专属理科生的浪漫情话

专属理科生的浪漫情话,第1张

1、亲爱的,你是我的诱导公式。没有你,我永远不会灵活变通。 2、亲爱的,我是sin,你是cos。没有你,tan没有意义。 3、亲爱的,你是我的坐标系。没有你,我永远无法找到自己的位置。 4、亲爱的,你是我的圆心。没有你,我永远组成一个完美的闭合曲线。 5、亲爱的,你是我的元素。没有你,我的集合永远只是个空集。(高中时代的知识) 6、亲爱的,你是我的算法。没有你,我永远无法找到自己的价值。 7、亲爱的,你是我的线性回归方程。没有你,我永远只是一些迷途的散点,没有主心骨。 8、亲爱的,你是我的单调递增函数。有了你,我的快乐一天胜过一天。 9、亲爱的,你是我的通项公式。没有你,我永远无法认清自己。 10、亲爱的,你是A,我是X。没有你,A的X次方永远无法恒大于零。 11、亲爱的,你是我的定义域。没有你,我的函数的存在毫无意义。 12、亲爱的,你是我的对称轴。没有你,我永远找不到我的另一半。 13、亲爱的,你是我的充要条件。没有你,推不出我。没有我,推不出你。故我俩相依相存! 14、亲爱的,你是P,我是Q。没有你,P且Q永远只是一个假命题。 15、亲爱的,你是我的斜率。没有你,我永远无法找到正确的方向。 16、亲爱的,你是我的标准型。没有的,我永远无法发现我的max,min,T,(faei),(omiga)。 17、亲爱的,综上所述:我和你在一起的概率为1 18、希望我们对彼此的爱如同那一对作用力和反作用力一样,永远一样多。 19、零向量可以有很多方向,却只有一个长度,就像我可以有很多朋友,却只有你一个值得我来守护。 20、就如运动的物体失去力,当我失去你,我便会浑浑噩噩地走下去。 21、你的镁,偷走了我的心。(很经典的句子) 22、焓变为负,熵变为正,即使世界绝对零度,爱你依然自发。(只有学化学的人才能看的懂) 23、高斯拿走了我的尺规,我只能为你,徒手画眉。 24、二进制的世界,你是0 我是1,我和你就是整个世界。 25、你就是癌细胞,在我脑海里 无限增殖。(满脑子都是你) 26、我杀了欧拉,灭了黎曼。只为让平行线相交。 27、引力使我靠近你 向心力使我围绕你,而你心里却有斥力。 28、要不是你说:“高数好难快给我讲讲”,我高数肯定挂科了 29、你知道π吗,是我对你深深的思恋,永无尽头却从不重复。(爱你无限不循环) 专属理科生的'浪漫情话2 1、我把你写进核酸分解,埋在复制起点,就算基因突变,心仍紧密相连。 2、时间久了是不是也会忘记当初的自己 3、排除了所有这些会造成干扰的因素之后,带入公式算了一整个晚上,我喜欢你,只是因为你,跟其他因素没有关系。 4、他们爱我,我却不爱他们,我爱你,你却不爱我我该怎么办 5、我对你的爱就像二次函数,从零开始,没有尽头。 6、每个人也都会有不一样的故事 7、你是薛定谔,我是你的猫,我愿为了你而半死半活。 8、时光的仰首间,生命的起伏间,有多少世事,能如清水滴石般的清透;又有多少故事,都能书写完美的结局;人生,总有停靠的船,也总有搁浅的滩,总有弯弯曲曲的路,也有高高低低的山;生命,最美的铭记,总是来自百转千回间,陌上花开的惊鸿一瞥。一瞥清鸿,千里之外;一瞥日月,纵横之间。 9、我对你的爱,就像醋酸电离一样,不能彻底!就像开区间一样,无穷无尽! 10、我走不进你的童话里,你也不愿走进我的故事里。 11、你像一道波长520的绿光,照入我的生活。 12、我不知道未来我会爱上谁但是我知道现在我喜欢你 13、我对你的爱,就像海水里的氘在核聚变之后所释放出的能量一样——供你用到地老天荒。 14、想对你讲的话都说给了自己 15、我希望你儿子的体内有我一半的染色体。 16、我是蛇蝎心肠无药可救谁敢伤我在乎的人一根头发我就敢让那人为她陪葬。 17、你知道π么,这是我对你深深的思恋,永无尽头而又从不重复。 18、总觉得爱一个人太难更何况等一个人爱我 19、爱你不是惯性,而是相互作用力。 20、何必患得患失你本未曾拥有 21、你可以做我的数学公式吗这样我就可以推导你了。 22、当握住一杯热水等真正烫的时候也就放下了。 23、你是我在 α 波里想念的人。 24、总以为只要我对你好,你也不忍心对我太坏

1、你知道C-14的半衰期有多久吗它不及我在冥冥之中等你时间的千分之一。

2、如果你做变速圆周运动,那么我就是那个向心加速度。

3、你若是那铀235,那我就是铀238。

4、若我为一枚扣式锂电,那你便是我的锂金属。

5、我还是很喜欢你,像sin平方加cos平方,始终如一。

6、你知道π么,这是我对你深深的思恋,永无尽头而又从不重复。

7、我们的心,早晚会因为分子不规则运动而碰撞在一起。

8、你可以做我的数学公式吗这样我就可以推导你了。

9、我的心已成自变量,函数因你掀起波浪。

10、对你的爱,就像铯的同位素,变一下需要5730亿年。

11、我的爱就像实数,包含你的有理,也包含你的无理。

12、我对你的爱,就像醋酸电离一样,不能彻底!就像开区间一样,无穷无尽!

