辽宁瓦房店金刚石钻石产地的大地构造背景及岩体分布

辽宁瓦房店金刚石钻石产地的大地构造背景及岩体分布,第1张

2211 区域地质背景

辽宁瓦房店金伯利岩区位于辽东半岛的南部,金州断裂以西瓦房店境内,范围约900km2。区域上分布在华北克拉通冀鲁辽陆核的东北部,辽东地块的西部及郯庐断裂带以东。岩带的基底为太古宙鞍山群结晶片岩和片麻岩,金伯利岩主要侵入到震旦系的石英岩、泥灰岩、页岩和寒武系的灰岩中。

区域内以金州断裂为界分为两个沉积环境和地质发展史有明显差异的构造单元。东侧为新金凸起,处于长期隆起区,由前震旦纪古老变质岩系组成,并有中生代燕山期花岗岩侵入;西侧为复州坳陷区,沉积了自新元古界以来的一套沉积岩系,岩浆活动不强烈,除金伯利岩外还有辉绿岩、橄榄流纹斑岩等,岩石大多呈脉状和床状。金州断裂是区内重要的断裂构造,南起大连湾,由金州北经瓦房店,纵贯辽东半岛,分割新金凸起和复州凹陷,断裂走向NE10°~30°,倾向NW,倾角30°~70°,形成于古元古代、控制新元古代及古生代地层并长期活动的正断层(郑建平等,1989)。已发现的瓦房店金伯利岩体,分布在复州凹陷与新金凸起的交接带,并偏向于坳陷区(图23)。

2212 矿区构造与金伯利岩体产状及分布

金伯利岩体的产出和分布主要受近EW向的隐伏基底深断裂控制。东西向基底构造为导矿构造,又为储矿构造(黄蕴慧等,1992)。地表与区内金伯利岩有关的次级断裂构造还有北东向及北西向。北东向断裂控制了部分金伯利岩管和岩脉延伸方向,也控制了多数岩管的边界,性质有压性和扭性,以压性为主。北西向张性断裂控制了少数金伯利岩管和岩脉的边界(池际尚等,1996)。金刚石成矿区111个金伯利岩体成群产出,成带分布,从北往南,组成NEE75°Ⅰ、Ⅱ、Ⅲ3个平行岩带,Ⅰ带分布有42,30号等金伯利岩管,Ⅱ岩带分布有50,51号等金伯利岩管。已探明的3个金刚石原生矿为瓦房店(42号岩管)、涝田沟(30号岩管)和头道沟(50、51、68、74号岩管)金刚石矿。

Ⅰ矿带位于矿田北部,西南端起自石灰窑、经马圈子、方屯、老田沟、太阳沟、二道沟、大王沟至庙下一带,长28km,宽2km。金伯利岩体多而集中,矿带连续性好,由11个岩管和53条岩脉组成,其中42号和30号岩管达金刚石大型矿床规模,较大的岩脉有9号、10号和11号岩脉。

II号矿带位于矿田中部,西南端起自小关里,经头道沟、吴店、画花湾一带,延伸约15km,宽约1~2km。带内金伯利岩体集中分布于矿带的西段头道沟一带,由5个岩管和4条岩脉组成,其中金刚石品位较高的岩管为50、51、68、74号岩管。50号岩管主要为露天开采,运输通道从地面呈螺旋状延伸至坑底,矿石通过机车拖到地面,采完后目前留下一个深近200m、宽数十米的大坑(图版Ⅰ1)。2002年,50号岩管地表矿已经基本采空,但最近在其附近深部又发现了一个新的基本达到中型规模的矿体(21×104ct)。另外,辽宁地矿局2012年宣布(2012111日)在外围发现了储量达到100×104ct的大型金伯利岩原生钻石矿,289ct/m3(辽宁省地质矿产勘查局局长于文礼,中新社及http://newshexuncom/2012-01-13/137216042html)。

图23 瓦房店地区地质及金刚石矿化带分布简图(比例尺1∶50万 )

(据付海涛,2005)

Figure 23 Simplified geologic map of Wafangdian area and its diamond mineralization zone (scale 1∶500000)

(After Fu Haitao,2005)

1 第四系 2 寒武系张夏组 3 寒武系馒头组 4 震旦系甘井子组 5 震旦系南关岭组 6 震旦系长岭子组 7 青白口系桥头组 8 青白口系南芬组 9 青白口系钓鱼台组 10 太古宙片麻岩 11 闪长岩 12 断层及编号 13 地层界线 14 隐伏断裂带及编号 15 原生金刚石矿带及编号16金伯利岩管及编号

Ⅲ号矿带位于矿田南部,矿带长约6km,宽约05km,在李家店、大高屯、满洲转一带,目前仅发现由2个小岩管和1条岩脉组成,其中脉状金云母金伯利岩,金云母的含量明显比其他岩筒增大,含矿性较差。该矿带工业价值不大。

本区金伯利岩按岩体形态分为岩管和岩脉两种。岩管状金伯利岩体形态较复杂,地表出露形态有椭圆形、肾形、舌形、葫芦形和不规则形等。地貌多呈负地形。岩管的长轴方向多为北东东-近东西向,倾向多为南东,倾角75°~85°,向深部有时具多次膨大或变窄现象。岩管深部产状多与围岩岩性和断裂性质有关,如果岩管产出的围岩是石英砂岩、片麻岩等刚性岩石,则产状陡,形态变化小而延深较大。如果岩管产于页岩、粉砂岩、泥灰岩中,则岩管形态垂向变化大,见有膨大—缩小—膨大的特点,显示垂向层间双重控制作用。同时岩管随垂深增加而急剧收缩、尖灭或呈脉状(辽宁地质矿产局第六地质队,1992;孙德梅,1993;张培元,2001)。例如矿田内规模最大Ⅰ矿带东段的42号岩管,由42-1、42-2号双生管及42-3号小管组成(见图版Ⅰ3)。矿区出露地层为元古宇青白口系石英砂岩、粉砂岩、页岩,产状平缓,岩管周围出露有流纹岩、安山岩、辉绿岩等呈脉状和岩床状产出,并切穿金伯利岩管。岩管总体倾向北西,其形态在地表与深部变化不大。其中42-1号岩管地表为不规则状,具有两个长轴方向,倾角70°~80°。42-2号呈椭圆状,倾角一般为75°~85°。42-3号管倾向南,倾角75°~85°。而位于II矿带西段含矿性最好的头道沟矿区50号岩管,围岩地层为元古宇下震旦统南芬组与桥头组,岩筒则呈一个巨大的倒三角锥形,岩管呈不规则菱形,长轴呈东西向,长272m,东段110m,呈脉状,宽40~60m,面积00064km2,岩管总体倾向南东,倾角85°,垂深240m,急剧向南东侧伏,向隐伏50-2岩体过渡。岩管在60~-20 m部位膨大,在-70m标高左右急剧收缩尖灭。

