1、几何符号:
几何是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,常见定理有勾股定理,欧拉定理,斯图尔特定理等。
常用符号有:⊥(垂直)、 ∥(平行)、 ∠(角)、 ⌒ (弧)、⊙(圆)。
2、代数符号:
代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。
常用符号有:∝(正比)、∧(逻辑和)、∨(逻辑或)、 ∫(积分)、 ≠ (不等于)、≤(小于等于)、 ≥(大于等于)、 ≈(约等于)、 ∞(无穷)。
3、运算符号:
运算符号是计算数学时所用的符号,计算符号有加号、减号、乘号、除号。
常用符号有:×(乘)、 ÷(除)、 √(根号)、 ±(加减)。
4、集合符号:
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集。
常用符号有:∪(并)、 ∩(交)、 ∈(属于)。
5、特殊符号:
数学中常用某个特定的符号来表示某个元素。
常用符号有:∑(求和)、 π(圆周率)
6、希腊符号:
在数学中,希腊字母通常被用来表示常数、特殊函数和一些特定的变量。在数学领域,通常大写与小写的希腊字母所代表的意义都会有所分别,并且互不相关。
常用符号有:α (阿尔法)、β(贝塔)、 γ(伽马)、 δ(代尔塔)、 ε(埃普西龙)、 ζ (泽塔)、η (诶塔)、θ (西塔)、ι (埃欧塔)、κ(堪帕)、 λ(兰姆达)、 μ (谬)、ν
数学集合符号如下:
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、∅ :空集(不含有任何元素的集合)
扩展资料:
集合基础知识:
1、定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集;
2、表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3、关于集合的元素的特征
(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了;
(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;
(3)无序性:即集合中的元素无顺序,可以任意排列、调换。
4、元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)
(1)若a是集合A中的元素,则称a属于集合A;
(2)若a不是集合A的元素,则称a不属于集合A。
5、集合的表示方法
(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。
参考资料:
^是为了说明接下去是某个数的几次方
数学符号
数学符号的发明和使用比数字晚,但是数量多得多现在常用的有200多个,初中数学书里就不下20多种它们都有一段有趣的经历
例如加号曾经有好几种,现在通用“+”号
“+”号是由拉丁文“et”(“和”的意思)演变而来的十六世纪,意大利科学家塔塔里亚用意大利文“piu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号
“-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号
乘号曾经用过十几种,现在通用两种一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号他自己还提出用“п”表示相乘可是这个符号现在应用到集合论中去了
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号他认为“×”是“+”斜起来写,是另一种表示增加的符号
“÷”最初作为减号,在欧洲大陆长期流行直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号“r”是由拉丁字线“r”变,“——”是括线
十六世纪法国数学家维叶特用“=”表示两个量的差别可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来
1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等
大于号“>”和小于号“<”,是1631年英国著名代数学家赫锐奥特创用至于“≯”、“≮”、“≠”这三个符号的出现,是很晚很晚的事了大括号“{}”和中括号“〔〕”是代数创始人之一魏治德创造的
数学符号一般有以下几种:
(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率∏
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ),对数(log,lg,ln),比(:),微分(d),积分(∫)等
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号等
(4)结合符号:如圆括号“()”方括号“〔〕”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C ),幂(aM),阶乘(!)等
符号 意义
∞ 无穷大
∏ 圆周率
│x│ 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
数学符号希腊字母是用希腊字母表示的数学符号。
例如数学符号Ø(小写ø)原本是丹麦、挪威等北欧语言中的字母,名称跟它的读音一样,读音类似英语word里面的o的读音。直径符号是⌀,跟字母Øø,空集符号∅都不同。它们都跟希腊字母Φ毫无关系。都不能念成phi,空集符号就读作“空集”,直径符号就读作“直径”。
注意
变音符号写在小写字母的上方和大写字母的左上方。在双元音或二合字母情况下,第二个元音接受变音符号。气息符号写在锐音符或重音符的左边,但写在扬抑符的下方。重音符号写分音符上方,锐音符或重音符也可以写在两个点的中间。
在现代希腊语里,将所有重音符号统一为一个替代符号,即锐音符,并抛弃使用气息符号,但分音符仍然保留。当然,希腊字母如用来作特定的代号,就不需要再加附加符号了。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)