13、我对你的爱,就像海水里的氘在核聚变之后所释放出的能量一样——供你用到地老天荒。

14、如果你想当醇,那我就是酸,手拉手缩合在一起,散发迷人的生活气息。

15、你是我在 α 波里想念的人。

16、你是我有且仅有一个解的答案。

17、爱你不是惯性,而是相互作用力。

18、我把你写进核酸分解,埋在复制起点,就算基因突变,心仍紧密相连。

19、我愿意做你的还原剂,给你多少个电子也没关系,只想和你稳稳的在一起。

20、你像一道波长520的绿光,照入我的生活。

21、自从喜欢你,我的PH值,总是小于7。

22、我对你的爱就像二次函数,从零开始,没有尽头。

23、如果我是电流,那么你就是那正电荷,我愿与你一同变老。

24、你是薛定谔,我是你的猫,我愿为了你而半死半活。

25、排除了所有这些会造成干扰的因素之后,带入公式算了一整个晚上,我喜欢你,只是因为你,跟其他因素没有关系。

26、我希望你儿子的体内有我一半的染色体。

《流浪地球2》的很多科技短时间内无法实现。

影片中,人类计划给地球安装上万座巨大的行星发动机,推动地球开启“流浪之旅”,这些发动机依靠重核聚变产生的巨大能量。长期研究核聚变能源的中科院合肥物质科学研究院等离子体物理研究所副研究员王腾介绍,核聚变反应是将两个原子核重新结合,生成一个较重的原子核的过程,其间能够产生巨大的能量,“利用这一能量推动地球,原理上是说得通的。”

然而实现重核聚变绝非易事,重核聚变是采用硅等元素作为聚变原料,这样的聚变首先要克服原子核之间的静电斥力,越重的原子核所带电荷越多,越难以产生聚变。“我们当前广泛研究的可控核聚变均采用轻核聚变。”王腾说,其聚变原料氘和氚是自然中最轻元素——氢的两个同位素,相较重核聚变而言更容易实现。

**《流浪地球2》简介

是由郭帆执导,吴京、李雪健、沙溢、宁理、王智、朱颜曼滋领衔主演、刘德华特别演出的科幻灾难**。该片于2023年1月22日在中国大陆及北美地区同步上映。2023年2月9日在中国港澳地区上映。

该片故事围绕《流浪地球》前作展开。以提出计划将建造1万座行星发动机的时代为故事背景,讲述了“太阳危机”即将来袭,世界陷入一片恐慌之中,万座行星发动机正在建造中,人类将面临末日灾难与生命存续的双重挑战故事。

数据链是传感器与传感器、传感器与信息平台、信息平台与信息平台之间的中介,是实现信息链式运动的桥梁,是获得信息优势、提高各作战平台快速反应能力和协同作战能力,实现作战指挥自动化的关键设备。没有数据链,就无法构建数字化战场,也就无法实现从平台中心战到网络中心战的转型。 €sxrMヅ-

牞灢B

)!c_h

袅疫輺}戝X

数据链的分类 呅8缮

;=咥起K

/趱x

j(K远a

军用数据链出现于20世纪60年代初,最早用于美国海军战术数据系统(NTDS)。NTDS是第一代舰载或机载自动化通信系统,于1961年研制成功,当时通过它来使作战情报中心计算机化,以解决空战中战术数据的计算问题。后来,数据链被广泛用于支持舰载飞机的自动着陆系统(4A数据链)、战术数据交换(如14号数据链)、实时数据通信(如16号数据链、卫星通信链路)和联合战术信息分配(如美国联合战术信息分发系统JTIDS)等,现已发展为通用武器接口(如美国防部“武器数据链结构”WDLA计划)。目前,在包括美国、北约及其盟国在内的发达国家军队中,数据链已经形成不同系列,并呈现迅猛发展之势。 :属4=

}3z

杳A 笍V剩

稲1硍 笩m

数据链的种类可以从不同角度加以划分。从数据终端来看,主要有单兵终端、武器终端和网络终端三种类型。第一类用于单兵和地面移动部队,主要解决作战人员与作战人员、作战人员与武器装备、作战人员与信息平台之间的联系问题;第二类用于作战飞机、舰艇和无人机等武器装备,主要解决作战平台之间的联动;第三类用于信息平台,主要作为C4ISR、地面控制站等主网的网关设施,解决信息平台之间的链接问题,特别是在GIG(即全球信息栅格)或G2G(即网格的网格)方式下,它还是网络或网格之间的桥梁。从通信方式看,可分为有线和无线两种。美军的1号数据链就是一条有线数据链,它使用陆上通信线路,主要用于防空数据的自动交换。为了在不同数据链之间交换防空信息,1号数据链借助数据缓冲装置,自动把数据重新格式化,其传送速率为2400比特/秒。无线数据链有11号、14号、16号数据链等。其中,16号数据链用途较广,装备数量较大,它主要用于战斗单元之间的综合通信、导航和敌我识别及联合战术信息分发系统,也可用来交换联合战术数据,16号数据链装备了具有抗干扰能力的特高频无线电设备,使用战术数字信息数据链J型数据格式,并通过它把各参战部队互连起来。从工作方式来看,可分为数据交换和数据传输两种,但大部分数据链同时具有数据交换和数据传输两种功能。比如,14号数据链是一条在高频和特高频这两种频率上工作的数据交换系统,它通过安装有11号数据链的指定舰船或其他平台为作战人员提供战术数据广播。14号数据链每分钟发送100字电传,这样可以为战区内担负攻击和防御任务,但没有装备海军战术数据系统的舰船提供战术数据广播服务,提高其作战能力。而4A、11号数据链具有传输和交换战术数据的双重功能。例如,美海军使用的11号数据链,支持海军战斗群各分队之间战术数据的传输和交换,联通参战的海上舰艇、飞机与岸上的节点。11号数据链采用高频无线电设备时,数据传输速率为2275比特/秒。 葏刭V7M

