宝石
指那种经过琢磨和抛光后,可以达到珠宝要求的石料或矿物
宝石的鉴定,一般可以分为原石和成品两大类。
对于原石的鉴定,又可以分为野外鉴定和室内鉴定。野外鉴定多数采用放大镜和小刀等简单工具,用以初步对宝石矿物进行定名。室内鉴定主要是利用各种手段和仪器,进一步测定宝石矿物的数据,为鉴别宝石提供重要依据。
对于宝石成品的鉴定,必须是在不破坏宝石完整性的前提下去鉴别所测定的宝石。
目前常用的、易于掌握的宝石鉴定仪器有以下几种:
1.笔式聚光手电:用来观察浓色宝石的透明度。聚光手电的电珠应凹于笔头面,不能凸出笔头面,否则不便于观察。
2.放大镜:是宝石放大观察的仪器之一。最常用的是10倍放大镜,还有20、30倍的几种。放大镜是宝石专家的关键工具和必备之物,便于携带。可用它来鉴定宝石的品种和真伪。用放大镜可以观察:(1)宝石的表面损伤、划痕、缺陷。(2)琢型质量。(3)抛光的质量。(4)宝石内部的缺陷、包裹体。(5)颜色的分布和生长线等。鉴定时,应将宝石置于离10倍放大镜约25厘米的强光之下,慢慢调节距离,直到看清楚为止。选择放大镜的质量也很重要,质量差者在放大时将产生图形畸变。
3.二色镜:有的宝石具有多色性,观察宝石多色性最好的仪器是二色镜。二色镜是一种结构合理、价格便宜、小巧简单的光学仪器。二色镜使用的是一块合适的透明的无色方解石(冰洲石)菱面体,由于冰洲石的双折射率较高,该仪器可以将穿过宝石的两条平面偏振光线分离开来。要求必须是有颜色透明的单晶体宝石才能够检测出多色性,玉石不能检测多色性。二色镜主要用于区别红宝石和红色尖晶石、红色紫牙乌;区别蓝色尖晶石和细小的蓝碧玺;区别蓝宝石和蓝色人工合成尖晶石等。用二色镜检测宝石时必须不断转动宝石,直到两个差异最大的颜色出现在窗口上为止。对于宝石的三色性的确定,必须认真地反复检测,从三个不同的方向观测,出现三种颜色才是三色性。检测时注意:眼睛、二色镜和宝石样品,其间距应不超过2-5毫米。
4.折光仪:折光率是透明宝石重要的光学常数,是鉴定宝石品种的主要依据。测折光率的方法主要有两种:一种是直接测量法,用折光仪测量;另一种是相对测量法,用液体浸没法。折光仪是根据光的全反射的原理制造的。目前常用的折光仪只适用于折光率为136-181范围内的宝石。宝玉石的折光率(N)的计算方法为光在空气中的传播速度(V1)与在宝石中的传播速度(V2)之比为一个常数,即N=V1 /V2 。均质体宝石,光在其中传播,传播速度不变,折光率相等,称之为单折光率。非均质体宝石,在折光仪中有两个读数,最大、最小折光率值之间的差值,称之为双折光率。折光仪是宝石学家最常使用的仪器之一,它的体积小,使用方便。他既可以测试刻面宝石的折光率,还可以用点测法测出弧面宝石的折光率。
5.查尔斯滤色镜:滤色镜是利用吸收光的特定波长这一特征而设计的。它由两片仅让深红色和黄绿色光通过的明胶滤色镜组成的宝石鉴定仪器。滤色镜小巧轻便,便于携带,对识别一些染色宝石和人造宝石特别有效,对识别炝色翡翠非常有效。它可以鉴别祖母绿和其它仿造品,而要准确地确定,还要借助于其它方法综合考虑。在滤色镜下祖母绿呈现红色或粉红色,而其它和祖母绿相似的天然绿色宝石,在滤色镜下观察不显红色。