区内金伯利岩脉长一般100~500m,最长的9号脉1040m。脉宽一般02~07m,与围岩界线清楚。岩脉一般呈70°~80°方向展布,脉体间走向近于平行,产状稳定,局部岩脉顺层侵入倾角也由陡变缓,呈岩床状。单个脉体走向具有明显分枝复合现象(庄德厚,1984)。金伯利岩脉普遍含金刚石,但品位中等或偏低。

金刚石俗称“金刚钻”。也就是我们常说的钻石的原身,它是一种由碳元素组成的矿物,是碳元素的同素异形体。金刚石是自然界中天然存在的最坚硬的物质。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具。石墨可以在高温、高压下形成人造金刚石。也是贵重宝石。

2018年12月,加拿大出土了一颗重量高达552克拉的**钻石,这使它成为了在北美洲发现的最大的一颗钻石。

基本介绍 中文名 :金刚石 英文名 :diamond 别称 :金刚钻 化学式 :C 分子量 :120107(8) CAS登录号 :7782-40-3 EINECS登录号 :231-953-2 绝对硬度 :10000-2500 物性数据,计算化学数据,物理性质,硬度,颜色,化学性质,结构性质,光学性质,稳定性,金刚石和石墨,人造金刚石,主要产地,用途,工业用途,慢性毒药,观赏宝石, 物性数据 1 性状:粉末 2 密度(g/mLat 25°C):35 3 熔点(ºC):3550°C-4000°C 4绝对硬度:10000-2500 计算化学数据 1、 疏水参数计算参考值(XlogP):-11 2、 氢键供体数量:0 3、 氢键受体数量:2 4、 可旋转化学键数量:0 5、 互变异构体数量: 6、 拓扑分子极性表面积(TPSA):341 7、 重原子数量:2 8、 表面电荷:0 9、 复杂度:0 10、 同位素原子数量:0 11、 确定原子立构中心数量:0 12、 不确定原子立构中心数量:0 13、 确定化学键立构中心数量:0 14、 不确定化学键立构中心数量:0 15、 共价键单元数量:1 物理性质 硬度 摩氏硬度10,新摩氏硬度15,显微硬度10000kg/mm 2 ,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。 依照摩氏硬度标准(Mohs hardness scale)共分10级,钻石(金刚石)为最高级第10级;如小刀其硬度约为55、铜币约为35至4、指甲约为2至3、玻璃硬度为6。 由于硬度最高,金刚石的切削和加工必须使用钻石粉或雷射(比如532nm或者1064nm波长雷射)来进行。金刚石的密度为352g/cm,折射率为2417(在500纳米光波下),色散率为0044。 颜色 金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些**,这主要是由于金刚石中含有杂质。 金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。金刚石在X射线照射下会发出蓝绿色萤光。金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。 中国也拥有制造金刚石的技术,但最大也不过02克拉左右。 引用亚洲宝石协会(GIG)报告:金刚石的化学成分为C,与石墨同是碳的同质多象变体。在矿物化学组成中,总含有Si、Mg、Al、Ca、Mn、Ni等元素,并常含有Na、B、Cu、Fe、Co、Cr、Ti、N等杂质元素,以及碳水化合物。 金刚石矿物晶体构造属等轴晶系同极键四面体型构造。碳原子位于四面体的角顶及中心,具有高度的对称性。单位晶胞中碳原子间以同极键相连结,距离为154pm。常见晶形有八面体、菱形十二面体、立方体、四面体和六八面体等。 金刚石的绝对硬度是刚玉的4倍,石英的8倍。详细绝对硬度如下: 金刚石10000-2500 刚玉2500-2100 石英1550-1200。 矿物性脆,贝壳状或参差状断口,在不大的冲击力下会沿晶体解理面裂开,具有平行八面体的中等或完全解理,平行十二面体的不完全解理。矿物质纯,密度一般为3470-3560kg/m3。金刚石的颜色取决于纯净程度、所含杂质元素的种类和含量,极纯净者无色,一般多呈不同程度的黄、褐、灰、绿、蓝、乳白和紫色等;纯净者透明,含杂质的半透明或不透明;在阴极射线、X射线和紫外线下,会发出不同的绿色、天蓝、紫色、黄绿色等色的萤光;在日光曝晒后至暗室内发淡青蓝色磷光;金刚光泽,少数油脂或金属光泽,高折射率,一般为240-248。 化学性质 金刚石是在地球深部高压、高温条件下形成的一种由碳元素组成的单质晶体,是指经过琢磨的金刚石。金刚石是无色正八面体晶体,其成分为纯碳,由碳原子以四价键连结,为目前已知自然存在最硬物质。由于金刚石中的C-C键很强,所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石硬度非常大,熔点在华氏6900度,金刚石在纯氧中燃点为720~800℃,在空气中为850~1000℃,而且不导电。 结构性质 金刚石结构分为;等轴晶系四面六面体立方体与六方晶系钻石。 在钻石晶体中,碳原子按四面体成键方式互相连线,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于钻石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。在工业上,钻石主要用于制造钻探用的探头和磨削工具,形状完整的还用于制造手饰等高档装饰品,其价格十分昂贵。 钻石的摩氏硬度为10;由于在自然界物质中硬度最高,钻石的切削和加工必须使用钻石粉来进行。钻石的密度为352g/cm3,折射率为2417,色散率为0044。 光学性质 (1) 亮度(Brilliance)金刚石因为具有极高的反射率,其反射临界角较小,全反射的范围宽,光容易发生全反射,反射光量大,从而产生很高的亮度。 (2) 闪烁(Scintillation)金刚石的闪烁就是闪光,即当金刚石或者光源、 观察者相对移动时其表面对于白光的反射和闪光。无色透明、结晶良好的八面体或者曲面体聚形钻石,即使不加切磨也可展露良好的闪烁光。 (3) 色散或出火(Dispersion or fire)金刚石多样的晶面象三棱镜一样,能把通过折射、反射和全反射进入晶体内部的白光分解成白光的组成颜色——红、橙、黄、绿、蓝、靛、紫等色光。 (4) 光泽(Luster)刚石出类拔萃般坚硬的、平整光亮的晶面或解理面对于白光的反射作用特别强烈,而这种非常特征的反光作用就叫作金刚光泽。 稳定性 金刚石化学性质稳定,具有耐酸性和耐碱性,高温下不与浓HF、HCl、HNO 3 作用,只在Na 2 CO 3 、NaNO 3 、KNO 3 的熔融体中,或与K 2 Cr 2 O 7 和H 2 SO 4 的混合物一起煮沸时,表面会稍有氧化;在O、CO、CO 2 、H、Cl、H 2 O、CH 4 的高温气体中腐蚀。 