如何运用交通大数据智慧出行

如何运用交通大数据智慧出行,第1张

2015年两会上,“大数据(big data)”一词首次写入政府工作报告。在交通领域,大数据一直被视作缓解交通压力的技术利器。应用大数据有助于了解城市交通拥堵问题中人的出行规律和原因,实现交通和生活的和谐,提高城市的宜居性,为政府精准管理提供基于数据证据的综合决策。

随着手机网络、全球定位系统(global positioning system,GPS)/北斗车载导航、车联网、交通物联网的发展,交通要素的人、车、路等的信息都能够实时采集,城市交通大数据来源日益丰富。在日益成熟的物联网和云计算平台技术支持下,通过城市交通大数据的采集、传输、存储、挖掘和分析等,有望实现城市交通一体化,即在一个平台上实现交通行政监管、交通企业运营、交通市民服务的集成和优化。

1、活用、善用大数据是改善交通的必由之路

近年来,国内各大中型城市均已开始或酝酿与交通大数据相关的项目建设,如公交都市、城市交通数据中心、智慧交通、交通运行协调指挥中心等,大量项目的上马对大数据技术的需求量也不断加大。

行业对于大数据技术的普及推广始于2011年,经过两年的发展,大数据技术已在智能交通领域深入人心。基于大数据技术的应用和相关业务的开展,未来几年内,活化数据的广泛应用将是国内交通大数据的发展热点。

2、智能交通大数据管理平台应用是核心

虽然大数据技术目前在智能交通领域的发展前景一路看好,但大数据技术在实际使用中仍然面临一些问题。其中最主要的问题就是:面对多样、封闭的运行环境,交通数据如何收集管理?如何保证数据的质量?如何将其快速的应用?这是各地政府、交通企业、交通系统集成商共同面临的难题。

智能交通大数据管理平台的应用将有效解决这些问题。智能交通大数据平台主要包括五方面的内容:城市交通信息数据系统、城市交通综合监测和预警系统、城市交通碳排放实时监测系统、公交都市管理系统、公众出行信息服务系统。

城市交通信息数据系统是基于大数据应用技术的交通行业信息共享交换中心,数据中心建立以后,将成为城市交通信息的枢纽。

城市交通综合监测和预警系统可以实现对整个城市交通状况的实时监测。交通管理部门可以对城市交通中可能发生的大面积交通瘫痪作出有效的预判。同时,该系统也可以引导公众出行,为公众提供全面、及时的出行信息,真正达到绿色交通的出行要求。

智慧出行也称智能交通,是指借助移动互联网、云计算、大数据、物联网等先进技术和理念,将传统交通运输业和互联网进行有效渗透与融合,形成具有“线上资源合理分配,线下高效优质运行”的新业态和新模式,并利用卫星定位、移动通讯、高性能计算、地理信息系统等技术实现了城市、城际道路交通系统状态的实时感知,准确、全面地将交通路况,通过手机导航、路侧电子布告板、交通电台等途径提供给百姓。其中,迪蒙智慧交通依托迪蒙科技在云计算、物联网、大数据、人工智能、金融科技等领域的丰富开发经验和雄厚的技术积累以及其他智慧出行领域创新商业模式于一体的高端智慧交通解决方案。在此基础上,集成驾驶行为实时感应与分析技术,实现公众出行多模式多标准动态导航,提高出行效率;并辅助交通管理部门制定交通管理方案,促进城市节能减排,提升城市运行效率。

百度地图利用云计算、大数据分析技术,通过数据可视化的形式,“平安播报”网站为用户提供春运期间全国高速公路的拥堵路段信息查询、重要节点流量查看以及事故多发路段查询等功能,为用户出行提供参考。

同时,百度地图推出适合手机查看的移动版页面,让用户即使在路上,也可以通过手机实时查看权威的全国高速公路通行信息。高德地图则对春运出行发布了春节出行预测报告,通过历年城市的净迁入/净迁出量计算分析,预计出今年拥堵高发公路、游客较多的旅游景点,以供大众出行参考。双方都依靠大数据分析作为解决拥堵问题的一剂良药,“互联网+”交通势在必行。