减姩 H

b鸔嶖12

偬义荡

数据链的特征 B缓bsc凄A

鼽0叽揝qA

p淡4I

Mxy,

与一般的通信系统不同,数据链系统传输的主要信息是实时的格式化作战数据,包括各种目标参数及各种指挥引导数据。因此,数据链具有以下几个主要特征。 rcJy+JyL2[

懛罃-

賍>穭誷y

4伞r]e!;8D

信息传输的实时性。对于目标信息和各种指挥引导信息来说,必须强调信息传输的实时性。数据链力求提高数据传输的速率,缩短各种机动目标信息的更新周期,以便及时显示目标的运动轨迹。 U烞职骒n

夤皦_

矒陮揱0l

桥I<_h

信息传输的可靠性。数据链系统要在保证作战信息实时传输的前提下,保证信息传输的可靠性。数据链系统主要通过无线信道来传输信息数据。在无线信道上,信号传输过程中存在着各种衰落现象,严重影响信号的正常接收。在语音通信时,收信人员可以借助听觉判断力,从被干扰的信号中正确识别信息。对于数据通信来说,接收的数据中将存在一定程度的误码。数据链系统采用了先进、高效和高性能的纠错编码技术降低数据传输的误码率。 瘈飶

!<Iu缁僄E_

$鐪輰

螟Qb/傥襩

信息传输的安全性。为了不让敌方截获己方信息,数据链系统一般采用数据加密手段,确保信息安全传输。 6U^格}

23恬钥a

}氘|J0

瘢9豩#揶図

信息格式的一致性。为避免信息在网络间交换时因格式转换造成延时,保证信息的实时性,数据链系统规定了各种目标信息格式。指挥控制系统按格式编辑需要通过数据链系统传输的目标信息,以便于自动识别目标和对目标信息进行处理。 & 踷勊

陟C瞽

e篈x喎_

亹唃药TeJc

通信协议的有效性。根据系统不同的体系结构,如点对点结构或者网络结构,数据链系统采用相应的通信协议。 Md-榈槠

p3'

潇畲陿)蔈)

龢埢W丑9鶨

系统的自动化运行。数据链设备在设定其相应的工作方式后,系统将按相应的通信协议,在网络(通信)控制器的控制下自动运行。 2F牵S滱S

啢麷i

y6

c瑌

数据链的功能 $螎&%Y

痜徺15槾

J洕埌V>

腼ooW笲 u

数据链是链接数字化战场上的指挥中心、作战部队、武器平台的一种信息处理、交换和分发系统,是采用无线网络通信技术和应用协议,实现机载、陆基和舰载技术数据信息交换,从而最大限度地发挥战术效能的系统。数据链可以进行点对点全双工、点对点半双工、多点对多点的时隙分配、点对多点的点名呼叫、多点对多点的时分多址方式等操作,使作战区域内各种指挥控制系统和作战平台的计算机系统组成战术数据传输交换和信息处理网络,为作战指挥人员和战斗员提供有关的数据和完整的战场战术态势图。机载平台上的战术数据链系统的最大通信距离可达近1000公里,使用卫星可以实现全球通信。在未来战场上,运用数据链信息系统可以获得以下好处。 %%(群Q

戒想a!ω

dqe瑗v

=朸参ズe

扩大作战空间。在战场信息化系统的支持下,部队可以实时或近实时地在更大范围内获取敌方的情报,为作战武器远距离打击敌方创造有利条件。同时,可以加强各部队之间的彼此协同,又便于在陆、海、空、天、电一体化的多维空间中实施联合作战,从而扩展了兵力兵器作战的空间性能,使战场的空间朝着纵深化、立体化方向发展。特别是实现作战信息共享的横向技术一体化,使得通信网络中的每一个用户在满足垂直(纵向)指挥链对通信资源要求的同时,还能实现信息横向互通。横向技术一体化的应用,使得兵力兵器远距离的作战能力空前提高,如侦察距离的增大、武器射(航)程的增远、兵力机动能力的提高,以及立体作战兵器的增多,这些都给部队在更大范围内杀伤对方创造了可能和条件。 磢s眧S皯1

1愥OEX}

择MlN{tE

~剀悳藕

促使武器平台智能化。运用数据链的武器平台,不论是新研制的还是利用“嵌入”新技术改造的,由于配备了计算机,采用了数字化通信,实现了横向联网,再加上GPS系统、红外雷达和敌我识别系统等,因而都被智能化了,不仅提高了武器平台的自动化程度,而且还大大提高了武器射击目标的精确度。 1巕lt;!他_

wY撨D[础泂

>F+}R泵U

r(徵蚨{

促使战场环境透明化。当各武器平台与信息系统建立起数据链路以后,战场上的部队都能将各种传感器所获取的战场情景信息,通过纵横交错的通信传输网络,传送到各作战单元显示设备上,使各作战单元能及时看到整个战场的画面和作战态势,指挥员通过电子地图针对作战态势,指示战斗的行动方向,将命令直接显示到各作战平台甚至各个战斗员头盔的显示屏上,使每个指挥员、作战平台和士兵对敌军和友军的现实位置一目了然,各作战平台和士兵也能通过计算机和GPS系统,了解自己在战场上的确切地理位置,因此真正实现了战场环境的全透明化。 鎆+>

ev哈CY极

^韯碵

D4衋y⑩P

促使联合作战的真正实现。现代联合作战中,传感器系统、指挥控制系统和武器系统变得越来越复杂,陆、海、空三军的作战部队、舰船、飞机等作战单元之间需要传送的传感信息和交战指令,使各级指挥员共享战场态势,实现快速精确的联合作战行动。因此,只有数字化技术支持下的“数据链”的运用,才能达成真正意义上的联合作战。一些外国军事家对数据链予以高度评价,“数据链是未来作战武器装备的生命线,成为整合未来军队作战力量的黏合剂,提高战斗力的倍增器”。 氓!WXI纁