金刚石还具有非磁性、不良导电性、亲油疏水性和摩擦生电性等。唯Ⅱb型金刚石具良好的半导体性能。根据金刚石的氮杂质含量和热、电、光学性质的差异,可将金刚石分为Ⅰ型和Ⅱ型两类,并进一步细分为Ⅰa、Ⅰb、Ⅱa、Ⅱb四个亚类。Ⅰ型金刚石,特别是Ⅰa亚型,为常见的普通金刚石,约占天然金刚石总量的98%。Ⅰ型金刚石均含有一定数量的氮,具有较好的导热性、不良导电性和较好的晶形。Ⅱ型金刚石极为罕见,含极少或几乎不含氮,具有良好的导热性和曲面晶体的特点。Ⅱb亚型金刚石具半导电性。由于Ⅱ型金刚石的性能优异,因此多用于空间技术和尖端工业。 世界上最大的工业用金刚石和宝石级金刚石都超过3100克拉(1克拉=200毫克)。其中宝石级金刚石的尺寸为10×65×5厘米,名叫“库利南”,1905年发现于南非的普雷米尔岩管。中国常林钻石,重158786克拉,于1977年被山东临沭县常林大队女社员魏振芳发现,后列为世界名钻。世界金刚石主要产地有南非、澳大利亚、萨伊、波札那、俄罗斯。 金刚石和石墨 石墨和金刚石都属于碳单质,他们的化学性质完全相同,但金刚石和石墨不是同种物质,它们是由相同元素构成的同素异型体。 所不同的是物理结构特征。 二者的化学式都是C。 石墨原子间构成正六边形是平面结构,呈片状。 金刚石原子间是立体的正四面体结构。 金刚石和石墨的熔点比较: 金刚石的熔点是3550℃,石墨的熔点是3652℃~3697℃(升华)。石墨熔点高于金刚石。 从片层内部来看,石墨是原子晶体;从片层之间来看,石墨是分子晶体(总体说来,石墨应该是混合型晶体);而金刚石是原子晶体。石墨晶体的熔点反而高于金刚石,似乎不可思议,但石墨晶体片层内共价键的键长是142×10-10m,金刚石晶体内共价键的键长是155×10-10m。同为共价键,键长越小,键能越大,键越牢固,破坏它也就越难,也就需要提供更多的能量,故而熔点应该更高。 (主要就是石墨的原子晶体属性导致它的熔点变高) 人造金刚石 人工合成金刚石的方法主要有两种,高温高压法及化学气相沉积法。 高温高压法技术已非常成熟,并形成产业。国内产量极高,为世界之最。 化学气相沉积法仍主要存在于实验室中。 主要产地 伯纳特兄弟于1870年发现了金伯利金刚石矿。正是这一发现,使人们知道了在哪种岩石中有可能含有金刚石。 原来,那是一种在远古时代的岩浆冷却以后所形成的火山岩。接着,研究者又发现,在这种火山岩中除了金刚石,还含有被称为石榴石和橄榄石的两种矿物。因此,在那些出产石榴石和橄榄石的地点,找到金刚石矿的可能性就相对大。于是,石榴石和橄榄石就成为寻找金刚石的“指示矿物”。 根据指示矿物来寻找金刚石矿的方法并不是在哪一天突然发现的。上世纪70年代,美国史密森研究所的地球化学家约翰·贾尼在仔细研究了石榴石和金刚石之间的关系后发表了他的研究结果。但是,在那之前,即上世纪50年代,德比尔斯公司的地质人员早就根据指示矿物在世界各地寻找金刚石矿了。 世界各地都发现了金刚石矿。其中,澳大利亚、刚果、俄罗斯、波札那和南非是著名的五大金刚石产地。 美国麻萨诸塞大学的地球物理学家史蒂文·哈格蒂博士在1999年研究了世界各地含有金刚石的熔岩的年代,结果发现,这些含有金刚石的熔岩至少是在过去7个不同的时期在各地喷出的岩浆所形成的,其中最古老的熔岩则是在大约10亿年前形成的。在这7个岩浆喷发时期中,以在非洲各地和巴西等地区于12亿年前至8000万年前喷出的岩浆中所含有的金刚石为最多。那时正值恐龙时代极盛期的中生代白垩纪。含有金刚石的熔岩,最晚的,是在2200万年以前喷出的岩浆形成的。至于在那以后形成的熔岩中是否含有金刚石,则还无法肯定。 1971年以来的二十年中,在中国陆续发现了几颗50克拉以上和100克拉以上的金刚石,按发现时间的先后排列如下: 1.1971年9月25日,在江苏省宿迁公路旁发现一颗重52.71克拉的金刚石。 2.1977年12月21日,在山东省临沭县常林大队,女社员魏振芳发现1颗重158786克拉的优质巨钻,全透明,色淡黄,可称金刚石的“中国之最”。被命名为“常林钻石” 3.1981年8月15日,在山东郯城陈埠发现一颗124.27克拉的巨粒金刚石。被命名为“陈埠一号”。 4.1982年9月,在山东郯城陈埠发现一颗96.94克拉的金刚石。 5.1983年5月,在山东郯城陈埠发现一颗92.86克拉的金刚石。 6.1983年11月14日,在山东蒙阴发现一颗119.01克拉的巨粒金刚石,被命名为“蒙山一号”。蒙阴金刚石矿是全国最大的原生矿。 据1987年资料,中国主要金刚石成矿区有:①辽东—吉南成矿区,有中生代和中古生代两期金伯利岩。②鲁西、苏北、皖北成矿区,下古生代可能有多期金伯利岩。③晋、豫、冀成矿区,已在太行山、嵩山、五台山等地发现金伯利岩。④湘、黔、鄂、川成矿区,已在湖南沅水流域发现了4个具工业价值的金刚石砂矿。 湖南金刚石,产于湖南省常德丁家港、桃源、黔阳等地。湖南金刚石以砂矿为主,主要分布在沅水流域,分布零散,品位低,但质量好,宝石级金刚石约占40%。相传在明朝年间,湖南沅江流域就有零星的金刚石发现,大规模的寻矿则始于二十世纪五十年代。沅江整个水域均有金刚石分布,但有开采价值的仅常德丁家港、桃源县车溪冲、溆浦县(黔阳)新庄垅、沅陵县窑头等4处。 湖南金刚石的颜色深浅不一,内外颜色差异明显,呈带状、斑状分布。其褐色系列金刚石,晶体呈黄褐色,内部洁净,表面有大量的褐色斑点,其褐斑的颜色有**、黄褐色、褐色、黑色等,主要分布在金刚石的溶蚀面上,褐色主要由自然界放射性粒子的辐照造成。金刚石总体颗粒小,但质地较好,以单晶为主,约占总产量的98%;晶体比较完整,以八面体、十二面体、六八面体为多;绝大多数晶体浅色透明或呈黄、褐色等;粒重多小于28mg,一般为109~15mg;22%晶体中含包裹体;60%的晶体表面有裂纹,表面溶蚀不重。 2018年12月,加拿大出土了一颗重量高达552克拉的**钻石,这使它成为了在北美洲发现的最大的一颗钻石。美国媒体15日报导,该颗钻石长3374毫米,宽5456毫米,由统领钻石公司(Dominion Diamond Mines)于10月份在加拿大西北地区的戴维科钻石矿区(Diavik Diamond Mine)发现。 用途 工业用途 地质钻头和石油钻头金刚石、拉丝模用金刚石、磨料用金刚石、修整器用金刚石、玻璃刀用金刚石、硬度计压头用金刚石、工艺品用金刚石。 若涂在音响纸盆上,音箱音质会大为改善。 慢性毒药 文艺复兴时期,用金刚石粉末制成的慢性毒药曾流行在义大利豪门之间。当人服食下金刚石粉末后,金刚石粉末会粘在胃壁上,在长期的摩擦中,会让人得胃溃疡,不及时治疗会死于胃出血,是种难以让人提防的慢性毒剂。 观赏宝石 钻石由于折射率高,在灯光下显得闪闪生辉,成为女士最爱的宝石。巨型的美钻可以价值连城。而掺有深颜色的钻石的价钱更高。目前最昂贵的有色钻石,要数带有微蓝的水蓝钻石。 钻石分为一型和二型两种,这主要是根据它是否含有N元素:一型含;二型不含。而蓝色的钻石是二B型的,是半导体。

