1会员PT帐户与论坛帐户是一致的,passkey是会员获取PT资格后,系统通过一定的算法分配给会员的唯一身份认证标识码。2当用户从PT站下载种子时,种子文件里面就封装有这个识别码,用uT下载时,uT将识别码告诉服务器,服务器经验证确认识别码有效后,将资源下载位置信息再反送给uT,uT就可以据此信息与远程用户建立连接并进行数据交换(即上传/下载)。3如果识别码不正确,或本地下载软件不具备识别码认证功能,或起功能不完善,或不能与服务端匹配协调工作,都将无法顺利完成PT下载。4通过以上分析,大家就应该知道,为什么论坛要规定PT客户端用户软件种类及版本的原因了吧。 查看原帖>>
有三种网络安全机制。 概述:
随着TCP/IP协议群在互联网上的广泛采用,信息技术与网络技术得到了飞速发展。随之而来的是安全风险问题的急剧增加。为了保护国家公众信息网以及企业内联网和外联网信息和数据的安全,要大力发展基于信息网络的安全技术。
信息与网络安全技术的目标
由于互联网的开放性、连通性和自由性,用户在享受各类共有信息资源的同事,也存在着自己的秘密信息可能被侵犯或被恶意破坏的危险。信息安全的目标就是保护有可能被侵犯或破坏的机密信息不被外界非法操作者的控制。具体要达到:保密性、完整性、可用性、可控性等目标。
网络安全体系结构
国际标准化组织(ISO)在开放系统互联参考模型(OSI/RM)的基础上,于1989年制定了在OSI环境下解决网络安全的规则:安全体系结构。它扩充了基本参考模型,加入了安全问题的各个方面,为开放系统的安全通信提供了一种概念性、功能性及一致性的途径。OSI安全体系包含七个层次:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。在各层次间进行的安全机制有:
1、加密机制
衡量一个加密技术的可靠性,主要取决于解密过程的难度,而这取决于密钥的长度和算法。
1)对称密钥加密体制对称密钥加密技术使用相同的密钥对数据进行加密和解密,发送者和接收者用相同的密钥。对称密钥加密技术的典型算法是DES(Data Encryption Standard数据加密标准)。DES的密钥长度为56bit,其加密算法是公开的,其保密性仅取决于对密钥的保密。优点是:加密处理简单,加密解密速度快。缺点是:密钥管理困难。
2)非对称密钥加密体制非对称密钥加密系统,又称公钥和私钥系统。其特点是加密和解密使用不同的密钥。
(1)非对称加密系统的关键是寻找对应的公钥和私钥,并运用某种数学方法使得加密过程成为一个不可逆过程,即用公钥加密的信息只能用与该公钥配对的私钥才能解密;反之亦然。
(2)非对称密钥加密的典型算法是RSA。RSA算法的理论基础是数论的欧拉定律,其安全性是基于大数分解的困难性。
优点:(1)解决了密钥管理问题,通过特有的密钥发放体制,使得当用户数大幅度增加时,密钥也不会向外扩散;(2)由于密钥已事先分配,不需要在通信过程中传输密钥,安全性大大提高;(3)具有很高的加密强度。
缺点:加密、解密的速度较慢。
2、安全认证机制
在电子商务活动中,为保证商务、交易及支付活动的真实可靠,需要有一种机制来验证活动中各方的真实身份。安全认证是维持电子商务活动正常进行的保证,它涉及到安全管理、加密处理、PKI及认证管理等重要问题。目前已经有一套完整的技术解决方案可以应用。采用国际通用的PKI技术、X509证书标准和X500信息发布标准等技术标准可以安全发放证书,进行安全认证。当然,认证机制还需要法律法规支持。安全认证需要的法律问题包括信用立法、电子签名法、电子交易法、认证管理法律等。
1)数字摘要
数字摘要采用单向Hash函数对信息进行某种变换运算得到固定长度的摘要,并在传输信息时将之加入文件一同送给接收方;接收方收到文件后,用相同的方法进行变换运算得到另一个摘要;然后将自己运算得到的摘要与发送过来的摘要进行比较。这种方法可以验证数据的完整性。
2)数字信封