霹€戊#

较08ADh┄

衼汋蔑t{

数据链的发展趋势 浡顡黾郂

Qb睶t怊S颇

柱l棐sY

4鈅

数据链总的发展趋势是在兼容现有装备的基础上,积极开发新的频率资源,提高数据传输速率,改进网络结构,增大系统信息容量,提高抗干扰和抗截获能力,不断提升数据分发能力,从战术数据终端向联合信息分发系统演变;在与各种指挥控制系统及武器系统链接的同时,实现与战略网的互通。 吖嚍]=

娘败渝t>

晵驧膕抵

転栍娪绯_

通用化。海湾战争后,美空军经过10多年的努力,已经建立起一个以C4KISR为主导的信息平台和以精确制导炸弹和导弹为主的精确弹药库。美空军最近提出了通用武器接口概念,并将其列在武器更新的最优先位置。美空军希望通过开发通用数据链将这些精确弹药相互链接,并与机载或地面控制器相联,“无缝”接收信息平台发布的各种控制指令,从而获得飞行中重新瞄准和更快速、精确地进行打击效果评估等能力。近几年来,一些武器供应商一直在试验可用的通用武器接口,并在等待美军方的通用弹药数据链协议。据报道,2004年度美空军审查确定武器优先发展顺序的“空军武器峰会”,主题将是“把互联的武器列入新出现的‘网络中心战’模型之中”。美陆军也正在努力开发战术通用数据链(TCDL),他们为其战术侦察部队采购的“影子-200”战术无人机,其中就包括了TCDL技术的开发项目,目的是实现陆军和海军作战平台之间的互联互通互操作。数据链的通用化,就可以实现信息平台的一体化,如RQ-4A“全球鹰”无人机能与现有的联合部署智能支援系统(JDISS)和全球指挥控制系统(GCCS)联结,可以把图像直接、实时地传给各级指挥官,用于指示目标、预警、快速攻击或打击效果评估。 r'<窈澵传

玾峗鳌Z贳

6扽璨CO

z 蹒⒇

微型化。美国及其盟国现有的Link16战术数据链,广泛用于各型战术战斗机、轰炸机和指挥控制飞机,但由于太重和太贵,不能用于绝大多数的无人机和其他武器系统。美国空军正在实施一项最初命名为“女妖”、现在称之为“武器数据链结构”(WDLA)的计划,该项目由美国防高级研究计划局(DARPA)投资,最初目标是发展一种小型化的Link16战术数据链。最近,以色列塔蒂安公司开发了一种紧凑型数据链——“星链”,该数据链是专门为小型、微型无人机搜集视频类信息设计的,其在无人机上的部件重量仅有1/2-2/3磅。“星链”已用在以色列的“赫尔姆斯-450”无人机、“搜索者”无人机和美国海军陆战队的“先锋”无人机上,并与美陆军开发的战术通用数据链(TCDL)有95%兼容。 塙氻徴

]俳u5{幄

压;{-

亦H埑

单兵化。早期的数据链多用于武器平台之间。然而,如何让指挥员看见战场的情况,让士兵看清敌人的情况,而且看见“山那边的情况”,是人类战争的千年梦想。因此,单兵的信息化一直是新军事变革的重点。数据链的出现,为实现这一梦想提供了可能。通用化、微型化的数据链,可以装备到每个士兵,让士兵可以在任何时间、任何地点得到敌我双方的任何需要的信息帮助。比如,以色列开发的“星链”系统,包括空中数据终端(ADT)、地面数据终端(GDT)和空中数据中继设备等都是微型的。“星链”中的ADT可以很容易地安装在无人机上,信息由ADT传输给GDT,并显示在掌上电脑或单兵数据助理上,控制单元则放置在士兵的背包中。“星链”非常适合营及营以下作战单元或单兵在城区、崎岖不平的地形、山上或建筑物后进行侦察和战场损伤评估。该系统作用范围约144公里,如果要在更远距离上使用就需要中继节点。 ダR獮襮[妩

蛅b籴lr

嵈}S|汴珕v

2窠鴙|y

高速化。面对飞行中机载传感器实时拍摄到的图像这样一类信息处理问题,数据链的实时传送显得异常重要。要做到海量信息的实时传输,必须解决传输方式和传输速率问题。西方国家对此十分重视,经过近十年的努力,在数据链信息传输的快速性和有效性方面,已经取得很大突破。比如,Link11数据链的传输速率仅为2275比特/秒,而公用宽频带数据链的传输速率达274兆比特/秒-1000兆比特/秒。不久前,美图诺斯鲁普格鲁曼公司在加州中国湖地区,对海军的RQ-8A“火力侦查员”垂直起降微型无人机进行了旨在验证“火力侦查员”的战术指挥数据链路的一系列飞行试验,成功地演示了无人机机载设备与地面控制系统的数据链路,飞行中机载传感器实时拍摄的图像首次被准确地下载。在海军陆战队发起攻击时,“火力侦查员”可在150海里范围内将信息传回地面控制站,根据信息平台的指令,还可以直接引导海军舰载武器和海军陆战队武器对目标实施精确打击。

浪漫的神仙句子:

1、我不介意一直孤独,我只是不想变得微不足道。

2、我不介意一直孤独,我只是不想变得微不足道。

3、你总有一天也是别人遥不可及的温柔月光。

4、朝暮与年岁并往,愿与你一同行至天。

5、要多温柔才能配得上偏爱和例外。

6、希望有一天,我们都能成为彼此的庇佑。

7、我希望你成为芒果树丛中重新升起的月亮。

8、我在寺庙偷偷替你求了平安

世人都不知道 菩萨知道。

9、神明把光风交给霁月 把樱花交给春天 把黑夜交给星光 把心跳交给脸红 把你交给我。

10、醒来万物皆是沉寂,唯有你是世间的一抹旖旎,他人困于山中晨雾,我困于你。

11、山野千里,你是我藏在星星里的浪漫。

12、你踩着漫长星辰的光而来,而我在你到来的刹那便失了心智,从此山河过往,凛冬天明,你都有我。

托卡马克核聚变,也称超导托卡马克可控热核聚变(EAST)、超导非圆截面核聚变实验,核物理学重要理论之 一,也是核聚变实现的重要途径之一。托卡马克核聚变是海水中富含的氕、氘在特定环境和超高温条件下使其实现核聚变反应,以释放巨大能量,世界各国科学家为已在20世纪中叶开始相关研发。