中国是山东和辽宁

世界上市南非和民主刚果

世界上最著名的金刚石产地在哪里?

世界上最著名的金刚石产地在南部非洲。这个地区的金刚石常常存在死火山的喷井中。人们认为它们是在极高的温度和压强下慢慢地形成的。开采出来的金刚石并没有宝石的外形和光彩,通过切割和磨光等工艺才给它们以光耀的外形。

  世界最大钻石——库里南一号。1905年,南非的总理矿区,发现了一块重3106克拉(计算钻石大小重量的单位,1 克拉=02克)的钻石原石,这一发现震惊世界,于是把此钻石以矿主之名——托马斯库里南爵士命名。当时南非尚为英国殖民地,人们决定将此钻石运回英国,朝贡英王爱德华七世。为安全起见,保了75万英镑的保险。但实际保的是一只空盒,而真正的钻石却用另外一只纸盒,只用普通挂号就寄回英国了。

  这颗3106克拉的钻石运回英国后,皇家请了当时最负盛名的荷兰切割师安斯切尔兄弟,经过多月的揣摩研究,终于决定如何切割这颗钻石。定夺之后,将此钻石运到荷兰去切,英王派军舰护航,仍用了“金蝉脱壳”之计,军舰所护的只是空柜,而真正的钻石,却被安斯切尔放在裤袋内,坐普通火车和渡轮,安全到了荷兰工厂。当安斯切尔凝神屏住呼吸,正要一锤敲下去把钻石切开时,因紧张过度,当场晕倒,最后经多次努力终于成功,两兄弟把它切成9颗大钻石和96颗较小的钻石。这9颗大钻石中,最大的一颗被切成梨形,重530克拉,镶在英王权杖上,取名为“库里南一号”,并被称为“非洲之星”。

  人造金刚石与天然金刚石在化学上是完全等同的,但它们是在实验室中生产出来的。它们是在对石墨以及作为溶剂和催化剂的金属施以极高的压强(5500大气压)和高温(2000℃)约一天的时间后制得的。

  金刚石是最硬的物料。它是碳的最密集的形式,密度大约是水的35倍。它的硬度(抗磨性)和密度都可以用它的结构来解释。注意,每个碳原子都与其它的四个最靠近的近邻形成四面体的取向,这种类型的结构能使晶体在三维空间中有很高的强度。这种刚性结构给金刚石以硬度。由于原子之间的小距离而造成的紧密性给金刚石以极高的密度。金刚石的共价网状结构是它具有极高熔点的原因。由于所有的价电子都被用来形成了共价键,因而没有一个可以自由移动。这解释了金刚石为什么是电的非导体。由于它极高的硬度,金刚石被用于切割、钻孔和研磨。金刚石常被用来作为经久耐用的唱机针头。

  金刚石是最好的热导体。完整的金刚石单晶的导热性是银和铜的导热性的5倍(银和铜是最好的金属导体)。在金刚石中,热是通过振动的能量从一个碳原子到第二个碳原子的传递进行传导的。在完整的金刚石单晶中,进行这个过程的效率很高。碳原子的质量很小,把原子束缚在一起的力很强,因此能够容易地把振动的运动从一个原子传给另一个原子。它的不导电性结合着它的优良的导热性使金刚石在半导体装置方面很有用。