数字信封用加密技术来保证只有特定的收信人才能阅读信的内容。具体方法是:信息发送方采用对称密钥来加密信息,然后再用接收方的公钥来加密此对称密钥(这部分称为数字信封),再将它和信息一起发送给接收方;接收方先用相应的私钥打开数字信封,得到对称密钥,然后使用对称密钥再解开信息。
3)数字签名
数字签名是指发送方以电子形式签名一个消息或文件,表示签名人对该消息或文件的内容负有责任。数字签名综合使用了数字摘要和非对称加密技术,可以在保证数据完整性的同时保证数据的真实性。
4)数字时间戳
数字时间戳服务(DTS)是提供电子文件发表时间认证的网络安全服务。它由专门的机构(DTS)提供。
5)数字证书
数字证书(Digital ID)含有证书持有者的有关信息,是在网络上证明证书持有者身份的数字标识,它由权威的认证中心(CA)颁发。CA是一个专门验证交易各方身份的权威机构,它向涉及交易的实体颁发数字证书。数字证书由CA做了数字签名,任何第三方都无法修改证书内容。交易各方通过出示自己的数字证书来证明自己的身份。
在电子商务中,数字证书主要有客户证书、商家证书两种。客户证书用于证明电子商务活动中客户端的身份,一般安装在客户浏览器上。商家证书签发给向客户提供服务的商家,一般安装在商家的服务器中,用于向客户证明商家的合法身份。
3、访问控制策略
访问控制是网络安全防范和保护的主要策略,它的主要任务是保证网络资源不被非法使用和非常访问。它也是维护网络系统安全、保护网络资源的重要手段。各种安全策略必须相互配合才能真正起到保护作用。下面我们分述几种常见的访问控制策略。
1)入网访问控制
入网访问控制为网络访问提供了第一层访问控制。它控制哪些用户能够登录到服务器并获取网络资源,以及用户入网时间和入网地点。
用户的入网访问控制可分为三个步骤:用户名的识别与验证、用户口令的识别与验证、用户帐号的缺省限制检查。只有通过各道关卡,该用户才能顺利入网。
对用户名和口令进行验证是防止非法访问的首道防线。用户登录时,首先输入用户名和口令,服务器将验证所输入的用户名是否合法。如果验证合法,才继续验证输入的口令,否则,用户将被拒之网络之外。用户口令是用户入网的关键所在。为保证口令的安全性,口令不能显示在显示屏上,口令长度应不少于6个字符,口令字符最好是数字、字母和其他字符的混合,用户口令必须经过加密,加密的方法很多,其中最常见的方法有:基于单向函数的口令加密,基于测试模式的口令加密,基于公钥加密方案的口令加密,基于平方剩余的口令加密,基于多项式共享的口令加密,基于数字签名方案的口令加密等。用户还可采用一次性用户口令,也可用便携式验证器(如智能卡)来验证用户的身份。
2)网络的权限控制
网络的权限控制是针对网络非法操作所提出的一种安全保护措施。用户和用户组被赋予一定的权限。网络控制用户和用户组可以访问哪些目录、子目录、文件和其他资源。可以指定用户对这些文件、目录、设备能够执行哪些操作。我们可以根据访问权限将用户分为以下几类:(1)特殊用户(即系统管理员);(2)一般用户,系统管理员根据他们的实际需要为他们分配操作权限;(3)审计用户,负责网络的安全控制与资源使用情况的审计。用户对网络资源的访问权限可以用一个访问控制表来描述。
3)目录级安全控制
网络应允许控制用户对目录、文件、设备的访问。用户在月录一级指定的权限对所有文件和子目录有效,用户还可进一步指定对目录下的子目录和文件的权限。对目录和文件的访问权限一般有八种:系统管理员权限(Supervisor)、读权限(Read)、写权限(Write)、创建权限(Create)、删除权限(Erase)、修改权限(MOdify)、文件查找权限(FileScan)、存取控制权限(AccessControl)。用户对文件或目标的有效权限取决于以下二个因素:用户的受托者指派、用户所在组的受托者指派、继承权限屏蔽取消的用户权限。一个网络系统管理员应当为用户指定适当的访问权限,这些访问权限控制着用户对服务器的访问。八种访问权限的有效组合可以让用户有效地完成工作,同时又能有效地控制用户对服务器资源的访问,从而加强了网络和服务器的安全性。