“互联网+”交通的核心还在在于数据,哪家地图数据以及大数据分析能力最强,谁将取得最大的市场优势。数据服务经济社会时代,如何让大数据释放最大价值成为当务之急,而对大数据的分析则成为了使其能够充分体现价值的前提,这就对IT系统计算能力提出了更高的需求和挑战。在这种背景下,市场对于4路及4路以上服务器需求大幅增长,越来越多的行业用户开始采用高端服务器满足关键业务需求。

大数据的应用领域广泛,涵盖了许多不同的行业和领域。以下是一些主要的大数据应用领域,每个领域的一些实际应用实例以及国内常见的应用平台:

一、应用领域以及实例

1、商业和市场营销:

市场分析和趋势预测:通过分析大量的市场数据,如销售数据、消费者行为等,预测产需求和市场趋势,帮助企业调整营销策略。

个性化营销:利用大数据分析,根据消费者的购买历史和偏好,实现个性化的广告和推荐,提高销售转化率。

定价优化:通过分析竞争对手价格、消费者反应等数据,优化产品定价策略,最大化利润。

实例:亚马逊的个性化推荐系统:亚马逊通过分析用户的购买历史、浏览记录和点击为,利用大据技术为每位用户提供个性化的产品推荐,从而提高购买转化率和客户满意度。

2、金融和银行业:

风险管理:利用大数据分析,预测借款人违约风险,帮助银行降低贷款损失。

投资决策:通过分析市场数据、经济指标等,帮助投资者做出更明智的投资决策。

高频交易:利用大数据分析,进行高频交易,根据市场变化实时调整交易策略。

实例:信用卡欺诈检测:金融机构使用大数据分析客户的交易和行为模式,以检测异常交易模式,从而及时发现信用卡欺诈。

3、医疗保健:

个性化医疗:分析患者的基因组数据、病历等信息,制定个性化的治疗方案,提高治疗效果。

疾病预测:通过分析疾病传播、患者就诊数据等,预测疾病的爆发和传播趋势。

药物研发:分析分子结构、药物相互作用等数据,加速药物研发过程。

实例:基因组学研究:研究人员利用大数据分析大规模的基因组数据,以了解基因与疾病之间的关联,为个性化医疗和药物研发提供支持。

4、制造业:

供应链优化:通过分析供应链数据,优化生产计划、库存管理和物流,提高生产效率。

设备维护预测:通过传感器数据,预测设备故障,减少生产中断时间和维修成本。

实例:质量控制:制造业利用传感器数据、生产过程数据等,分析生产线上的变化和异常,以实现实时质量监控和缺陷预测。

5、能源和公用事业:

能源消耗优化:分析能源使用数据,优化能源消耗,减少能源浪费。

智能电网管理:通过分析电网数据,监控电力供应,实现更可靠的供电。

实例:智能电表:智能电表通过记录电能使用模式,帮助能源公司更好地了解能源消耗情况,制定更合理的电力供应计划。

6、交通和物流:

交通流量管理:通过分析交通数据,优化交通信号灯、道路规划,减少交通拥堵。

物流优化:分析物流数据,优化货物运输路径和时间,降低物流成本。

实例:Uber 的动态定价:Uber利用大数据分析实时交通状况和乘客需求,调整车费以实现动态定价,提供更准确的乘车服务。

7、社交媒体和互联网:

用户行为分析:分析用户在社交媒体上的行为和互动,了解用户兴趣和偏好,改进用户体验。

情感分析:分析社交媒体内容,了解公众情感和态度,用于舆情分析和品牌管理。

实例:Twitter 舆情分析:分析 Twitter 上的大量用户推文,可以了解公众对特定事件、产品或话题的情感和态度,用于舆情分析和品牌管理。

8、农业:

农作物管理:通过分析气象数据、土壤数据,优化农作物种植和管理策略。

精准农业:应用传感器数据,实现精准施肥、灌溉和农药使用,提高农作物产量。

实例:气象数据分析:农业领域使用气象数据进行预测,帮助农民合理安排农作物种植时间和灌溉计划,以提高农作物产量和质量。

二、国内大数据应用平台和工具:

大数据计算平台:一些大数据计算平台如京东云JDPresto、阿里云MaxCompute、腾讯云弹性 MapReduce 等在国内也很常见。

数据库:国内也有一些大数据数据库解决方案,如PingCAP 的 TiDB、华为的 GaussDB、阿里云的 AnalyticDB 等。

阿里云:阿里云也提供了丰富的大数据平台,包括MaxCompute(大数据计算)、DataWorks(数据集成)、AnalyticDB(数据仓库)等。

百度智能云:百度智能云提供了BDS(百度分布式服务)、BIE(百度智能大数据计算引擎)等大数据计算和存储服务。

京东云:京东云提供了大数据分析平台JDPresto、数据仓库服务JD Data Warehouse 等。

Kaggle: 一个全球知名的数据科学竞赛平台,提供各种数据挖掘和机器学习竞赛任务,由数据科学家和机器学习从业者参与。

DataCastle:一个中国的数据科学竞赛平台,隶属于成都数聚城堡科技有限公司,是由电子科技大学周涛教授创建的数据极客圈,聚集了全球数据精英、领先的数据科学思维与智慧以及各行业领域优质数据资源。

DrivenData: 一个致力于社会问题的数据科学竞赛平台,鼓励数据科学家解决世界上的重要问题。

CodaLab: 提供各种机器学习和计算竞赛,支持多个领域的挑战。

CrowdANALYTIX: 提供数据科学竞赛和项目,涵盖了多个行业和应用领域。

作者 | 网络大数据

如今,城市交通拥堵状况日益严重。虽说智能交通布局在不断地完善,但交通管理仍旧收效甚微。数据独立存储难以融合应用、数据内在规律难寻、数据缺乏深度挖掘等诸多问题,其困难重重,该如何解决呢不妨看看城市交通大数据可视化解决方案吧!

交通动态看得见,交通管理更简便

“大数据可视化”能够将城市运行核心系统的各项关键数据进行可视化呈现,通过贴合实战,从感官、操作、应用及数据四个维度解决交警个性化需求,构建业务场景深度应用,从而打通数据到决策的最短路径。交通管理者可以根据实战场景,利用各类图表、趋势图、视觉效果将庞杂枯燥的数据展现出来,进而深度挖掘内在数据规律,以此指导决策,助力城市交通健康的发展。

系统架构分明,场景动态清晰

通过前端感知系统,实时获取城市交通动态信息。将各个子系统的数据录入数据可视化平台进行融合、分析后,呈现出不同场景下的交通信息个性化视图,从而为城市交通的管理和调控提供指导依据。

01强大的数据源整合能力

数据接入灵活多变,支持静态数据、API、数据库、本地数据四种数据对接模式,其中数据库类型支持主流的MySQL、Oracle、MPP,满足庞大、繁杂、多样数据的集中汇聚展示,从而实现不单单是海量数据表面的业务处理而是通过清洗杂乱数据,优化数据结构来进行深层次的信息挖掘,发现数据的真正含义。

02丰富的图表组件搭建工具

提供丰富多样化的图表组件工具,支持包括圆饼图、极区图、地图、柱状图等超过1100项效果配置,用户可以根据实际应用需求进行组合使用。通过结合大屏形成的组件搭配展示给人一种视觉冲击,不仅仅是简单的把数字用图表表示,而是帮助用户,发现数据背后的规律。

