荧光测试中激发光谱,荧光光谱分别是什么作用

荧光测试中激发光谱,荧光光谱分别是什么作用,第1张

荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱荧光发射光谱的形状与激发光的波长无关

荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检测器上,亦即进行扫描,以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱

  荧光产生的原理:

 

 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。

  另,荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发生。当辐射波长与吸收波长相等时,既是共振荧光。常见的例子是物质吸收紫外光,发出可见波段荧光,我们生活中的荧光灯就是这个原理,涂覆在灯管的荧光粉吸收灯管中汞蒸气发射的紫外光,而后由荧光粉发出可见光,实现人眼可见。

荧光产生的原理:

光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。

第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。

另外有一些物质在入射光撤去后仍能较长时间发光,这种现象称为余辉。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光,而不去仔细追究和区分其发光原理。

气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。

扩展资料:

常见的荧光灯就是一个例子。 灯管内部被抽成真空再注入少量的水银。灯管电极的放电使水银发出紫外波段的光。这些紫外光是不可见的,并且对人体有害。所以灯管内壁覆盖了一层称作磷(荧)光体的物质,它可以吸收那些紫外光并发出可见光。

可以发出白色光的发光二极管(LED)也是基于类似的原理。由半导体发出的光是蓝色的,这些蓝光可以激发附着在反射极上的磷(荧)光体,使它们发出橙色的荧光,两种颜色的光混合起来就近似地呈现出白光。

石油及其大部分产品,除了轻质油和石蜡外,无论其本身或溶于有机溶剂中,在紫外线照射下均可发光,称为荧光。

石油的发光现象取决于其化学结构。石油中的多环芳香烃和非烃引起发光,而饱和烃则完全不发光。轻质油的荧光为淡蓝色,含胶质较多的石油呈绿和**,含沥青质多的石油或沥青质则为褐色荧光。所以,发光颜色,随石油或者沥青物质的性质而改变,不受溶剂性质的影响。而发光程度,则与石油或沥青物质的浓度有关。

——荧光

1、荧光色在一般可见光照射下时,呈现无色,当在365/254纳米紫外灯照射下,呈现红、黄、绿、蓝等发光颜色。

2、荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发生。当辐射波长与吸收波长相等时,即是共振荧光。

3、荧光笔有荧光剂,遇到紫外线(太阳光、日光灯、水银灯比较多)时会产生荧光笔荧光效应,发出白光,从而使颜色看起来有刺眼的荧光感觉。

荧光材料是由金属锌、铬、硫化物或稀土氧化物与微量活性剂配合经煅烧而成。无色或浅白色,是在紫外光照射下,依颜料中金属和活化剂种类、含量的不同,而呈现出各种颜色的可见光。

荧光材料是一些感光的特殊分子组成,在构成感光材料的同时分子已经存在的惯性,当光照射的时,光的能量把感光材料的分子结构改变,光继续照射,分子的结构继续改变,直到达到最大限度的改变。

当没有光照的时候,也就是没有外界的能量能使它的分子结构继续发生改变,由于惯性的作用,分子间的结构要恢复原状,恢复的时候要产生能量,这就是发光的过成。

荧光和磷光都是物质从激发态跃迁,自发辐射产生的。通常自发辐射强度都有一个衰减过程,衰减过程最初的一段时间内的辐射,称之为荧光,之后的衰减过程称之为磷光;瑞利光是光子遇到微小粒子散射产生的,锐利光的频率和入射光是同样的;拉曼光是入射光子和分子相互作用后产生,会生成两种频率成分,一种是入射光频率减去分子振动能级频率,一种是入射光频率加上分子振动能级频率,在频谱上,前一种称之为斯托克斯线,强度较大,后一种称之为反斯托克斯线,强度非常弱。在实际应用中,分布光纤温度传感器就使用拉曼散射来实现的,光纤通信中的拉曼放大器是用受激拉曼散射实现的。乐意讨论。

荧光灯

ying guang deng

fluorescent lamp (or light)