随着计算机技术和通信技术的发展,计算机网络将日益成为工业、农业和国防等方面的重要信息交换手段,渗透到社会生活的各个领域。因此,认清网络的脆弱性和潜在威胁,采取强有力的安全策略,对于保障网络信息传输的安全性将变得十分重要。
不会知道的。
对方只是可以查看到是谁连了热点,手机什么型号,并不能查看对方连热点都浏览哪些网页、发了什么消息。
一般的人最多只是知道有人用了自己的无线网,除非对方是黑客,通过某种手段入侵电脑或手机,**密码,再自己登陆,才能获取到聊天记录。所以绝大多数时候,是不可能知道连接热点的人做了哪些事情的。
扩展资料
除非对方购买的是那种高端的企业管理的路由器,经过路由器的数据才会被看到使用信息,而一般的路由器只能看到有哪些设备和设备地址连接了路由器。但是聊天的内容或者看的网站内容对方都不能有办法看到。
手机的WiFi热点安全类型被称为:保护性接入(WPA)预配置共享密钥。该密钥自动初始化用于数据加密过程的“时间性密钥完整性协议” (TKIP) 。所以用手机热点安全性很高,不要担心别人会窃取信息。
手机个人热点产生的流量就是手机自己使用的流量加上通过热点上网的其他设备产生的流量的和。一般来讲,使用手机热点上网,流量消耗会增加很多,除非有很大的流量套餐或不在乎花钱,不要长时间使用手机热点上网。
以下方法亲测有效:如果知道解锁密码,可通过命令行解锁的方式找回恢复密钥,下面详述步骤:选择右下角“跳过这个驱动器(Skip this drive)”
然后选择故障排除(Troubleshoot):
然后选择高级选项(Advanced options):
然后选择“命令提示”(Command Prompt)
这时会弹出命令行cmd窗口,
输入manage-bdeexe -unlock C: -pw,然后会提示输入解锁密码,输入密码后回车(注意这个输入密码的界面不会显示输入内容,甚至不显示),同样的在此可以解锁其他加密磁盘,解锁成功后,输入exit退出命令提示窗口(这时C盘已经被解锁了 ),现在你可以正常登录系统,点继续(Continue),(这时仍需要输入解锁密码,输入你的bitlocker密码)就可登录系统(此时将不再提示你输入恢复密钥了),登录后再重新备份恢复密钥(打开电脑,右键选择被加密的分区,选择管理BitLocker,进入界面后选择重新备份恢复密钥即可。
方法1VISTA安装序列号:YFKBB-PQJJV-G996G-VWGXY-2V3X8注:旗舰版除外方法2:激活方式一 KMS激活(通过KB940510激活检测) 1、激活方式为KMS激活,无开机字串,仅能用于SP1,适用于32位Vista Ultimate、BUSINESS、HOMEPREMIUM、HOMEBASIC SP1 2、激活前请确认可以连接到网络,否则无法激活!180天后需要再次运行本程序再次激活!本激活无法通过正版验证,且无法使用梦幻桌面及Windows Media Center。 3、卸载直接点击右侧的卸载按钮。 注意:激活后不要进行正版验证,首先通不过,而且有可能出现不可预知的问题。可以通过微软最新反破解补丁(KB940510,2008-02-26发布)的检测,已测试 激活方式二 Vista Loader激活 Vista Loader 是第一个通过软件突破 Vista 激活限制的软件,中国人原创。它即可以激活Vista又可以激活Vista SP1唯一的缺陷是需要更改MBR,因此开机有字符串。卸载该激活方式直接点右侧的卸载按钮。 激活方式三 品牌机激活 适用于 1、预装了 Windows Vista 系统的品牌机; 2、非预装的品牌机,但BIOS与预装 Vista 的品牌机一样(即刷新BIOS的方法) 以上两种机器都可以通过此选项来激活 Vista 及 Vista SP1。 直接运行VistaActiveexe即可。下载地址 http://wwwanwangcn/soft/downloadaspsoftid=6692&downid=37&id=6716