03多样化的场景模板

数据可视化平台提供多种应用场景模板,合理运用搭配色彩、布局以及组件,解决用户设计难题。简单的修饰即可使用,业务全景一目了然。

04图形化的编辑界面

用户也可以通过友好的图形化编辑模式完成样式编辑和数据配置,创建属于自己的个性化需求模板,并且可以进行分享,无需编程能力就能轻松搭建可视化应用。

数据可视功能强大,应用场景遍地开花

从多个角度进行日常路网运行监测与协调管理、交通警情分析研判、重点人车管理,以满足常态下交通监测监管、应急状态下协同处置指挥调度的需要,满足交通行业各个场景的应用需求。

01交通态势可视化

通过对多项核心交通数据进行分析,实现交通态势评估,辅助交通管理部门依据交通评估结果动态跟踪、监测拥堵状态和预测变化趋势,为交通规划、交通优化的提供量化指标依据。

02设施运维管理

可视化运维基于系统中各种设备的运行状况,能及时直观的反映故障点位信息,包括设备在线情况、完好率以及设备故障类型,帮助运维人员解决问题、提高效率,让运维由繁化简,更加有效的保障智能交通系统的顺畅运行。

03重点车辆管控

通过构建重点车辆管控场景,可以帮助用户直观的了解到区域内所有重点车辆的类型和数量以及发放的通行证数量,实现对嫌疑车辆、布控车辆、涉案车辆、重点车辆等黑名单车辆实时监控告警强化交通管控力度。

04交通事件研判分析

针对历史交通流、交通违法、交通事故等数据进行分析汇总整合、专题化分析,达到科学细化管理目的,为交通管理部门在交通组织、警力部署、设备布设等方面的优化提供决策依据。

以上便是城市交通大数据可视化解决方案的有关介绍。

该方案不仅打通了各交警业务子系统间的数据壁垒,将交通大数据真正的价值发掘出来;更以丰富的视图展示满足了实战应用数据可视化场景需求,交通管理部门可通过清晰可视的交通动态图进行车流管控及警力调度,为城市交通的管理与健康发展带来极大的改善。

新华社北京9月27日电 题:5G、大数据、人工智能……看看现代交通的创新元素

推动交通运输行业高质量发展,离不开 科技 创新的战略支撑和科研攻关的持续推进。近些年来,5G、大数据、人工智能等新兴 科技 与交通运输行业不断“碰撞”出新的“火花”,在基础设施、交通装备、运输服务等方面不断突破,为建设交通强国注入强大动能。

自助办理登机牌仅需30秒,自助办理行李托运仅需90秒,智慧安检系统提高旅客过检效率30%左右……作为中国民航首批18个“智慧型机场”示范项目之一,青岛胶东国际机场中多种全流程自助设备为旅客带来便捷、高效的出行。“从值机到登机,自助和刷脸几乎可以解决所有问题。” 不少旅客由衷地感慨。

加快新型基础设施建设,是以点带面推动交通基础设施数字转型、智能升级的重要抓手。交通运输部印发的《关于推动交通运输领域新型基础设施建设的指导意见》中明确提出,要以技术创新为驱动,以数字化、网络化、智能化为主线,以促进交通运输提效能、扩功能、增动能为导向,推动交通基础设施数字转型、智能升级,建设便捷顺畅、经济高效、绿色集约、智能先进、安全可靠的交通运输领域新型基础设施。

上海建成全球综合自动化程度最高的洋山港四期码头,浙江杭州借助算法自动控制火车站内 汽车 排队模式……近年来,多地交通基础设施在数字化、智能化方面频现亮点。不少曾经只能在科幻**里看到的景象,正一步步具象为人们生活中的熟悉场景。

拿起手机,点开高德地图App,呼叫出租车,这已经是不少人逛街游玩、 旅游 出行的新模式。在北京、深圳、天津等数十座城市,基于高德打车数字化升级解决方案而进行的巡网融合项目已经落地,在满足人们出行需求的同时,也降低了空驶率,增加了司机收入。高德地图副总裁王桂馨表示,将用好技术、运营、服务能力,为广大用户提供更加优质、便捷、 科技 的出行服务,让出租车企业、司机切实感受到“数字化红利”。