  金刚石在普通溶剂中是不溶解的。在1722年,法国化学家拉瓦锡在纯氧中燃烧了一块透明的金刚石,得到了产物二氧化碳。这个实验向他证明金刚石中含有碳。英国化学家史密森坦纳物特在1797年重复了这个实验,他称了金刚石和生成的二氧化碳的质量,从二氧化碳的质量表明,金刚石是纯净的碳。

根据现有的分析成果,将中国三个主要产地金刚石/钻石的特征进行了对比,对比结果见表99。中国三个产地金刚石/钻石的颜色类型、生长结构、包裹体组成以及碳同位素变化可以分为两种类型,其中产于扬子克拉通的湖南金刚石/钻石和产在华北克拉通辽宁及山东金刚石/钻石的区别较为明显,而山东和辽宁之间虽然也有一定的差异,但区分较难。

表99 中国三个主要产地金刚石/钻石特征比较 Table 99 Comparison of diamond characteristics of China’s three major diamond fields

1本项目组;2辽宁省地质局旅大地质六队,1975,1976;3赵秀英,1988;4池际尚等,1996a,1996b;5黄蕴慧等,1992;6罗声宣等,1999;7山东省地矿局第七地质大队,1990;8马文运等,1989;9谈逸梅等,1983;10刘观亮等,1994;11杨明星等,2002;12 陈美华等,1999,2000;13 王久华,2005;14 郭文祥,1986;15 郭九皋等,1989;16 李海波,2006;17 武改朝,2008;18殷莉等,2008

中国三个主要的金刚石/钻石产于两个重要的具有太古宙基底的古老克拉通之上,虽然至今为止产于两个克拉通之上金刚石/钻石准确的形成年龄仍然缺乏系统的数据,但是基本的地质现象可以说明,两个克拉通金刚石/钻石最早的形成年龄都不会晚于古生代(华北辽宁和山东金伯利岩的精确侵位时间为470~480Ma±;而扬子地台最早的金刚石/钻石发现是在新元古代花山群洪山组底部(Yang et al,2009;Li et al,2011;刘观亮,1997,湖南原生金刚石找矿研讨会);显然三个产地金刚石/钻石的形成和两个克拉通的演化关系密切,或者说克拉通演化的过程和金刚石/钻石的成因及产地来源之间密切相关,这应该是产地研究的重要基础前提之一。

华北克拉通是我国具有太古宙结晶基地的古老的克拉通,但其厚的岩石圈根部在显生宙发生了明显的丢失,地表地质学、捕掳体地球化学、地球物理数据结果显示,华北克拉通岩石圈在显生宙减薄了100km以上(吴福元等,2008;朱日祥,郑天愉,2009;高山等,2009;徐义刚等,2009;郑建平,2009;张宏福,2009;郑永飞,吴福元,2009)。虽然关于华北克拉通的形成和演化过程至今仍然是争论很大的议题(陆松年等,2002)。多数学者倾向于该克拉通在古太古代就已开始形成陆核,其后大小不等的陆块在不同时代经历过不同规模的拼接,最后经吕梁运动形成统一的华北克拉通基底。克拉通的形成和发展演化大体经历了太古宙-古元古代的基底形成阶段,中元古代-三叠纪盖层稳定发展阶段和中-新生代活化等三个阶段(张国伟等,1996;翟明国和卞爱国,2000;阎国翰等,2007;刘敦一等,2007)。

华北克拉通在多个区域发现具有大于38Ga锆石年龄的岩石,但目前出露的华北克拉通基底主要由大面积的新太古宙TTG杂岩及表壳岩系组成,因此,25Ga才是华北最早大规模形成陆壳基底的时间,但也有学者根据华北不同变质地体的P–T演化轨迹、岩石组成、构造样式、地球化学及同位素年龄方面的研究成果,认为现今统一的华北克拉通结晶基底是在中元古代(185Ga)形成的(Zhao et al,1998,1999,2000)。

华北克拉通盖层稳定发展的早期阶段(185~16Ga)主要以拉张-裂解构造活动为主,表现为拗拉谷系的发育,拉张性岩浆活动以及早期变质基底的隆升(李江海等,2000),双峰式火山岩及碱性岩浆岩大多数分布在中元古代的拗拉谷内及其附近,第二阶段新元古代中-晚期(09~06Ga)的岩浆活动和第一阶段具有一定的继承性,但分布范围明显局限;古生代末-新生代张性岩浆活动范围最广(250Ma-新生代),各种碱性岩浆岩和火山杂岩主要分布在中生代末-新生代形成的裂谷、断陷盆地及两侧,并且在不同地区呈现不同的演化模式。华北克拉通三个阶段拉张性岩浆作用在时间上分别与哥伦比亚(Columbia)、罗迪尼亚(Rodinia)及潘基亚(Pangea)三个超级大陆的拉张裂解时间段基本一致,显示出华北克拉通形成和演化的动力机制上和全球性大陆的裂解具有某种成生联系(陆松年等,2002;阎国翰等,2007)。克拉通古地幔以含石榴子石的二辉橄榄岩、方辉橄榄岩及纯橄榄岩为主,地幔交代作用强烈,岩石富集不相容元素(路凤香等,1997);对地球物理、新生代碱性玄武岩地幔包裹体地球化学的研究显示,就华北克拉通岩石圈地幔减薄的时间、程度和机制来说,有两种不同的学术观点,即热/化学侵蚀和下地壳拆沉可以对华北克拉通的最后演化过程进行解释,目前仍然存在比较大的分歧(郑永飞,吴福元,2009)。在这个过程中,太平洋向东亚陆块的俯冲、晚石炭纪古亚洲洋板块向南俯冲、三叠纪华北与华南陆块之间的碰撞或岩石圈的拉张(减压)可能是其演化的动力学诱因(高山等,2009;徐义刚等,2009;郑建平,2009;张宏福,2009)。