希望采纳
计算机使用模式的演变:
20世纪50年代 批处理时代
20世纪60年代 分时系统时代
20世纪70年代 计算机间通信时代
20世纪80年代 计算机网络时代
20世纪90年代 互联网普及时代
2000年 以互联网为中心的时代
2010年 无论何时何地地一切皆TCP/IP的网络时代
在计算机网络与信息通信领域,人们经常提及 “协议” 。简单来说。 协议 就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU以及不同的操作系统组成的计算机之间,只要遵循相同的协议就能实现通信。换句话说, 协议 就是计算机之间的通信语言,只有支持相同的协议,计算机之间才能相互通信。
计算机通信也会在每一个分组中附加上源主机地址和目标主机地址送给通信线路。这些发送端地址、接收端地址以及分组序号写入的部分称为 “报文首部” 。
TCP/IP协议并非ISO(国际标准化组织)所制定的某种国际标准,而是由IETF(Internet Engineering Task Force国际互联网工程任务组)所建议的、致力于推进器标准化作业的一种协议。
OSI参考模型
应用层 :针对特定应用的协议。以电子邮件为例,用户A在主机A上新建一封电子邮件,指定收件人为B,并输入邮件内容为“早上好”。应用层协议会在所要传递数据的前端附加一个首部(标签)信息,该首部标明了邮件内容为“早上好”和收件人为B。
表示层 :设备固有数据格式和网络标准数据格式的转换。用户A和用户B使用的邮件客户端一致,便能够顺利收取和阅读邮件,不一致时表示层就发挥作用了:将数据从“某个计算机特定的数据格式”转换为“网络通用的标准数据格式”后再发送出去,接收端也进行相应处理。表示层与表示层之间为了识别编码格式也会附加首部信息,从而将实际传输的数据转交给下一层处理。
会话层 :通信管理。负责建立和断开通信连接(数据流动的逻辑通路)。管理传输层以下的分层。假定用户A新建了5封电子邮件准备发送给用户B,是建立一次连接一起发送,还是分别建立5次连接各自发送,都是会话层决定的,会话层和表示层一样,也会在数据前段附加首部或标签信息再转发给下一层。而这些首部或标签中记录着数据传送顺序的信息。
传输层 :管理两个节点之间的数据传输。负责可靠传输(确保数据被可靠传送到目标地址)。用主机A将“早上好”这一数据发送给主机B,期间可能因为某些原因导致数据损坏,主机B只收到“早上”,此时也会将这一事实告诉主机A,主机A得知情况会将后面的“好”重发给主机B。保证数据传输的可靠性是传输层的一个重要作用。为了确保可靠性,这一层所要传输的数据附加首部以识别这一分层的数据。然而,实际上将数据传输给对端的处理是由网络层来完成的。
网络层 :地址管理与路由选择。两端主机之间虽然有众多数据链路,但能够将数据从主机A送到主机B也都是网络层的功劳。相当于TCP/IP协议中的IP协议,网络层不能保证数据的可达性,所以需要传输层TCP协议确保可达性,所以TCP/IP协议实现了可靠传输。
数据链路层 :互连设备之间传送和识别数据帧。网络层负责将整个数据发送给最终目标地址,而数据链路层则只负责发送一个分段内的数据。
物理层 :以“0”、“1”代表电压的高低、灯光的闪灭。界定连接器和网线的规格。将数据的0、1转换为电压和脉冲光传输给物理的传输介质。