铁路作为我国重要的运输方式,搭上 科技 快车,跑出“中国速度”。

2019年12月30日,世界首条智能高铁——京张高铁的首发车从北京北站缓缓驶出。这个“大家伙”采用北斗卫星导航系统,即便时速350公里风驰电掣,也能实现自动驾驶。除此之外,到点自动开车、区间自动运行、到站自动停车、停车自动开门等功能也让京张高铁创造多个智能化之最。

“驾驶室里依然有司机,只是司机职能变了。”铁科院机车车辆研究所研究员张波介绍,以往高铁司机主要精力在驾驶上,而在智能高铁上,司机的精力则侧重于故障应急处置。这样不仅能大幅降低司机的劳动强度,而且通过列车运行数据收集与测算,还能提高列车的节能指标和运行舒适度。

大数据、人工智能为交通强国提供了新的发展思路。

2019年,我国取消省界收费站,大力推进ETC使用,但由于技术不完善,收费相关的争议不断。2020年,湖南高速、华为、拓维信息联合推出了“AI收费稽核创新方案”,通过AI大数据分析,实现车辆路径还原、以图搜图、车辆异常分析、数据挖掘等服务,快速识别偷逃费行为,并形成完整的偷逃费证据链。同时还能精准识别车辆特点,实时获取车辆信息,并将这些信息上传云端。通过数据汇集、计算,完成了收费的网上闭环,精准打击偷逃费行为。

人工智能车牌识别提高停车场管理效率、利用算法智能决定交通灯转换时间、电子地图全方位自动化作业让定位更精准……大数据和人工智能产品的出现使人们的工作和出行都更为方便,也为数字交通、智能交通提供 科技 赋能,助推交通运输行业转型升级。

科技 创新为交通行业的进步注入了力量和动能,不断引领交通运输行业高质量发展,为行业发展提供了无限的遐想空间。

交通大数据行业的现状是什么作为人类行为的重要组成部分和重要条件之一,对大数据的感知是最为迫切的。近年来,我国的智能交通发展迅速,许多技术手段已达到国际领先水平。问题和困难,但是,非常突出,也从城市发展的角度,智能交通的潜在价值并没有被有效的挖掘:知觉和交通信息的集合是有限的,大量的数据管理系统中存在的不能共享使用,有效的交通情况分析预测疲劳,公共交通信息服务难以满足需求。虽然有不同的建筑概念和投资在不同地区,整个智能交通的现状特点是低效率和智能不足,这使得许多先进的技术和设备未能发挥应有的作用,还会导致大量的投资浪费。最重要的是在困难时期的损害较小的数据:管理理念和技术设备仿真时间只有在某种程度上,和关系数据库管理系统的分析只能严格的特定关系,对于大规模数据,尤其是半结构化和非结构化数据。

虽然数字化已经基本实现,但是数字化和数字化并不是一回事。它只是提高了本地收集、存储和应用的效率,但本质上没有太大的改变。大数据时代的到来,必将为解决难题带来巨大机遇。大数据必然要求我们改变小数据条件下的盲目和精确计算,但更好地面对困惑,把握宏观形势;大数据不可避免地要求我们关注的不是因果关系而是相关性,这使得处理大量的非结构化数据成为可能,促使我们将一切都数字化,最终实现方便高效的管理。

交通大数据行业的现状是什么目前,大数据在交通中的应用主要有两个方面。一方面,大数据传感器数据可以用来了解车辆的交通密度,合理的道路规划可以包括单车道的路线规划。另一方面,可以利用大量的实时数据实现信号量的实时调度,提高现有线路的运行能力。信号灯的科学布置是一项复杂的系统工程,需要利用大数据计算平台制定出更加合理的方案。科学信号系统将使现有道路的通行能力提高约30%。在美国,政府基于特定路段的交通事故信息增加了更多的交通信号灯,从而将事故发生率降低了50%以上。依托大数据实现机场航班起降,提高航班管理效率。航空公司可以利用大数据来增加乘客容量和降低运营成本。铁路利用大数据有效安排客运和货运列车,提高效率和降低成本。