Gao等(2004)对辽西晚侏罗世高镁中酸性火山岩的系统研究发现,这些火山岩具有高镁-铬-镍-锶含量和低钇含量,其斜方辉石斑晶有核部低镁与边部高镁反环带;并含有大量具25Ga前华北克拉通前寒武纪岩石特征的继承锆石,其锶-钕同位素组成与华北克拉通下地壳榴辉岩包裹体部分熔融产生熔体与地幔橄榄岩反应产物的特征一致。上述特征排除了火山岩是下地壳部分熔融以及含水上地幔部分熔融或俯冲洋壳部分熔融产物的可能性。认为它们可能是华北克拉通太古宙榴辉岩下地壳与岩石圈地幔一同拆沉再循环进入软流圈,随后榴辉岩部分熔融产生的熔体在上升喷发至地表过程中与地幔橄榄岩相互作用的结果(Gao et al,2004)。如果这个观点成立,则至少说明华北克拉通在太古宙时期岩石圈地幔曾经存在过地壳来源的物质,但是,就华北克拉通现在金刚石/钻石矿物包裹体和获得的碳同位素数据而言,并没有发现壳源碳同位素的特征(张宏福等,2009;本项目),因此,华北地台金刚石/钻石的形成时间应该晚于太古宙较长的一段时间但早于金伯利岩喷发的480Ma。

山东蒙阴和辽宁复县金刚石/钻石矿区分布在郯庐断裂带的东、西两侧,南北方向距离约550km,过去被认为是具有相同基底构造的华北克拉通东部块体组成部分,蒙阴金伯利岩和复县金伯利岩也成为确定郯庐断裂左行平移的重要证据(徐嘉炜,马国锋,1992;张培元,2001;乔秀夫,张安棣,2002)。但是根据两地太古宙结晶基底性质及火山岩浆作用的差别,有学者认为,这两个金伯利岩区岩石分属于新太古宙之前不同的陆块(胶辽陆块和迁怀陆块/冀东古陆),地层单元至少在新太古宙之前是难以对比的,新太古宙末各微陆块才以陆—陆、陆—弧以及弧—弧碰撞的形式拼贴在一起(翟明国,卞爱国,2000;吴昌华,2007)。根据两地金伯利岩中铬镁铝榴石、铬尖晶石、铬透辉石、镁钛铁矿、金红石、金刚石等巨晶组合的差异,特别是根据蒙阴与瓦房店两地金伯利岩中粗晶石榴子石地温曲线建立的岩石圈剖面差异,两地金刚石同生包裹体石榴子石形成温度的差异,两地分属于华北块体与胶辽朝块体,两地金伯利岩在早古生代爆发侵位时,并不在相近位置。两地金伯利岩喷发时太古宙岩石圈地幔具有显著差异,两地是独立的金刚石成矿省,它们不曾相聚也非同源岩浆产物(乔秀夫,张安棣,2002)。虽然我们对两地金伯利岩重砂矿物钙钛矿和斜锆石测年显示它们具有几乎完全相同的480Ma的年龄,金刚石/钻石也具有相似的碳同位素组成模式,但其中金刚石/钻石包裹体组合、结晶度明显的差异及其形成温度存在的差异显示(金刚石中包裹体形成时蒙阴的地幔温度条件为1050~1250℃,复县的温度条件绝大多数变化在1083~1176℃之间)(Zhang et al,1999;本项目;殷莉等,2008),两地岩石圈地幔在金刚石/钻石形成时确实存在一定的差异,这种差异可能和两地在新太古宙华北克拉通的碰撞俯冲或地幔柱活动过程的位置有关(Zhao et al,1998;赵国春和孙敏,2002)。山东更靠近克拉通中部带,金刚石/钻石形成时和地幔柱中心较近,导致岩石圈地幔高温影响可能更为明显,金刚石/钻石生长速度快并且生长过程中受到的影响更为明显频繁,后者金刚石/钻石的结晶度明显低于前者,并且含有较多深源的Ⅱ型金刚石/钻石,金刚石/钻石孤N→B中心转化获得的存留时间为178 Ga~0 57 Ga(尹作为等,2005);相反,辽宁由于离开中部古元古代地幔柱稍远,岩石圈地幔温度稍低,金刚石/钻石结晶慢而完美,宝石级的比例更高,金刚石/钻石孤N→B中心转化获得的存留时间为301Ga~0 71Ga(陈美华等,2000;Lu et al,2001)。根据两地金刚石/钻石碳同位素均不出现古老地壳俯冲碰撞碳同位素的组成和两地金刚石/钻石形成时岩石圈地幔存在差异的事实,可以推断两地在钻石形成时可能华北克拉通不是一个完整的克拉通块体,山东金刚石/钻石形成于25Ga~480Ma时间范围内,而辽宁复县金刚石钻石最早的形成时间可能大于25Ga,但由于其时并不在华北克拉通主块体内,因此,没有受到太古宙拆沉再循环进入软流圈地壳物质的影响。