基本介绍 中文名 :托卡马克核聚变 外文名 :Tokamak 性质 :核聚变 发明时间 :20世纪50年代 概念解读,优势,超导技术在EAST中的运用,研发背景,基本原理,实验装置,超导磁系统,真空室,冷屏与外真空杜瓦,面对电浆部件,装置技术诊断系统,低温系统,高功率电源系统,真空抽气系统,低杂波电流驱动系统,总控与数据采集系统,中国EAST,电浆物理所成立,探索新能源过程,EAST装置的主机部分,EAST装置研制过程,EAST的建设和投入运行,新一代EAST,实验突破, 概念解读 托卡马克(Tokamak)核聚变是一种利用磁约束来实现受控的核聚变。它的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。 托卡马克核聚变 托卡马克核聚变的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的电浆加热到很高的温度,以达到核聚变的目的。 优势 相比其他方式的受控核聚变,托卡马克拥有不少优势。1968年8月在苏联新西伯利亚召开的第三届电浆物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度1keV,质子温度05keV,nτ=10的18次方m-3s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克核聚变的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的STTokamak,美国橡树岭国家实验室的奥尔马克(Ormark),法国冯克奈-奥-罗兹研究所的TFRTokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的PulsatorTokamak。 超导技术在EAST中的运用 占发电量比重较大的核电站就是在控制之下的裂变能利用。托卡马克核聚变,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。受控热核聚变在常规托卡马克装置上已经实现。但常规托卡马克装置体积庞大、效率低,突破难度大。上世纪末,科学家们把新兴的超导技术用于托卡马克核聚变,使基础理论研究和系统运行参数得到很大提高。 研发背景 能源是社会发展的基石。以煤炭、石油、天然气等化石能源替代柴薪的第一次能源革命带来了社会经济的飞速发展。然而这些宝贵的资源就这样被燃烧掉,同时造成了严重的污染。据估 计,一百年后地球上的化石能源将会面临枯竭。面对着即将来临的能源危机,人类有了一个共同的梦想—寻求一种无限而清洁的能源来实现人类的持续发展。 托卡马克核聚变研究举步维艰,根本原因是轻元素原子核的聚合远比重元素原子核的分裂困难。原子核之间的吸引力是很大的,但原子核都带正电,又互相排斥,只有当两个原子核之间的距离非常接近,大约相距只有万亿分之三毫米时,它们的吸引力才大于静电斥力,两个原子核才可能聚合到一起同时放出巨大的能量。因此,首先必须使聚变物质处于等离子状态,让它们的原子核完 露出来。然而,两个带正电的原子核越互相接近,它们之间的静电斥力也越大。只有当带正电的原子核达到足够高的动能时,这需要几千万甚至几亿摄氏度的高温,它们的碰撞才有机会使它们非常接近,以致产生聚合。 1933年,人们用加速器使原子核获得所需的动能,在实验室实现了核聚变。可是从这样的核聚变中得到的能量比加速器消耗的能量要小得多,根本无法获得增益的能量。1952年,美国用核子弹爆炸的方法产生高温,第一次实现了大量氘、氚材料的核聚变。但这种方法的效果是,在极短时间内使核聚变释放出巨大能量,产生强烈爆炸,即氢弹爆炸。人类要和平利用核聚变,必须是可以控制的聚变过程。核聚变反应比较切实可行的控制办法是,通过控制核聚变燃料的加入速度及每一次的加入量,使核聚变反应按一定的规模连续或有节奏地进行。因此,核聚变装置中的气体密度要很低,只能相当于常温常压下气体密度的几万分之一。另外,对能量的约束要有足够长的时间。 二战末期,前苏联和美、英各国曾出于军事上的考虑,一直在互相保密的情况下开展对核聚变的研究。几千万、几亿摄氏度高温的聚变物质装在什么容器里一直是困扰人们的难题。 1954年,第一个托卡马克装置在原苏联库尔恰托夫原子能研究所建成。当人们提出这种磁约束的概念后,磁约束核聚变研究在一些方面的进展顺利,氢弹又迅速试验成功,这曾使不少国家的核科学家一度对受控核聚变抱有过分乐观的态度。但人们很快发现,约束电浆的磁场,虽然不怕高温,却很不稳定。另外,电浆在加热过程中能量也不断损失。经过了二十多年的努力,远未达到当初的乐观期望,理论上估计的电浆约束时间与实验结果相差甚远。人们开始认识到核聚变问题的复杂和研究的艰难。在这种情况下,苏、美等国感到保密不利于研究的进展,只有开展国际学术交流,才能推进核聚变的深入研究。另外,磁约束核聚变与热 核武器在科学技术上没有重大的重叠,而且其商业套用的竞争为时尚早。于是,1958年秋在日内瓦举行的第二届和平利用原子能国际会议上达成协定,各国互相公开研究计画,并在会上展示了各种核聚变实验装置。自这次会议后,研究重点转向高温电浆的基础问题,从二十世纪六十年代中到七十年代,各国先后建成了很多实验装置,核聚变研究进入了一个新的 期,人们逐渐了解影响磁约束及造成能量损失的各种机理,摸索出克服这种不稳定性及能量损失的对策。随着核聚变研究的进展,人们对受控核聚变越来越有信心。 基本原理 核能是能源家族的新成员,包括裂变能和聚变能两种主要形式。裂变能 是重金属元素的核子通过裂变而释放的巨大能量。受控核裂变技术的发展已使裂变能的套用实现了商用化,如核 (裂变)电站。裂变需要的铀等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生放射性较强的核废料,这些因素限制了裂变能的发展。聚变能是两个较轻的原子核聚合为一个较重的原子核并释放出的能量。目前开展的受控核聚变研究正是致力于实现聚变能的和平利用。其实,人类已经实现了氘氚核聚变--氢弹爆炸,但那是不可控制的瞬间能量释放,人类更需要受控核聚变。维系聚变的燃料是氢的同位素氘和氚,氘在地球的海水中有极其丰富的蕴藏量。经测算,1升海水所含氘产生的聚变能等同于300升汽油所释放的能量。海水中氘的储量可使人类使用几十亿年。特别的,聚变产生的废料为氦气,是清洁和安全的。因此,聚变能是一种无限的、清洁的、安全的新能源。这就是世界各国尤其是已开发国家不遗余力竞相研究、开发聚变能的根本原因。 受控热核聚变能的研究主要有两种--惯性约束核聚变和磁约束核聚变。前者利用超高强度的雷射在极短的时间内辐照氘氚靶来实现聚变,后者则利用强磁场可很好地约束带电粒子的特性,将氘氚气体约束在一个特殊的磁容器中并加热至数亿摄氏度高温,实现聚变反应。 托卡马克(Tokamak)是前苏联科学家于20世纪50年代发明的环形磁约束受控核聚变实验装置。经过近半个世纪的努力,在托卡马克上产生聚变能的科学可行性已被证实,但相关结果都是以短脉冲形式产生的,与实际反应堆的连续运行有较大距离。