计算机之间的网络连接通过 电缆 相互连接。任何一台计算机连接网络时,必须要使用 网卡 (网络适配器、NIC、LAN卡), 中继器 的作用是将电缆传过来的信号调整和放大再传给另一个电缆,可以完成不同媒介之间的连接工作。 网桥 是数据链路层面上连接两个网络的设备,提供的是传递数据帧的作用,并且还具备自学机制。 路由器 是在网络层面上(OSI七层模型网络层)连接两个网络、并对分组报文进行转发的设备。 网桥 是根据物理地址(MAC地址)进行处理,而路由器/3层交换机则是根据IP地址进行处理的。由此,TCP/IP中网络层的地址就成为了IP地址。对于并发访问量非常大的一个企业级Web站点,使用一台服务器不足以满足前端的访问需求,这时通常会架设多台服务器来分担。这些服务器的访问的入口地址通常只有一个,为了能通过同一个URL将前端访问分发到后台多个服务器上,可以将这些服务器的前端加一个负载均衡器。这种负载均衡器就是4-7层交换机的一种。 网关 是OSI参考模型中负责将从传输层到应用层的数据进行转换和转发的设备。在两个不能进行直接通信的协议之间进行翻译,最终实现两者的通信。非常典型的例子就是互联网邮件和手机邮件之间的转换服务。防火墙也是一款通过网关通信,针对不用应用提高安全性的产品。
美国军方利用分组交换技术组件的ARPANET网络是互联网的鼻祖。而BSD UNIX操作系统实现了TCP/IP协议,随着UNIX系统的普及,TCP/IP协议开始盛行。TCP/IP可以单纯的指这两种协议,然而在很多情况下,它指的是包含HTTP、SMTP、FTP、TCP、UDP、IP、ARP等很多协议的 网际协议族 。
发送数据包的过程,和上节OSI参考模型中介绍的差不多。数据链路层是由网络接口(以太网驱动)来处理的,它会改数据附加上 以太网首部 , 以太网首部 中包含接收端的MAC地址、发送端MAC地址以及标志以太网类型的以太网数据的协议。
在以太网普及之初,一般多台终端使用同一根同轴电缆的 共享介质型 连接方式,访问控制一般以半双工通信为前提采用CSMA/CD方式。随着ATM交换技术的进步和CAT5 UTP电缆的普及很快发生了变化,逐渐采用像 非共享介质网络 那样直接与交换机连接的方式。
网络层与数据链路层的关系
某人要去一个很远的地方旅行,并计划先后乘坐飞机、火车、公交车到达目的地。旅行社不仅帮他预订好了飞机票和火车票,甚至还为他指定了一个详细的行程表,详细到几点几分需要乘坐飞机或火车都一目了然。机票和火车票只能够在某一限定区间内移动,此处的“区间内”就如同通信网络上的数据链路。这个区间内的出发地点和目的地点就如同某一个数据链路的源地址和目标地址等首部信息。整个行程表的作用就相当于网络层。
DNS :将域名和IP地址相匹配。
ARP :以目标IP地址为线索,用来定位下一个应该接受数据分包的网络设备对应的MAC地址。ARP只适用于IPv4,IPv6可以用ICMPv6替代ARP发送邻居探索消息。
ICMP :在IP通信中如果某个IP包因为某种原因未能送达目标地址,那么这个具体的原因将由ICMP负责通知。
DHCP :使用移动设备时,每移动到一个新地方,都要重新设置IP地址,为了实现自动设置IP地址、统一管理IP地址分配,就产生了DHCP协议。
NAT :是用于在本地网络中使用私有地址,在连接互联网时转而使用全局IP地址的技术。
IP隧道 :IPv4和IPv6之间进行通信的技术就是IP隧道。
TCP用于低速可靠传输
UDP用于高速不可靠传输
端口号就是用来识别同一台计算机中进行通信的不同应用程序,也被称为程序地址。
TCP传输利用 窗口控制 提高速度,无需等到每次应答来进行下一次发送,而是有个窗口进行缓冲,来提高吞吐量。
TCP拥塞控制,利用拥塞窗口来调节发送的数据量,拥塞时减小窗口,流畅是增大窗口来控制吞吐量。
我们日常网络访问的 http 用的是 tcp ,那还是看一下这个过程吧
tcp 可以提供全双工的数据流传输服务,全双工说白了,就是同一时间 A 可以发信息给 B , B 也可以发消息给 A ,俩人同时都可以给对方发消息;半双工就是某个时间段 A 可以发给 B ,但 B 不能给 A ,换个时间段,就反过来了。
这个过程理解起来,就像两人在喊话:
A:喂,有人吗,我想建立连接
B:有哇,你建立吧,等你吆
A:好哒,我来啦
然后俩人就建立连接了
一定要三次握手么,两次行不行?