6.宝石显微镜:宝石放大观察的一种重要的仪器。它能够检测10倍放大镜不能清晰地确认或观测到宝石外部和内部特征。宝石显微镜可以观察宝石内部的包裹体、解理、双晶纹、生长线、色带;观察宝石的磨工、抛光度和意外损伤;鉴别拼合宝石二层石、三层石。宝石显微镜的结构合理,辅助设备齐全,放大倍数可变幅度较大,一般是10至70倍。宝石显微镜有两种光源,一般用底灯观察宝石的内部缺陷,如包裹体、裂隙等;用反射灯观察宝石的表面特征,如断口、色带、解理面等。宝石显微镜是精密仪器,要严格按操作规则使用。
7.热导仪:热导仪是根据钻石具有良好的传热性而设计制作的。绝大多数宝石不具备热导性或热导率极低,所以一般热导仪均为区别钻石与人造仿钻制品而设计的,是鉴别钻石与其它仿钻制品的专用仪器。钻石热导仪由金属针状测头与控制盒组成,当测头尖端触及钻石表面时,温度明显降低,由仪器表头信号灯或鸣叫声显示测定结果。热导仪长十多厘米,便于携带,使用极为方便。
8.偏光器:是使平面偏振光垂直相交,光线通不过的原理制造的一种简单的光学仪器。偏振器是由两个震动方向垂直的偏光片、支架和底部照明灯组成。用以检测宝石的光性(是均质体还是非均质体)和多色性。在打开照明灯的偏光器中,转动观察宝石样品的明暗变化情况。(1)如果样品明亮,没有明暗变化,可能是隐晶质或微晶集合体,如玉髓、翡翠等。(2)如果样品全黑,没有明暗变化,将样品变换一个角度继续观察,如果仍然无明暗变化,样品属均质体。属均质体的宝石有等轴晶系和非晶质宝石。(3)如果转动宝石360°时,宝石样品发生四次明暗变化,这表明样品为非均质体。属非均质体的宝石有四方、六方、三方、斜方、单斜、三斜晶系中的宝石。(4)如果样品在正交偏光下转动时,可看到灰暗的蛇纹状、网格状或不规则的现象,则可能是均质体宝石所呈现的异常干涉色,此时应十分注意。利用偏光器,还可以检测宝石的多色性,能够验证宝石的非均质性和均质性。
此外,常用的宝石鉴定仪器还有吸收光谱摄谱仪、荧光灯、X射线衍射仪、电子探针等。
在赋予宝石美丽的诸多因素中,颜色是一个主要的因素,甚至是唯一的因素。了解颜色的成因,对有色宝石的鉴定、合成和改善均具有一定的指导意义。
一、颜色的定义
颜色是光对人眼的色刺激,经大脑翻译所产生的结果。要产生颜色,必须要有光源、与光作用的物体及接受光的人眼和解释它的大脑,这3个条件缺一不可。
颜色是具有一定波长的电磁波。宝石的颜色是宝石对400~700nm的可见光波进行选择性的吸收后,透射或反射出的光波的混合色。颜色是人眼对可见光的一种反应,但由于个体的差异,人眼可能观察到的可见光的波长范围可扩展为380~760nm。不同的波长对应着不同的颜色,表1-3-1列出了颜色和波长的对应关系。
表1-3-1 颜色与波长的对应关系
当白光到达宝石的表面时,一部分被反射,另一部分被折射进入宝石。如果没有反射或折射的光波被吸收,宝石将是无色的。某种波长被吸收(称为选择性吸收)后,进入人眼的光波的混合色,即是我们所见的颜色(也称为选择性透过)。
二、致色元素
绝大多数宝石产生选择性吸收的原因是因为含有某些元素,它们既可以主要化学成分存在,也可以微量元素存在,被称为致色元素,其中最主要的是钛、钒、铬、锰、铁、钴、镍、铜等过渡族金属元素。根据宝石的化学成分和构造特征可将颜色分为自色、他色和假色,相应的宝石分为自色宝石和他色宝石。
1自色
致色元素以宝石的主要化学成分出现,且颜色是恒定的,这种宝石叫自色宝石。如菱锰矿总是呈红色—橙**,孔雀石总是呈绿色,蓝铜矿总是呈蓝色。表1-3-2为常见自色宝石的颜色及致色元素。
2他色