扬子克拉通陆壳的生长始于太古宙早期,具有古元古代-太古宙的地壳生长年龄,但是具有新元古代地壳再造年龄,克拉通之下岩石圈地幔具有不同的前寒武纪年龄,但总体上比太古宙克拉通地幔更为富沃,密度较大。迄今为止,Re–Os同位素研究没有得到太古宙地幔年龄(Zheng,2006;于津海等,2007;Zheng et al,2008;郑永飞和张少兵,2007;Reisberg et al,2005;Yuan et al,2007;Xu et al,2008;Zhang et al,2008;郑永飞和吴福元,2009);湖南沅水流域砂矿金刚石/钻石产区构造上位于扬子克拉通和华夏古陆的过渡区域。关于扬子克拉通以及华夏地块基底的性质及演化争议较大,主要的焦点在是否存在华夏古陆(地块),古陆基底形成时间以及扬子陆块与华夏陆块拼接的方式及时间等(Li et al,2003;廖宗廷等,2005;胡受奚和叶瑛,2006)。例如,扬子克拉通在多处地方发现大量25~38Ga太古宙年龄的碎屑锆石,湖北崆岭地区片麻岩锆石U–Pb年龄及Hf 同位素显示存在形成年龄约为32Ga 的片麻岩,锆石具有有负的εHf(t)值和早至35Ga的两阶段Hf模式年龄,其源区岩石可能有>36Ga冥太古宙物质再循环作用的产物(Qiu,2000;柳小明等,2005;Zhang,et al,2006;Jiao,et al,2009);而华夏地块副片麻岩中也发现了年龄为32~33Ga的碎屑锆石,浙西南地区变质基性岩-超基性岩获得锆石32Ga左右的Hf同位素二阶段模式年龄,也说明华夏地块古老太古宙基底的存在(于津海等,2007;向华等,2008)。但研究显示扬子陆块与华夏陆块最早是Rodinia超级大陆形成时(09~08Ga)拼合的,中元古代末期-新元古代早期(约10Ga),扬子和华夏两大陆块之间存在一多岛弧共存的洋盆(包括原始大洋岛弧和大陆弧),华夏陆块以北的洋壳对扬子陆块以南洋壳俯冲,最终导致了华夏与扬子两陆块的拼合(Li & McCulloch,1996;陈江峰和江博明,1999;李献华,1999),这一认识得到了扬子陆块与华夏陆块之间地层对比研究成果以及蛇绿岩、元古宙花岗岩与火山岩、地质构造和古地磁的证据和扬子陆块南缘新元古代-显生宙沉积岩的TDM-t(沉积年代)证据的支持(Li et al,1997;Li,1998;丁炳华等,2008)。其后,Li et al (1999)进一步提出,扬子克拉通中心附近825Ma地幔柱的形成可能是最终导致Rodinia大陆裂解的起因。李献华等(2008)根据新元古代岩浆岩微量元素地球化学特性的比较,进一步对扬子克拉通在10~09Ga两侧同时发生的洋壳俯冲活动进行了讨论,认为洋壳俯冲改变了扬子克拉通岩石圈地幔的组成,使之选择性富集强不相容元素和含水矿物(其中一侧可能是澳大利亚板块);中元古代-新元古代中期华南已从造山转变为陆内裂谷环境,板内非造山作用最早的岩浆活动发生在860~850Ma。并证实830~750Ma华南岩石圈底部存超级地幔柱活动的证据,从820Ma到约800Ma华南岩石圈的厚度可能从100km左右减薄到≤70km(Wang &Li 2003; Li et al,2008;李献华等,2008;谢士稳等,2009);但沈渭洲等(1993)Sm–Nd同位素的研究认为,从西向东,江南元古宙古岛弧的时间变化从古元古代中期至新元古代,古岛弧的形成时间特续达13亿年(沈渭洲等,1993)。周金城等(2008)也认为,新元古代时期,华南是一个被消减海洋岩石圈俯冲带包围的孤立陆块,江南造山带经历过由岛弧形成、弧-弧碰撞、弧-陆碰撞最后到陆-陆拼合的过程,华南加里东褶皱带与扬子地台联合组成广阔的地台区——华南统一大陆的时间晚至早古生代末期(加里东期)(周金城等,2008;薛怀民等,2010),总之,目前关于扬子克拉通及华南陆块基底及其岩石圈演化的研究仍然存在较多的争议,没有确切统一的结论。

根据部分地学断面和深部地球物理的研究成果,有研究者认为现今扬子克拉通部分上地幔岩石圈是不均匀的,推测江南古陆南缘存在一个中元古代早期形成的深达300km的岩石圈龙骨(keel),其后,这个龙骨在华夏古陆拼贴以及太平洋板块俯冲的过程中遭受破坏和肢解,但湘西地区至今仍保留了较稳定、厚度大和冷的岩石圈地幔(刘观亮,1997,湖南原生金刚石找矿研讨会)。实际上,关于扬子克拉通岩石圈地幔性质和演化的研究仍然较为薄弱,有学者认为和华北克拉通相比,扬子克拉通岩石圈地幔交代作用相对较弱,其岩石圈主要由石榴子石/尖晶石二辉橄榄岩组成,主元素亏损程度低,扬子克拉通古地温曲线位于45 mW/ m2以上,略高于华北克拉通40 mW/ m2地温曲线以下(路凤香等,1997)。郑永飞和吴福元(2009)认为,现在比较肯定的是扬子克拉通太古宙岩石圈地幔在中元古代时由于中元古代格林威尔期洋壳俯冲受到不同程度的替代,可以鉴别出弧-陆碰撞、晚期拉张垮塌和大陆裂谷过程,华南钾镁煌斑岩中具有太古宙U–Pb年龄的锆石可能和俯冲碎屑沉积物的再循环有关,扬子太古宙地壳之下可能并不保存有厚的岩石圈根部(Zheng,et al,2007;郑永飞和吴福元,2009)。湖南沅水流域金刚石/钻石的包裹体类型出现了P型和E型相近的比较独特的组合(国际上只有若干个产地出现),金刚石形成温度132685℃,范围1167~1462℃,压力48~76GPa(郭九皋等,1989;刘观亮,1997,湖南原生金刚石找矿研讨会)(本项目得到T(Ni):1109℃,P:477~583GPa);同时在E型包裹体中发现了原生的榴辉岩有关的蓝晶石及金红石、柯石英包裹体组合矿物包裹体,而前人和我们的碳同位素分析具有显示出明显轻的碳同位素特征(δ13C值变化范围达到-2606‰~+152‰),碳同位素是双峰式分布的,显示出金刚石/钻石形成过程中可能存在古老地壳物质的参与。而金刚石/钻石良好的结晶度则显示,金刚石/钻石形成于岩石圈地幔的状态相对稳定的阶段,与辽宁及山东的岩石圈环境明显存在差异性。从这个意义上说,我们推测湖南金刚石/钻石最早可能形成于古元古代以前,但也可能存在新元古代甚至更晚形成的钻石,较大的碳同位素分布范围可能指示了10~09Ga发生洋壳俯冲过程的影响,而同一颗钻石中出现的P型E型包裹体共存的现象则可以用其后的地幔柱活动进行解释(Wang,1998 ;丁炳华等,2008;李献华等,2008)。

显然,上述结果显示,华北和扬子克拉通的形成时间都可以追索到太古宙,但2个克拉通的演化过程及古生代后的状况明显不同,其中和辽宁及山东金刚石/钻石产出时华北克拉通在太古宙分别属于相关的不同陆块,它们曾在25Ga和185Ga时发生碰撞拼合,18Ga左右发生分裂,两地金刚石/钻石形成时岩石圈地幔的组成有所差异,但其后两地古生代以前的克拉通岩石圈地幔在古生代晚期开始—中生代已经明显减薄或者被置换(徐义刚等,2009)。而扬子克拉通主体形成时间大约在18~16Ga,太古宙岩石圈地幔则在中元古代时格林威尔期洋壳俯冲过程中曾受到不同程度的替代(徐义刚等,2009;郑永飞,吴福元,2009),古生代以前原来的岩石圈地幔在中生代也可能已被置换(李献华等,2008;Liu et al,2012)。