这么一个场景:
A->B: 洞幺洞幺,我是洞拐,收到请回复。
B->A: 洞拐洞拐,洞幺收到。
请问根据以上对话判断:
1、B是否能收到A的信息? (答案是肯定的)
2、A是否能收到B的信息? (你猜?)
tcp的核心思想是保证数据可靠传输,如果 2 次,显然不行,但 3 次就一定行么?未必,可能第三次的时候网络中断了,然后 A 就认为 B 收到了,然后一通发消息,其实 B 没收到,但这是无法完全保证的。无论握手多少次都不能满足传输的绝对可靠,为了效率跟相对可靠而看, 3 次刚刚好,所以就 3 次了(正好 AB 相互确认了一次)。
举个栗子:把客户端比作男孩,服务器比作女孩。通过他们的分手来说明“四次挥手”过程:
"第一次挥手" :日久见人心,男孩发现女孩变成了自己讨厌的样子,忍无可忍,于是决定分手,随即写了一封信告诉女孩。
“第二次挥手” :女孩收到信之后,知道了男孩要和自己分手,怒火中烧,心中暗骂:你算什么东西,当初你可不是这个样子的!于是立马给男孩写了一封回信:分手就分手,给我点时间,我要把你的东西整理好,全部还给你!男孩收到女孩的第一封信之后,明白了女孩知道自己要和她分手。随后等待女孩把自己的东西收拾好。
“第三次挥手” :过了几天,女孩把男孩送的东西都整理好了,于是再次写信给男孩:你的东西我整理好了,快把它们拿走,从此你我恩断义绝!
“第四次挥手” :男孩收到女孩第二封信之后,知道了女孩收拾好东西了,可以正式分手了,于是再次写信告诉女孩:我知道了,这就去拿回来!
为什么连接的时候是三次握手,关闭的时候却是四次握手?
答:因为当 Server端 收到 Client端 的 SYN 连接请求报文后,可以直接发送 SYN+ACK报文 。其中 ACK报文 是用来应答的, SYN报文 是用来同步的。但是关闭连接时,当 Server端 收到 FIN报文 时,很可能并不会立即 关闭SOCKET ,所以只能先回复一个 ACK报文 ,告诉 Client端 ,"你发的 FIN报文 我收到了"。只有等到我 Server端 所有的报文都发送完了,我才能发送 FIN报文 ,因此不能一起发送。故需要四步握手。
静态路由 是指事先设置好路由器和主机中并将路由信息固定的一种方法。缺点是某个路由器发生故障,基本上无法自动绕过发生故障的节点,只有在管理员手工设置以后才能恢复正常。
动态路由 是管理员先设置好路由协议,其设定过程的复杂程度与具体要设置路由协议的类型有直接关系。在路由器个数较多的网络,采用动态路由显然能够减轻管理员负担。网络发生故障,只要有一个可绕的其他路径,数据包会自动选择这个路径,但路由器需要定期相互交换必要的路由控制信息,会增加一定程度的负荷。
根据路由控制范围分为 IGP (内部网关协议)和 EGP (外部网关协议)
路由算法分为 距离向量算法 和 链路状态算法
距离向量算法 :通过距离与方向确定通往目标网络的路径
链路状态算法 :链路状态中路由器知道网络的连接状态,并根据链路信息确定通往目标网络的路径。
IGP包含RIP、RIP2、OSPF
EGP包含EGP、BGP
RIP是距离向量型的一种路由协议,广泛应用于LAN
RIP2是RIP的第二版。新增以下特点:使用多播、支持子网掩码、路由选择域、外部路由标志、身份验证密钥
OSPF是一种链路状态型路由协议。
在RIP和OSPF中利用IP的网络地址部分进行着路由控制,然而BGP则需要放眼整个互联网进行路由控制。BGP的最终路由控制表有网络地址和下一站的路由器组来表示,不过它会根据所要经过的AS个数进行路由控制。有了AS编号的域,就相当于有了自己一个独立的“国家”。AS的代表可以决定AS内部的网络运营和相关政策。与其他AS相连的时候,可以像一位“外交官”一样签署合约再进行连接。正是有了这些不同地区的AS通过签约的相互连接,才有了今天全球范围内的互联网。
转发IP数据包的过程中除了使用路由技术外,还在使用标记交换技术。最有代表性的就是多协议标记交换技术(MPLS)。
MPLS的标记不像MAC地址直接对应到硬件设备。因此,MPLS不需要具备以外网或ATM等数据链路层协议的作用,而只需要关注它与下面一层IP层之间的功能和协议即可。
MPLS优点:
1转发速度快
2利用标记生成虚拟路径,并在它的上面实现IP等数据包的通信。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)