交通大数据行业的现状如何这个领域的大数据工程师是这样的,作为人类行为的重要组成部分和重要条件之一,对大数据的感知也是最为迫切的。近年来,我国的智能交通得到了快速发展,你能处理好吗如果您还担心自己入门不顺利,可以点击本站的其他文章进行学习。

大数据方面的应用案例

在医疗方面,纽约的mountsinai医院利用数千名患者的数据、历年汇报的流感爆发数据等数据与病毒的变异过程做交叉比对。通过这种工作,科学家和医生可以预测病毒如何传播,以及对抗这些病毒的最佳途径;甚至有可能使用预测分析来判断病毒的传播方式,然后采取行动来限制这一传播。据说这家医院有望在未来阻止流感的发生。

在交通方面,浙江某城市与英特尔合作,安装了1000个数字监控设备,100个智能监测点系统,超过300个检查点的电子警察,和500多个视频监控系统。通过更有效地监测交通和拥堵数据,改善交通流量,减少道路交通事故。

在废物处理方面, 英国曼彻斯特垃圾处理局有一套系统,能够利用数据使得产生的垃圾被尽可能多的再次利用。通过对来自不同地区的卡车进出加工厂时进行称重,能够了解每个地区所产生的垃圾数量。这些数据帮助当局出台了相应的政策,鼓励那些特定的社区更好的垃圾回收和垃圾减量。

在建筑方面, 住房慈善机构hact从400,000座住房中持续不断地收集数据,并进行了各种数据分析。通过数据来发现设计、建造、布局中存在的潜在问题,进而在建造新的楼宇时优化相关的参数,避免这些问题,改进政府保障房的的维修,规划空间合理使用。

智能应用服务,Google提供的大数据分析智能应用包括客户情绪分析、交易风险(欺诈分析)、产品推荐、消息路由、诊断、客户流失预测、法律文案分类、电子邮件内容过滤、政治倾向预测、物种鉴定等多个方面。据称,大数据已经给Google每天带来2300万美元的收入。例如,一些典型应用如下:

(1)基于Map Reduce,Google的传统应用包括数据存储、数据分析、日志分析、搜索质量以及其他数据分析应用。

(2)基于Dremel系统, Google推出其强大的数据分析软件和服务 — BigQuery,它也是Google自己使用的互联网检索服务的一部分。Google已经开始销售在线数据分析服务,试图与市场上类似亚马逊网络服务(Amazon Web Services)这样的企业云计算服务竞争。这个服务,能帮助企业用户在数秒内完成万亿字节的扫描。

(3)基于搜索统计算法,Google推出搜索引擎的输写纠错、统计型机器翻译等服务。

(4)Google的趋势图应用。通过用户对于搜索词的关注度,很快的理解社会上的热点是什么。对广告主来说,它的商业价值就是很快的知道现在用户在关心什么,他们应该在什么地方投入一个广告。据此,Google公司也开发了一些大数据产品,如“Brand Lift in Adwords”、“Active GRP”等,以帮助广告客户分析和评估其广告活动的效率。

(5)Google Instant。输入关键词的过程,Google

Instant 会边打边预测可能的搜索结果。

谷歌的大数据平台架构仍在演进中,追去的目标是更大数据集、更快、更准确的分析和计算。这将进一步引领大数据技术发展的方向。

在竞选方面,直到2012年,奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。只要数据量够大,够及时,挖掘够深刻,就可以洞悉每个选民的投票几率。

在教育方面,"以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策。以某集团最新出版的全球少儿美语旗舰课程为例,引入了首款应用于少儿英语学习领域的MyEnglishLab在线学习辅导系统(以下简称MEL),应用大数据技术全程实时分析学生个体和班级整体的学习进度、学情反馈和阶段性成果,从而及时找到问题所在对症下药,实现对学习过程和结果的动态管理。