图21 重达1014695ct的蒙山5号金刚石晶体

Figure 21 The No5 Mengshan diamond crystal weighing 1014695ct

中国出产金刚石的记载是在明朝(1488年),湖南沅水流域的农民在淘砂金时就常淘到金刚石,山东郯城地区明朝时也有金刚石的发现。20世纪20~30年代,山东胶县七宝山地区也发现过金刚石。1917年编写的《临沂县志》记载:“金刚石有明净如水而无色者,有白黄红绿诸色者用于宝饰,小者可划玻璃,往往拣而得之,不恒有。”(叶寅生,1997)。其后,最重要的一些发现包括:1937年,山东农民罗振邦在郯城金鸡岭翻地时偶尔发现了重28125ct的金刚石,淡**,晶形似一只刚出壳的雏鸡,结合产地其被命名为“金鸡钻石”;1939年,也是在山东的郯城,又有人拾获了一颗重21875ct的金刚石(白立仑,1997),后来,这两颗金刚石据说均被日军驻临沂的顾问掠走,至今下落不明(涂怀奎,1998)。1965年,山东省地质局809队在山东蒙阴常马庄发现了我国第一个具有工业价值原生金伯利岩型金刚石矿床“红旗1号”;1971年6月,辽宁省地质局区调队在辽宁瓦房店发现含金刚石的金伯利岩管,随后确定了3个含金刚石的金伯利岩矿带。1977年12月21日,山东省临沭县岌山公社常林大队村民魏振芳在田里发现一颗淡**,重158786ct的天然金刚石,引起轰动。该晶体呈八面体、透明,属宝石级钻石,被命名为“常林钻石”,是中国目前可见最大的钻石(走向世界,2009)。70年代末,复州河城的金刚石砂矿发现一颗无色透明的宝石级金刚石,重108ct。1981年8月15日,山东临沂县郯城陈埠矿区发现一颗棕**12427ct的巨粒金刚石,晶体呈立方体与菱形十二面体的聚形,命名为“陈埠1号”。1983年11月14日,山东蒙阴王村矿区胜利1号金伯利岩筒中发现了一颗淡**透明11901ct的金刚石,被命名为“蒙山1号”。1986年,湖南沅水流域的桃园县群众挖到一颗不规则椭圆形,透明度较好,重4315ct的金刚石,其后湖南的农民还挖到过一颗重621ct的金刚石。1991年于瓦房店发现“岚崮1号”钻石,这是辽宁发现最大的一颗透明宝石级钻石,重6015ct,呈八面体。2006年5月27日,山东蒙阴建材701矿在胜利1号岩管生产线上选出一颗呈拉长八面体晶形、重达1014695ct特大金刚石(图21)。表21为部分我国已发现的大于2g(10ct)的金刚石/钻石晶体。

表21 我国已发现的大于2g(10ct)的金刚石/钻石 Table 21 Diamonds above 2g(10ct)found in China

自发现中国第一个具有工业价值金伯利岩型金刚石原生矿床“红旗1号”,到1977年,基本探明了山东常马庄、王村、西峪、头寸和红喜庄5个有工业价值的金刚石原生矿床;此后数年,山东陆续发现60余个金伯利岩。

1971年,辽宁省地质局区调队在辽宁瓦房店发现含金刚石的金伯利岩管,继而发现了3个含金刚石的金伯利岩矿带(包括几十个岩体,其中最富的品位为16ct/m3)。其后,至1980年又探明了30号、42号、50号、57号、68号和74号等6个具有工业价值金刚石原生矿床。1992年辽宁省地矿局地质6队,采用金刚石重砂测量和高精度地面磁法测量新技术,在辽宁瓦房店岚崮山地区发现了3个新的含金刚石的金伯利岩岩体;2009年,辽宁地质队又在原有工作基础上,在瓦房店位于110号岩管东侧下方找到一个金刚石储量大约在21×104ct的中型金刚石矿(中国新闻网,2010-1-21;东北新闻网(沈阳),2010-02-05)。

1990年10月,湖南宁乡县云影窝地区含金刚石的橄榄金云火山岩岩体的发现具有重要意义。至今,该区已发现了25个橄榄金云火山岩岩体(脉)。经对6个岩管进行采样选矿试验,在4个岩管中发现了65颗微粒金刚石,这些发现虽然不具经济意义,但为扬子地台金刚石的找矿提供了重要的线索,表明我国南方原生金刚石的成矿条件良好并具备较为广阔的找矿前景(王仲会,1998;梅厚钧等,1998;张培元,2001)。

图22 中国三个主要金刚石 / 钻石产地的大地构造区位及金刚石 / 钻石发现情况

( 据 Yang et al2009; Zheng et al,2006; Zheng et al,2007 等修改 )

Figure 22 Geotectonic locations and diamond exploration situation of the three major diamond fields in China

(After Yang et al,2009; Zheng et al,2006; Zheng et al,2007)

至今,我国目前已基本查明了辽宁、山东、湖南、江苏等省金刚石原生矿床与砂矿金刚石矿产资源的储量(金刚石/钻石产地及分布见图22)。截至2000年年底,中国保有金刚石储量2295×104ct,在世界上30多个钻石产出国中大约居第10位。20世纪90年代到21世纪初期,我国年产金刚石约(10~15)×104ct,但在2002年前后,辽宁50号岩筒的金刚石开采基本结束,2009年以后山东蒙阴胜利1号岩金刚石的产量和质量也开始下降。实际上,最近两年国内金刚石的产量已经很难统计,较为重要的可能是湖南省沅水流域间歇性的金刚石砂矿开采,农闲期间,有大小规模不等的淘砂机在4~5个地区进行钻石砂矿的开采,有些开采点一个点的淘砂机就可达5台(图版Ⅰ),每天可以有上百克拉的产量,但总体上估计年产量不会超过10×104ct。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/3718528.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-17
下一篇2023-08-17

发表评论

登录后才能评论

评论列表(0条)

    保存