超导技术成功地套用于产生托卡马克强磁场的线圈上,是受控热核聚变能研究的一个重大突破。 超导不可能束缚高速带电粒子。假设两个距离很近的质子,往不同方向飞出,要同时束缚这两个质子,超导产生的磁场必须在很小的空间内有一个180度的方向改变。即便是超导体内的电子是悬浮的,也不可能实现这种磁场。磁场如果距离超导有一定的距离,不但难以在空间上发生突变,在时间上也难灵活改变。如果一个质子要飞出反应釜,磁场必须约束质子,可是质子一但改了方向,磁场要约束质子,也必须改方向。通俗地说,一个质子溜著超导体内的全部电子玩。电子本身是有质量的。电子要形成一个灵活的磁场,电子速度(速率和方向)就要不停的变。最后的结果就是超导体温度迅速增加,超导效果消失,质子飞出反应釜。 实验装置 “超导托卡马克核聚变”实验包括一个具有非圆小截面的大型超导托卡马克实验装置和低温、真空、水冷、电源及控制、数据采集和处理、波加热、波驱动电流、诊断等子系统。其中超 导托卡马克装置是本项目的核心。而超导托卡马克装置又包括超导纵场与极向场磁体系统、真空室、冷屏、外真空杜瓦及面对电浆部件等部件。承担各部件设计的工程技术人员,在充分集思广益、充分发挥创新能力的基础上,借鉴国际上同类装置的经验,通过一丝不苟的努力工作,目前各项工作的进展呈良性循环---设计推动了预研工作的进行,预研工作的结果又使设计得到进一步最佳化。 超导磁系统 超导纵场与极向场磁系统是HT-7U超导托卡马克的关键部件,结构复杂、技术难点多、难度大、涉及的不确定因素多。科研人员经过一轮又一轮的设计、计算和分析,对多种方案进行比较、最佳化,目前超导导体的设计已进入最后的实验选型阶段;线圈的设计已完成试验线圈的设计与绕制及原型线圈的设计;低温下高强度线圈盒的设计已完成各种可能工况下的力学分析与计算、传热分析与计算、电磁分析计算以及线圈盒焊接时的温升对超导线圈性能影响的试验等工作;低温冷却回路的设计已完成热的分析与计算及冷却参数的最佳化;超导导体接头已完成多种方案的设计、研制与试验,并确定了最终的结构形式;超低温绝缘子的研究已完成最终的设计与试制,进入批量制造阶段;超导线圈的真空压力浸渍的工艺研究在国内电绝缘的归口单位---桂林电科所及中科院北京低温中心的密切配合下已完成超低温绝缘胶的配方的研究,正在完成超低温绝缘胶真空压力浸渍的最终工艺试验。超导极向场的线圈位置最佳化和电流波形最佳化,使之既能满足双零和单零的偏滤器位形的要求,又能满足限制器位形的要求,这项工作经过反复的平衡计算与调试、比较,已经满足物理的要求,工程上线圈在装置上的位置以及线圈的截面形状均已确定。 真空室 真空室是直接盛装电浆的容器,除了要为电浆提供一个超高真空环境,要满足装置稳定运行时电浆对电磁的要求以及为诊断电浆的特性、电浆加热、真空抽气、水冷及加料对视窗的要求、中子禁止的要求、还要满足面对电浆部件定位和准直的要求。HT-7U真空室是双层全焊接结构,由于真空室离电浆近,电浆与真空室之间的电磁作用最直接,真空室上所受的电磁力最大,同时真空室要烘烤到250°C,因温度变化所产生的热变形大。设计人员考虑到以上这些因素,对真空室进行了所有可能工况下的多轮受力分析、电磁分析和传热计算,针对每一轮的计算结果对结构设计进行最佳化。目前已完成最新一轮满足各项要求的结构在各种工况下的静应力分析、模态分析、频率回响分析和地震回响分析,为设计的可靠性提供了充分的依据。真空室试验原型段的施工设计正在进行之中,真空室满足热胀冷缩要求的特殊支撑结构的试验平台正在制造过程中,真空室视窗所使用的各种异型波纹管的研制也在紧张的进行。 冷屏与外真空杜瓦 HT-7U的内外冷屏是超导磁体的热屏障,对维持超导磁体的正常运行发挥作重要作用。该部件的电磁分析、受力分析和传热分析的工作都已完成,对传热计算产生重要影响的表面辐射系数的测量已完成,目前该部件已进入工程设计的最后阶段,即将转入施工设计。外真空杜瓦是维持其内部的所有部件都处在基本无对流传热的真空环境中,因而是超导磁体与冷屏维持超低温的保证,同时也是其内部所有部件支撑的基础。该部件的力学分析和电磁分析已结束,施工设计已正式展开。 面对电浆部件 面对等离子体部件直接朝向电浆,其表面性质直接影响电浆杂质的返流和气体再循环,电浆的能量依靠面对电浆部件的冷却系统输运到托卡马克外。面对电浆部件相对电浆的位置的最佳化正与德国马普电浆所合作,利用他们的程式进行计算,已得出初步结果;直接面对电浆的石墨材料正与山西煤化所合作研究,开发参杂石墨与石墨表面的低溅射涂层,用于石墨材料各项性能试验的大功率电子枪和实验系统正在装修一新的实验室中调试;用于试验水冷结构和石墨性能的面对电浆部件的试验件已组装到HT-7超导托卡马克的真空室中,在即将进行的一轮试验中进行各项指标的测试。 装置技术诊断系统 装置技术诊断包括温度测量、应力应变测量、失超保护和短路检测等部分。温度测量从45k的液氦温度到350°C面对电浆部件的烘烤温度,要测的温度范围大,且要使用不同的方法。特别是超低温下的温度测量,其温度计的标定费用高,科研人员积极发挥创新的能力,自己开发了一套温度标定系统,且在该系统上进行了HT-7U所有低温温度计的标定。应力应变测量、短路检测和失超保护的探测及放大电路已设计并调试完毕,数据采集和处理的专用程式也已进入调试阶段。 低温系统 低温系统是超导托卡马克核聚变实验装置的关键外围设备之一。它必须保障装置的超导纵场磁体和极向场磁体顺利地从室温降温至38-46K,并能长达数月保冷,维持超导纵场磁体正常励磁和极向场磁体快脉冲变化的所需的致冷量。HT-7U超导托卡马克装置的低温系统的2KW/44K工程设计已全面展开,部分外购设备已到货且已安装到位。新增两只100m3的中压储气罐已安装就序,新增100m3的低压气柜也一稳稳地安放在低温车间的一角,新建压机站的五台崭新的螺杆压机被整齐地安装在低温车间中间,一台氦气干燥器、一台吸附器和两台滤油器已安装完毕。原俄罗斯赠送的OPG100/500二号制冷机的改造工作已经结束,德国FZK赠送的300W/18K制冷机的恢复施工即将开展。螺杆压机站的电控部分和气、水、油管线的施工正在紧张地进行。 高功率电源系统 担负著向托卡马克提供不同规格的高功率电源,实现能量传输、功率转换、运行控制等重要任务。为电浆的产生、约束、维持、加热,以及电浆电流、位置、形状、分布和破裂的控制提供必要的工程基础和控制手段。HT-7U纵场电源与极向场电源已完成了系统的分析、计算和方案的比较、最佳化。在设计过程中,科研人员本着保证性能、节约经费的原则,不仅在设计方案上结合本所的具体情况作多种设计相结合的方法,而且充分利用本所的技术储备,积极发挥创新的能力,自行开发重要设备。极向场电源的关键设备,大容量晶闸管、直流高压开关和爆炸开关等目前只能以很高的价格进口,经我所科研人员的努力已完成单元技术试验,正在进行样机的试制。 真空抽气系统 为电浆的稳定运行提供清洁的超高真空环境,为超导磁体正常运行提供真空绝热条件;充气系统则为真空室的壁处理和电浆放电提供工作气体。