荧光灯即低压汞灯,它是利用低气压的汞蒸气在放电过程中辐射紫外线,从而使荧光粉发出可见光的原理发光,因此它属于低气压弧光放电光源。荧光灯内装有两个灯丝。灯丝上涂有电子发射材料三元碳酸盐(碳酸钡、碳酸锶和碳酸钙),俗称电子粉。在交流电压作用下,灯丝交替地作为阴极和阳极。灯管内壁涂有荧光粉。管内充有400Pa-500Pa压力的氩气和少量的汞。通电后,液态汞蒸发成压力为08 Pa的汞蒸气。在电场作用下,汞原子不断从原始状态被激发成激发态,继而自发跃迁到基态,并辐射出波长2537nm和185nm的紫外线(主峰值波长是2537nm,约占全部辐射能的70-80%;次峰值波长是185nm,约占全部辐射能的10%),以释放多余的能量。荧光粉吸收紫外线的辐射能后发出可见光。荧光粉不同,发出的光线也不同,这就是荧光灯可做成白色和各种彩色的缘由。由于荧光灯所消耗的电能大部分用于产生紫外线,因此,荧光灯的发光效率远比白炽灯和卤钨灯高,是目前最节能的电光源。

从荧光灯的发光机制可见,荧光粉对荧光灯的质量起关键作用。20世纪50年代以后的荧光灯大都采用卤磷酸钙,俗称卤粉。卤粉价格便宜,但发光效率不够高,热稳定性差,光衰较大,光通维持率低,因此,它不适用于细管径紧凑型荧光灯中。1974年,荷兰飞利蒲首先研制成功了将能够发出人眼敏感的红、绿、蓝三色光的荧光粉氧化钇(发红光,峰值波长为611nm)、多铝酸镁(发绿光,峰值波长为541nm)和多铝酸镁钡(发蓝光,峰值波长为450nm)按一定比例混合成三基色荧光粉(完整名称是稀土元素三基色荧光粉),它的发光效率高(平均光效在80lm/W以上,约为白炽灯的5倍),色温为2500K-6500K,显色指数在85左右,用它作荧光灯的原料可大大节省能源,这就是高效节能荧光灯的来由。可以说,稀土元素三基色荧光粉的开发与应用是荧光灯发展史上的一个重要里程碑。没有三基色荧光粉,就不可能有新一代细管径紧凑型高效节能荧光灯的今天。但稀土元素三基色荧光粉也有其缺点,其最大缺点就是价格昂贵。

目前常见的荧光灯有:

(1)直管形荧光灯。这种荧光灯属双端荧光灯。常见标称功率有4W,6W,8W,12W,15W,20W,30W,36W,40W,65W,80W,85W和125W。管径用T5,T8,T10,T12。灯头用G5,G13。目前较多采用T5和T8。T5显色指数>30,显色性好,对色彩丰富的物品及环境有比较理想的照明效果,光衰小,寿命长,平均寿命达10000小时。适用于服装、百货、超级市场、食品、水果、、展示窗等色彩绚丽的场合使用。T8色光、亮度、节能、寿命都较佳,适合宾馆、办公室、商店、医院、图书馆及家庭等色彩朴素但要求亮度高的场合使用。

为了方便安装、降低成本和安全起见,许多直管形荧光灯的镇流器都安装在支架内,构成自镇流型荧光灯。

(2)彩色直管型荧光灯。常见标称功率有20W,30W,40W。管径用T4,T5,T8。灯头用G5、G13。彩色荧光灯的光通量较低,适用于商店橱窗、广告或类似场所的装饰和色彩显示。

(3)环形荧光灯。除形状外,环形荧光灯与直管形荧光灯没有多大差别。常见标称功率有22W,32W,40W。灯头用G10q。主要提供给吸顶灯、吊灯等作配套光源,供家庭、商场等照明用。

(4)单端紧凑型节能荧光灯。这种荧光灯的灯管、镇流器和灯头紧密地联成一体(镇流器放在灯头内),除了破坏性打击,无法把它们拆卸,故被称为“紧凑型”荧光灯。由于无须外加镇流器,驱动电路也在镇流器内,故这种荧光灯也是自镇流荧光灯和内启动荧光灯。整个灯通过E27等灯头直接与供电网连接,可方便地直接取代白炽灯。

这种荧光灯大都使用稀土元素三基色荧光粉,因而具有节能功能。下表列出节能荧光灯与光通量大体相同的白炽灯的对照。

节能荧光灯功率(W) 5 7 9 11 13 18 36 45 65 85 105 。

有机荧光物质是一类具有特殊光学性能的化合物

,

它们能吸收特定频率的

,

并发射出低频率

(

较长波长

)