智慧交通的应用案例

根据ITS114的不完全统计,截至2015年12月31日,包括城市智慧交通和高速公路机电市场的全年千万项目统计规模为1825亿,其中主要分为四大市场1交通管控市场千万项目规模为8424亿。2智慧交通/智能运输市场千万项目规模为2033亿。3高速公路机电市场千万项目规模为758亿。4平安城市千万项目规模为566亿。以上四个市场都有着很多的智慧交通方面的应用案例。

具体的在交通管控市场方面, 当前各个省积极构建的交通运行监测与应急指挥系统,还有围绕着视频、图像分析,从而实现在治安、交通、工业制造、汽车、人工智能等等诸多领域的应用亦是智慧交通的典型案例。如深圳榕享的"交通仿真与智能管控机器人"可实时采集视频检测数据与线圈检测数据,将采集的交通流数据、信号配时等数据输入到建立的仿真路网模型中,进行实时的交通系统仿真。通过一体化交通仿真模型,机器人能快速找出路网拥堵点以及分析路网的常发性拥堵点,并对交通流运营状况的演变进行预测和分析。在交通仿真与智能管控机器人平台上,还可对城市的任意交叉口的交通环境进行设置,周边居民可将相关建议"告知"机器人,实时模拟交叉口改良效果,实现全民参与、全民实践、全民创新的交通管理新模式。

智慧交通/运输方面各种“专车”“快车”“拼车”“代驾”平台类和软件数据类的实例比比皆是,如我们都熟知的“滴滴快递”“uber"“e代驾”等app应用。

交通工具新型技术案例方面:如无人驾驶、自动驾驶、智能车等等;在2015年12月互联网大会上李彦宏展示的无人车,李书福展现的自动驾驶技术都体现了当前智能交通工具的发展。     更近一点的是,汽车电子标识、ETC、车路协同。2015年的新能源客车市场呈爆发性增长,新能源客车销量达到37363辆,同比增长21319%,同时2015年国务院印发《新能源公交车推广应用考核办法(试行)》、《电动汽车充电基础设施发展指南》等等政策文件,可预见的是新能源汽车将会造就一个巨大的市场,建立在新能源汽车之上的车联网也将搭上顺风车。

平安城市也有很多已经成型的智慧交通案例。平安城市是基于GIS数字地图技术,高度整合治安监控、智能交通、数字城管、应急指挥等子系统,改变传统的静态管理和单点管理,实现实时、动态的联动管理新模式,实现了整个城市的治安、交通、城管、应急联动等各个职能部门的联动,建立了高效的城市部门联动机制,提高了城市的集成化、智慧化管理水平。根据高清视频监控系统的特点和应用需求,结合当前与今后一定时期内图像监控系统与图像应用系统的发展需要,建设一套先进的平安城市综合应用平台,为指挥调度、调查取证、应急处置、交通管理等多种后台应用提供及时、可靠的视频图像信息,服务于实战。市面上常见的平安城市系统具备的主要功能大部分都有:人脸卡口功能;交通事件检测功能;智能检索功能;道路违法抓拍功能;车辆稽查布控功能;非现场执法;分析研判功能;交通事态监控功能;视频质量检测功能;智能应用管理功能;数据格式及通信功能;远程控制功能;指挥调度功能;勤务管理功能; 设备运行状态监测功能。

大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。

1、制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

2、金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

3、汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。

4、互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。

5、餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。

6、电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

7、能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。

8、物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。

9、城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。

10、生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。

11、公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。

12、个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。

大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。

扩展资料

七个典型的大数据应用案例

1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

2、Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。

3、沃尔玛的搜索。这家零售业寡头为其网站Walmartcom自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。

4、快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。

5、Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。

6、PredPol Inc。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。

7、 Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/8269696.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-15
下一篇2023-09-15

发表评论

登录后才能评论

评论列表(0条)

    保存