组成宝石的主要元素不产生特征的颜色,因微量元素而致色的宝石称为他色宝石。他色宝石纯净时,为无色透明或不透明时呈现白色,当混入其他元素时,呈现各种不同的颜色。如刚玉,纯净时是无色的,当有微量的铬代替铝时,就呈红色(红宝石),若含铁和钛则呈蓝色(蓝宝石)。表1-3-3为常见的他色宝石及其致色元素。
表1-3-2 自色宝石的颜色和致色元素
3假色
假色是由于宝石内部存在一些细小的平行排列的包裹体、出溶片晶、平行解理等特殊结构,与光发生物理光学效应产生的颜色,如晕彩、锖色、变彩等。
表1-3-3 他色宝石的颜色和致色元素
三、有色宝石的呈色机理
有色宝石颜色的成因是由其化学成分和晶体结构所决定的。呈色机理有如下几种:
1过渡金属元素的内部电子跃迁
晶体场理论认为,原子是由原子核及围绕核的许多沿确定轨道层运动的电子所组成,电子的运动状态受原子内部及相邻原子之间的吸引力控制。在过渡金属族元素中,当白光射入宝石的晶格中时,晶体中的过渡金属元素的d电子就会被能量相同的光波激发,从基态跃迁到能量较高的轨道上,激发电子所需要的能量在12~37eV之间,与可见光的波长范围400~700nm中的某些波段对应。因此,当宝石中的电子跃迁时,就会对可见光进行选择性的吸收,而透射或反射出的光波的混合色就是宝石的颜色。
除了过渡金属元素(具有3d,4d轨道)内部d-d电子跃迁可以产生颜色外,某些镧系、锕系元素(具有4f,5f轨道),也可产生f-f电子跃迁使宝石呈色。由过渡金属离子引起的d-d跃迁呈色的宝石品种列于表1-3-4中。
表1-3-4 过渡金属离子引起的宝石致色
下面以红宝石、变石、祖母绿中Cr3+为例来解释宝石d-d跃迁的呈色机理(图1-3-1)。
这3种宝石的致色离子均为Cr3+,根据晶体场理论,Cr3+的d轨道在八面体配位场中可以分裂为3个能级,即4A2,4T2,4T1,Cr3+的3个d电子都处于能量较低的4A2(基态)轨道中,并且全部为单电子。在可见光的照射下,d电子分别发生从4A2→4T2,4A2→4T1的跃迁。由于3个宝石的化学成分不同,引起配位场构型畸变,因而3个宝石在跃迁过程中吸收的能量各不相同。红宝石(Al2O3)中d-d跃迁吸收的能量分别为225eV和302eV,对应于绿—黄光(551nm)和蓝紫色(410nm),透过的是大部分红橙光和部分蓝光,因而红宝石最终呈现带紫色调的红色;祖母绿吸收了204eV和292eV能量,分别对应吸收的颜色波长为608nm的橙**光和425nm的蓝紫色光,透过光波的混合色组成了祖母绿的绿色;变石(BeAl2O4)化学式介于红宝石与祖母绿之间,Cr3+与周围配位体的电场强度低于红宝石,高于祖母绿,在电子跃迁过程中吸收的能量分别为216eV和298eV,介于红宝石和祖母绿之间,对应吸收的波长分别为575nm的橙**光和416nm的蓝紫色光,透过红光和蓝绿光。因变石透过的红光和绿光基本上处于平衡状态,宝石最终呈现何种颜色取决于光源。由于日光及色温较高的日光灯蓝绿色成分偏多,变石显示绿色,而在红光成分较多的白炽灯或烛光下则显示红色。
图1-3-1 Cr3+在红宝石、变石及祖母绿中的d-d电子跃迁示意
2元素离子间的电荷转移
分子轨道理论认为,当原子形成分子后,电子的运动不再局限于单一的原子轨道,而是在相应的分子轨道中运动。当两个或两个以上的原子组成分子后,各原子轨道按照一定的规则组成分子轨道,不同原子内的电子可从一个原子轨道跃迁到另一个原子轨道上,这种作用叫电荷转移。在电荷转移的过程中,要吸收能量,所需的能量正好和可见光的某些光波相对应,而使宝石呈色。这种作用主要表现为氧化-还原过程。