的荧光释放所吸收的能量。某些有机化合物在

紫外和短波长的可见光的激发下能发出荧光

,

产生可见光谱中鲜艳的颜色

,

类物质称为日光型荧光染、颜料。

荧光的产生

有色化合物分子通常处于能量最低的状态

,

称为基态。吸收紫外或可见光的

能量后

,

电子跃迁至高能量轨道激发态。

分子可有多个激发态。

处于激发态的分

子通过振动弛豫、

内部转换等过程跃迁到分子的最低激发态的最低振动能级

,

发生辐射跃迁回到基态

,

放出光子

,

产生荧光

有机染料分子的第一激发态与基态的能差是一定的

,

因而荧光波长不随激

发光波长的改变而发生变化。

分子激发过程中吸收的能量一般高于荧光辐射释放

的能量

,

二者之差以热的形式损耗

,

因此荧光波长比激发光的长

,

其差通常为

50

70nm ,

当有机化合物分子内可以形成氢键时

,

则增至

150

250 nm ,

一规律称为

Stoke’s 位移。荧光的强度受许多因素的制约

,

如激发光源能量、

吸收强度、

量子效率等。

量子效率也称量子收率

,

是指荧光物体分子发射的光量

子数与吸收的光量子数之比。

其大小是由分子结构决定的

,

而与激发光源的能量

无关。事实证明

,

荧光物质分子一般都含有发射荧光的基团

(

称为荧光团

)

以及

能使吸收波长改变并伴随荧光增强的助色团。

有机荧光物质是一类具有特殊光学性能的化合物

,

它们能吸收特定频率的

,

并发射出低频率

(

较长波长

)

的荧光释放所吸收的能量。某些有机化合物在

紫外和短波长的可见光的激发下能发出荧光

,

产生可见光谱中鲜艳的颜色

,

类物质称为日光型荧光染、颜料。

荧光的产生

有色化合物分子通常处于能量最低的状态

,

称为基态。吸收紫外或可见光的

能量后

,

电子跃迁至高能量轨道激发态。

分子可有多个激发态。

处于激发态的分

子通过振动弛豫、

内部转换等过程跃迁到分子的最低激发态的最低振动能级

,

发生辐射跃迁回到基态

,

放出光子

,

产生荧光

有机染料分子的第一激发态与基态的能差是一定的

,

因而荧光波长不随激

发光波长的改变而发生变化。

分子激发过程中吸收的能量一般高于荧光辐射释放

的能量

,

二者之差以热的形式损耗

,

因此荧光波长比激发光的长

,

其差通常为

50

70nm ,

当有机化合物分子内可以形成氢键时

,

则增至

150

250 nm ,

一规律称为

Stoke’s 位移。荧光的强度受许多因素的制约

,

如激发光源能量、

吸收强度、

量子效率等。

量子效率也称量子收率

,

是指荧光物体分子发射的光量

子数与吸收的光量子数之比。

其大小是由分子结构决定的

,

而与激发光源的能量

无关。事实证明

,

荧光物质分子一般都含有发射荧光的基团

(

称为荧光团

)

以及

能使吸收波长改变并伴随荧光增强的助色团。

有机荧光物质是一类具有特殊光学性能的化合物, 它们能吸收特定频率的光, 并发射出低频率(较长波长) 的荧光释放所吸收的能量。某些有机化合物在紫外和短波长的可见光的激发下能发出荧光, 产生可见光谱中鲜艳的颜色, 这类物质称为日光型荧光染、颜料。 荧光的产生

有色化合物分子通常处于能量最低的状态,称为基态。吸收紫外或可见光的能量后, 电子跃迁至高能量轨道激发态。分子可有多个激发态。处于激发态的分子通过振动弛豫、内部转换等过程跃迁到分子的最低激发态的最低振动能级, 再发生辐射跃迁回到基态, 放出光子, 产生荧光

有机染料分子的第一激发态与基态的能差是一定的, 因而荧光波长不随激发光波长的改变而发生变化。分子激发过程中吸收的能量一般高于荧光辐射释放的能量, 二者之差以热的形式损耗,因此荧光波长比激发光的长, 其差通常为50~ 70nm , 当有机化合物分子内可以形成氢键时, 则增至150~ 250 nm , 这一规律称为Stoke’s 位移。荧光的强度受许多因素的制约, 如激发光源能量、吸收强度、量子效率等。量子效率也称量子收率, 是指荧光物体分子发射的光量子数与吸收的光量子数之比。其大小是由分子结构决定的, 而与激发光源的能量无关。事实证明, 荧光物质分子一般都含有发射荧光的基团(称为荧光团) 以及能使吸收波长改变并伴随荧光增强的助色团。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/654136.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-07
下一篇2023-07-07

发表评论

登录后才能评论

评论列表(0条)

    保存