图
大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。
(1)黄至棕**钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于22eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列**、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对4772nm有弱吸收,由于人们对4772nm吸收反应灵敏,4772nm蓝光被吸收后,钻石呈现**。
(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。
(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。
(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。
2光泽
钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。
3透明度
钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。
4光性
钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。
5折射率
钻石为单折射宝石,在钠光(5893nm)中折射率为2417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。
6色散
钻石的色散强,色散值为0044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。
7发光性
(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、**、橙**、粉色等荧光,通常长波较短波的荧光强。
(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。
(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。
8吸收光谱
无色—浅**的钻石,在紫色区4155nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的**钻石可能在498nm,504nm和592nm处有吸收带。
四、钻石的力学性质
1解理
钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。
图14-1-3 钻石{111}方向解理示意图
2硬度
钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。
钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。
3密度
钻石的密度为352(±001)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。
五、钻石的内含物
钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。
六、钻石的电学性质和热学性质
1电学性质
Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(00024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。
2热学性质
(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。
根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。
(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。
(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。
3其他性质
(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。
(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。
是金刚石。钻石可以从天然金刚石矿中产出,也可以通过人造生产金刚石。
金刚石俗称“金刚钻”。也就是我们常说的钻石的原身,它是一种由碳元素组成的矿物,是碳元素的同素异形体。金刚石是自然界中天然存在的最坚硬的物质。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具。石墨可以在高温、高压下形成人造金刚石。金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。
扩展资料:
金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。世界各地都发现了金刚石矿。其中,澳大利亚、刚果、俄罗斯、博茨瓦纳和南非是著名的五大金刚石产地。
中国也拥有制造金刚石的技术,但最大也不过02克拉左右。人工合成金刚石的方法主要有两种,高温高压法及化学气相沉积法。高温高压法技术已非常成熟,并形成产业。国内产量极高,为世界之最。
-金刚石
金刚石是钻石的原石。
1、金刚石表面摩氏硬度为10,显微硬度比石英高1000倍;
2、有极高的抗磨能力;
3、金刚石表面有标准的金刚光泽;
4、金刚石表面具有非磁性、不良导电性(电阻率:5×104Ωcm)和摩擦生电性;
5、金刚石表面亲油疏水,对油脂及污垢有较强的亲和力,油污很容易被金刚石吸附;
6、人造金刚石常为浅**、浅黄褐色、浅黄绿色、褐色等,无色人造金刚石很少;天然金刚石98%都是无色至浅**,白色金刚石很少,玫瑰色、粉红色、蓝色、绿色、黑色、茶色十分稀少。
扩展资料:
钻石原石鉴别几种方法:
1、钻石的晶体形态
钻石是一种经过底层高温、挤压千万年的变化而成的矿物结晶体,钻石原石的晶体形态呈现出来的是八面体还有菱形状的十二面体,它的硬度非常,用宝石也不能出现划痕。
2、呵气的方法
真正钻石的导热、传热性能非常好,你可以将钻石放置于嘴边,哈上几口热气,如果是真钻石的话,热气很快速地就会消失不见,只要仔细观察观察就能鉴别了。
3、光线测定法
真钻石的单折光性好,在光线下会发现光芒四射的迷人色彩,将钻石置于手心,真钻石是不能透过看到掌纹的
4、滴水法
钻石具有排水性,如同荷叶一样,水滴落偶在钻石表面的话就会立马掉落,不留下一丝水痕。
参考资料:
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)