元素离子间的电荷转移可以发生在同种或不同种金属离子与金属离子之间,前者又称为同核原子价态之间的电荷转移,后者称为异核原子之间的电荷转移,如宝石中常见的Fe2+-Fe3+/Fe3+-Fe2+;Ti4+-Ti3+/Ti3+-Ti4+;Mn2+-Mn4+/Mn3+-Mn3+;Fe2+-Ti4+/Fe3+-Ti3+;也可以发生于非金属离子-金属离子之间,如宝石中有O2-→Fe3+,O2-→Cr6+,O2-→V5+等;还可以是非金属-非金属间的转移。表1-3-5列出了电荷转移致色的宝石品种及颜色。蓝宝石的蓝色就是Fe2+-Ti4+异核原子价态之间的电荷转移吸收了红光和黄光,从而使蓝宝石呈蓝色。
表1-3-5 电荷转移引起的宝石颜色
3色心
有些宝石矿物的颜色是由晶体缺陷导致的,称为色心致色。色心可分为两种类型:电子色心和空穴色心。
(1)电子色心(F心)
是由电子占据晶体结构中的阴离子空位引起的色心。当一个电子被捕获到晶体中在正常情况下不存在电子的位置上时,该电子具有占据不同能级和吸收光线的能力,其产生颜色的方式与过渡金属的未配对电子相似。如萤石的化学式为CaF2,由于Ca2+含量过高和受放射性辐照影响,造成F-缺位而为电子占据,形成电子色心,该色心吸收黄绿光波,而使萤石呈紫色。
(2)空穴色心(V心)
是由于阳离子在晶体结构中缺位而引起的色心。当一个本该存在电子的位置上缺少一个电子时,就留下了一个空穴和一个能吸收光的未配对电子。烟晶(SiO2)中当Si4+被Al3+﹢H+(或Na+)取代后,结构中的电中性被破坏,受辐照后,Al3+邻近的O2-的1个价电子被激发离开其轨道,出现未配对电子,形成空穴色心,产生紫外—可见光范围的吸收,使之呈烟色。
若用X射线或γ射线辐照,受弱控制的电子就会被移位,留下空穴和能产生颜色的未配对电子。为产生色心所需的辐照,可靠自然界少量的放射性矿物在漫长的时间内完成,也可人为地使用X射线、γ射线或离子束来完成,如蓝色托帕石、紫晶等就是通过辐照而呈色的。
4能带间的电子跃迁呈色
能带理论认为:晶体中的电子不束缚于某个原子,而为整个晶体所共有,并在整个晶体中作周期性共有化运动。在宝石晶体中,各个原子的相似轨道能级发生相互重叠而构成各个能量范围不同的能带,电子按能级高低分别处在各能带中。能带又可分为:①导带(空带),由未填充电子的能级所形成的一种高能量带;②带隙(禁带):为价带最上部的面(又称费米面)与导带最下部面之间的距离,禁带宽度(用ΔEg表示)随矿物键性的不同而不同;③价带(满带),由已充满电子的原子轨道能级所构成的低能量带。处在价带顶部的电子当受到大于ΔEg的外来能量(可见光)激发时,可以跃迁到导带上去,吸收可见光能量而使晶体产生颜色。宝石的颜色取决于电子从价带向导带跃迁时所吸收的辐射能。当ΔEg在可见光能量范围之内时,能量大于ΔEg的被宝石吸收,能量小于ΔEg的透过宝石,而使宝石呈色。
5物理因素致色
由于包裹体、特殊结构、双晶、裂隙等与可见光波发生干涉、衍射、散射等作用而使宝石呈现的颜色,为物理因素致色。
1)干涉:当两条光线相遇叠加沿同一路线传播时,由于彼此的位相原因造成光波相互增强或抵消,其效果是产生非纯正光谱色。这种干涉色常见于有裂隙、薄层包裹体或具不同物质薄层结构的材料,如晕彩石英。