真空抽气系统完成了总体布局设计,抽速和抽气时间计算;主泵、主阀、测量系统的选择和配备;完成抽气系统主泵和予抽泵16台合计58万元订货。真空抽充气系统的保护和控制已完成最终方案的设计。 低杂波电流驱动系统 不断地给电浆补充能量,是保证托卡马克实现长脉冲稳态运行的重要手段,而离子回旋共振加热则是另一重要手段。HT-7U35兆瓦的低杂波系统已完成技术方案的设计,完成了波功率和相位监控、波系统的保护及波源的低压电源的方案设计,准备先期建设的1MW波系统的高压电源及波系统天线的试验件正在制造过程中。离子回旋共振加热已完成波系统的总体设计,确定了4MW/30-110Mhz的波系统方案;完成了波源设计,并正在建造一台1MW,脉冲可达1000秒的射频波源,预计2001年中建成并调试;已完成天线的调配系统设计,并正进行加工前的台面试验。 总控与数据采集系统 是对整个装置进行实时监测、控制与保护的分散式计算机网路系统。目前总控系统的安全巡检系统、中央控制系统、脉冲充气系统均已完成程式的设计,正在进行调试和预演;中央定时系统正在与国内相关单位合作研制,局域控制网正处于实施阶段。数据采集系统的VAX-CAMAC采集系统、PC-CA MAC采集系统、PC采集系统、VXI采集系统、分散式数据伺服器、数据检索系统和数据采集管理系统均已完成程式设计,正在进行诊断测量系统是一双双监视电浆的眼睛,给出电浆在不同的时间和空间的品质特性。除了HT-7上准备移到HT-7U上的诊断测量设备外,作为托卡马克上的最重要的测量系统之一的电磁测量系统正在进行物理上的计算和磁探针、单匝环、Rogowski线圈、逆磁线圈、鞍形线圈等测量线圈的设计,由美国德克萨斯大学赠送的新型CO2雷射器正在调试,它将用在HT-7U的远红外诊断上,其他诊断系统也在进行物理上的准备或设备上的准备。 中国EAST 中国在1956年制定的“十二年科学规划”中决定开展核聚变研究,经过不懈努力,到二十世纪八十年代,建成了中国环流器一号HL-1以及HT-6B、HT-6M等一批有影响的聚变研究 实验装置。 电浆物理所成立 中国科学院电浆物理研究所成立于1978年9月,主要从事高温电浆物理和受控热核聚变及其相关高技术研究,以探索、开发、解决人类无限而清洁的新能源为最终目的。它是中国最重要的核聚变研究基地之一,是世界实验室在中国设立的核聚变研究中心,也是国际受控热核聚变计画ITER中国工作组最重要的单位之一。 探索新能源过程 电浆所先后建造了中小型托卡马克HT-6B和HT-6M,以及超导托卡马克核聚变HT-7和全超导托卡马克核聚变EAST。目前尚在运行的HT-7超导托卡马克装置是中国第一个超导托卡马克,其实验研究取得了多项重大成果,是继法国之后第二个能产生分钟量级高温电浆放电的托卡马克装置。 EAST装置的主机部分 高11米,直径8米,重400吨,由超高真空室、纵场线圈、极向场线圈、内外冷屏、外真空杜瓦、支撑系统等六大部件组成。其实验运行需要有大规模低温氦制冷、大型高功率脉冲电 源及其回路、大型超导体测试、大型计算机控制和数据采集处理、兆瓦级低杂波电流驱动和射频波加热、大型超高真空、以及多种先进诊断测量等系统支撑。学科涉及面广,技术难度大,许多关键技术目前在国际上尚无经验借鉴。特别是EAST运行需要超大电流、超强磁场、超高温、超低温、超高真空等极限环境,从芯部上亿度高温到线圈中零下269度低温,给装置的设计、制造工艺和材料方面提出了超乎寻常的要求,其难度可见一斑。 EAST装置研制过程 电浆所发展了一系列高新技术,一些技术国际领先,并有着广泛的套用前景,如大型超导磁体、超高真空、偏滤器、超导导体生产等技术。还有一些独创 的技术得到国际同行专家的赞赏和借鉴 ,如将高温超导接头技术运用到托卡马克,并取得相当好的效果,极大地提高装置效率,目前该项技术已被国际ITER项目借鉴。 EAST的建设和投入运行 为世界近堆芯聚变物理和工程研究搭建起了一个重要的实验平台,为我国磁约束核聚变研究的进一步发展,提升中国磁约束聚变物理、工程、技术水平和培养高水平人才奠定了坚实基础。EAST是世界上唯一投入运行的全超导磁体的托卡马克装置,将为国际热核聚变实验堆(ITER)的建设及聚变能的发展做出了重要贡献。 新一代EAST 2006年9月28日,中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的新一代热核聚变装置EAST首次成功完成放电实验,获得电流200千安、时间接近3秒的高温电浆放电。EAST成为世界上第一个建成 并真正运行的全超导非圆截面核聚变实验装置。核反应释放的能量相当于相同质量的物质释放的化学能的数十万倍至百万倍。核反应有核裂变、核聚变两种形式。一个重核在中子的轰击下分裂成高能碎片的反应叫做核裂变,主要反应物是稀少的放射性元素铀、钸等,如核子弹爆炸;两个轻核发生碰撞结合成重核的反应叫做核聚变,主要反应物为氢的同位素氘和氚,如氢弹爆炸、太阳发光发热等。 实验突破 2016年1月28日凌晨零点26分,中国科学院合肥物质科学研究院全超导托卡马克核聚变实验装置EAST成功实现了电子温度超过5千万度、持续时间达102秒的超高温长脉冲等离子体放电,这是国际托卡马克实验装置上电子温度达到5000万度持续时间最长的电浆放电。该成果在未来聚变堆研究中具有里程碑意义,标志着我国在稳态磁约束聚变研究方面继续走在国际前列。目前,EAST已成为国际上稳态磁约束聚变研究的重要实验平台,其研究成果将为未来国际热核聚变实验堆ITER实现稳态高约束放电提供科学和工程实验支持,并将继续为我国下一代聚变装置—中国聚变工程实验堆前期预研奠定重要的科学基础。 2016年10月18日,据美国麻省理工学院官方网站讯息,该校科学家在阿尔卡特C-Mod (Alcator C-Mod) 托卡马克聚变反应堆实验中创造出新的世界纪录,电浆压强首次超过了两个大气压。鉴于高压电浆是实现可控核聚变的关键因素,这意味着人类距获得“取之不尽用之不竭”的清洁能源又近一步。在麻省理工学院服役23年的阿尔卡特C-Mod实验装置曾在2005年制造了177个大气压的世界纪录。此次,该装置的电浆压强达到205个大气压的新的世界纪录,其中电浆每秒发生300万亿次聚变反应。新纪录在该装置以往成绩的基础上提高了15%,对应的温度达到3500万摄氏度,约是太阳核心温度的两倍。 麻省理工学院阿尔卡特C-Mod装置内部 2016年11月2日讯息,中国科学院合肥物质科学研究院电浆所承担的国家大科学工程“人造太阳”实验装置EAST在第11轮物理实验中再获重大突破,获得超过60秒的稳态高约束模电浆放电。EAST因此成为世界首个实现稳态高约束模运行持续时间达到分钟量级的托卡马克核聚变实验装置。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3452959.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-15
下一篇2023-08-15

发表评论

登录后才能评论

评论列表(0条)

    保存