2)衍射:衍射为光干涉的一种特殊类型。产生衍射的宝石具有规则的不同折射率的交替层堆积,当白光与之相互作用时发生光波的定向传播,其效果是产生纯正光谱色,如欧泊的变彩。
3)散射:宝石材料内部结构不规则或粒度超出衍射限定范围(约100~400nm)或含直径大于可见光波长的包裹体、微晶微裂隙或气泡时,入射光线因传播介质的不均匀性造成光在不同方向上的反射而呈现颜色,如普通蛋白石、乳石英等。
4)包裹体致色:很多宝石会因机械地混入了其他矿物包裹体而呈现颜色,如赤铁矿使玉髓呈红色(肉红玉髓),石英岩中的铬云母包裹体使石英岩呈绿色等。
四、颜色的三要素
在色度学中用色调、饱和度、明度来表示颜色的特征。非彩色系列不具有色调和饱和度特征,它们仅有明度的变化。对于彩色系列中的每一种颜色,均有色调、明度、饱和度3个特征,称为表征颜色的三要素。
1色调(色相)
指彩色的类别,如红、橙、黄、绿、青、蓝、紫。彩色宝石的色调取决于光源的光谱组成和宝石对光的选择性吸收。色调通常用主波长λd来表示。
2饱和度(纯粹度或彩度)
指彩色的纯净度或鲜艳程度。彩色宝石的饱和度取决于宝石对可见光光谱选择性吸收的程度,可见光光谱中的各单色光饱和度最高,饱和度值为1,复色光(即白光)的饱和度最低,其值为0。当宝石仅对可见光某一很窄波段的光反射或透过时,颜色饱和度就高,宝石就鲜艳。通常用饱和的彩色光与白光的相对含量来表示。
3明度(亮度)
指彩色的明亮程度。宝石颜色的明度取决于宝石对光的反射或透射能力。宝石对光的反射比或透射比越高,宝石的明度越大。通常用宝石的视觉透射率来表示。颜色的明亮程度不仅与宝石的折射率、光泽及加工工艺有关,而且与宝石的表面光洁度和颜色深浅有关。
五、有色宝石颜色的表征
有色宝石颜色的观察和描述常带有一定的主观性,为了客观、有效地传达色彩,目前广泛使用孟塞尔表色系统、国际照明委员会CIE色度学系统以及GemDialogue或GemSet比较系统来表征有色宝石的颜色,但目前国际上并无任何统一的标准。
图1-3-2 孟塞尔色立体外形图
1孟塞尔表色系统
孟塞尔表色系统将颜色的三要素用三维坐标立体形式表示(图1-3-2)。该系统水平剖面上的各个方向,圆周被分为10个部分,代表10种孟塞尔色相;孟塞尔彩度以离开中央轴的距离表示,从中心至边缘,愈远则彩度愈大;孟塞尔色立体的中心轴,表示明度,代表从底部黑色到顶部白色的白黑系列的明度等级,中间明度划分1~9个等级。彩色系列的明度以离开基底平面高度相等的灰色来度量,共分为11个等级。颜色标定方法是:HV/C,其中符号H、V、C分别代表色相、明度和彩度。
21931CIE-XYZ表色系统
CIE标准色度系统是由国际照明委员会(简称CIE)规定的标准色度系统,是以颜色匹配实验为基础,设定每一种颜色都能用3个选定的原色按适当的比例混合而成。在颜色匹配实验中,常选用红(700nm)、绿(5461nm)、蓝(4358nm)作为三原色,将与待测颜色匹配时所需的三原色的数量,称为三刺激值,用X、Y、Z表示。三刺激值的单位选用色度学单位,对于匹配等能光谱色的三原色数量,称为光谱三刺激值。这是一种定量测量颜色的方法,通过紫外-可见光分光光度计测量宝石在可见光范围400~700nm不同波长的三刺激值,可借助于计算程序,方便地计算出其色度坐标(x,y,z):
有色宝石学教程
3个色度坐标中有一个是不独立的,因而可用x、y直角坐标系来表示各种颜色色品。
图1-3-3为CIEx、y色品图,图中(X)表示红原色,(Y)表示绿原色,(Z)表示蓝原色,为假想的三原色;图中马蹄形曲线为光谱轨迹,由光谱色的坐标点连成,凡是马蹄形曲线内部的所有坐标点(包括曲线本身)都是物理上能实现的颜色。
图1-3-3 CIEx、y色品图
宝石学中,我们先在CIEx、y色品图上标出光源和宝石的色度坐标,就可知道宝石在该光照下的色调λd和颜色饱和度。如图1-3-3所示,O点为白点(光源的坐标点,以D65光源为例),S1、S2分别为两样品颜色的色度坐标点,由白点(O点)向颜色S1引一直线,延长与光谱轨迹相交于L点,由此得到S1的主波长λd=584nm,颜色的主波长大致相当于人眼感知到的颜色色相,表明该宝石颜色大致为**色调。线段OS1与线段OL的比,记为Pe=OS1/OL,比值Pe表示兴奋纯度,即主波长的光谱色被白光冲淡的程度。兴奋纯度与颜色的饱和度呈正相关关系。S1点越接近O点,说明该颜色纯度(饱和度)越低,即颜色越不鲜艳。OS1/OL之比值越接近1,表明该宝石的颜色越接近光谱色。刺激值中的Y值大致代表了该颜色的明度。同理,向颜色S2引一直线,延长与光谱轨迹相交,得到λc或记为-λd,表示S2的补色波长。
3GemDialogue和Gem Set体系
GemDialogue(图1-3-4)体系借助各种颜色标尺(色卡)与宝石颜色进行对比,来描述和评价宝石颜色的三要素。颜色标尺手册是由21张透明的颜色标尺(色卡)及3张色罩组成。21张色标相当于21种色相,囊括了有色宝石主要的色相范围,每张色卡上有每种颜色的10个不同饱和度的带,分别为100、90、80、……10,用来表示颜色彩度由深到浅、直至无色的变化。这些色卡也可重叠起来使用,提供60000多种颜色的比较。色罩为透明黑/灰色、不透明黑/白色及透明褐色等3种,同样也有10个不同饱和度的带,可用它们模拟每种颜色中褐色或黑色的罩(即颜色被褐色或黑色掩盖了多少),用于描述隐藏于颜色中的黑/灰色调或褐色调的强度及不透明宝石。
Gem Set(图1-3-5)体系是用一套与宝石形状相近的塑料片和有色宝石的颜色进行对比的方法。其优点是塑料片的形状与宝石相近,且透明便于比较。缺点是这套体系较大,不便于携带,且塑料片容易老化。GemDialogue的优点是体小便携,但缺乏立体感。
图1-3-4 GemDialogue
图1-3-5 GemSet
楼上有好长的回答啊。。 我在此简单回答重点
如果你告诉我你是做什么用的答题 我可能会回答的更好一点。因为国内各个考试和英国等国外的的考题答题很多侧重点以及体系是不一样的,答案可能有很大的出处。
1 颜色几乎包含了可见光光谱中所有颜色,刚玉属于他色矿物,纯净时无色,颜色是由于杂质元素 Fe、Ti,Cr,Mn,V等。杂质元素可以等价离子或异价离子形式代替晶格中的铝三价离子(不会用电脑打这种离子)。关于不同离子致色有个很大的表 如果有必要 我可以拍下来给你 很长。一般的楼上讲的那些就够用了。
2在这里列举重要的几个国家:
1缅甸红宝:颜色具有鲜艳的玫瑰红色,有鸽血红,颜色分布不均,常呈絮状,团块状。“糖蜜状”构造。 金红石包体,常见一组双晶,负晶发育,常见次生开放性裂隙。
2猛速红宝:缅甸新矿区,桶状原石多呈褐红色,中心具有蓝色或者黑色心,缺少金红石包体,双晶发育,有“达碧兹"红宝。
3泰国红宝:Fe含量高所以颜色较深,透明度低,颜色较均匀,色带不发育,缺失金红石包体,丰富的流体包体,常见两组以上聚片双晶。
4斯里兰卡红宝:红色浅,金红石、锆石包体,丰富流体包体,指纹状、网状包体。负晶呈六方双锥状,内充填汽液包体。可见聚片双晶。
5越南:颜色较暗的粉紫色,色带发育,流动的旋涡状构造,磷灰石、方解石等丰富固态包体,透明度低,聚片双晶发育,愈合裂隙,铁染裂隙。
6坦桑尼亚:部分橙红色,规则的平行菱面体发育的色带和生长条纹,金红石、水铝矿包体等。
7中国:云南质量较好,特征的淡紫色调,发育较多的裂理,矿物包体,孔洞,蚀痕。。。。
3最好挑选没有经过 过分优化处理的天然祖母绿。 挑选净度较好 颜色较好者。 这个很难说了啊 兼顾的内容太多了。
4 1祖母绿脆性很强 十有九裂 很容易损坏。
2祖母绿琢型是阶梯型的变种,这种琢型凸显宝石的体色,而且去掉阶梯型四个角,保护了祖母绿不会轻易被撞击后碎掉,因为太脆。
5这个题有些问题了,红宝和蓝宝没有猫眼吧,应该是六射和十二射星光效应吧。因为它有三组交叉的包体啊。 祖母绿和金绿宝石猫眼倒是有猫眼效应的。
1红蓝宝:金红石包体呈六十度夹角,大量规律排列,形成星光。
2祖母绿:平行排列的 大量的管状包体。
3猫眼:大量排列的,很细的针状包体。
6宝石学中学到的物理性质很多就不列举了,因为实践的时候要求三条有效依据就可以,所以,我简单说最重要最常用的。
1外表特征。 用放大镜和显微镜观察
2折射率。 用折射仪测量。
3光谱。 用分光镜测
4光学性质。 用偏光镜
5发光性。 用紫外灯
7 钻石是稳定性非常好的宝石,但是完全解理发育,所以,保存钻石最重要的是防摔,避免磕碰。 不可火烧,因为会氧化。 其他的都没什么了 王水对它也没有作用。
另外就是处理过的钻石了,比如充填的和激光打孔的钻石 要避免在超声波清洗之类的。
这个题真的有点多余。呵呵
8哇,你怎么老有这种大题。。我只答要点
1合成的颜色为褐**,桔**。
2合成晶形为八面体与立方体的聚形,常见不同于天然钻石的树枝状、厥叶状图案,常见双晶
3内部可见细小的镍铁合金触媒。可见长圆形等形态,反射光下金属光泽。所以有磁性
4沙漏状颜色分带
5合成钻石缺失415nm吸收线
6合成钻石阴极发光不同。
7CVD合成钻石偏光镜下强烈的异常消光,短波紫外光下 橘**荧光。
就这么些吧 差不过够用过了,有什么不会的还可以问我。
人工宝石的定义是:完全或部分由人工生产或制造,用作首饰及装饰品的材料统称为人工宝石。人工宝石也称:锆石宝石裸石颜色:白色、黑色、橄榄、金黄、紫红、粉红、桔红、石榴红、变蓝、紫蓝、香槟、苹果绿、咖啡、海蓝、坦桑、祖母绿、烟色、乳锆等级:A、AA、AAAABBBC形状:蛋形、梨形、心形、马眼形、方形、长方形、三角形、星形、梅花形、田字形、叶形、斧头形、元宝形、立体水滴、圆珠等杂形。
在印度梵语中象征着用不熄灭的圣火,象征着阳光、自由与力量,是美丽的使者,是将祝愿送给他人的最佳向导,红宝书的红色中最具有价值的是颜色最浓的,被称为鸽血红的宝石,炽热的红色弥漫着一股强烈的生气和浓艳的色彩,被誉为爱情之神的红宝石,象征着热情似火,爱情的美好,永恒和坚贞,代表着品德高尚的光辉和闪耀,是结婚四十周年的纪念品。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)