钻石的种类

钻石的种类,第1张

钻石晶体在生成过程中总会或多或少搀杂其他元素,甚至在钻石晶体中还会搀杂地幔矿物,这些地幔矿物均以包裹体的形式存在,例如石榴子石(Garnet)和橄榄石(Olivine)等。在钻石晶体中最常见的搀杂元素是氮,极少数钻石晶体中搀杂有硼。氮和硼元素与碳元素的化学性质最为近似,在钻石晶体生长过程中可替代碳元素。搀杂氮元素者呈现**;搀杂硼元素者呈现蓝色,并且使得钻石成为电的半导体。根据钻石晶体中是否含氮元素,钻石可分为两种类型:Ⅰ型钻石,含氮;Ⅱ型钻石,不含氮。钻石中是否含氮可以由红外光谱来确定:两种钻石在红外波长范围具有特征吸收峰,Ⅰ型钻石在1400~1000 cm-1范围具有氮的吸收峰,Ⅱ型钻石因为不含氮而不具有氮的吸收峰。

图1-6 天然Ⅰa型**钻石晶体和刻面**钻石(Robert Weldon/Courtesy of Aurora Gem Collection)

Ⅰa型钻石的**是由聚合氮原子引起的

钻石又根据含氮的状态不同分为Ⅰa和Ⅰb型。

1Ⅰ型钻石

当钻石刚生成时,晶体内的氮元素是以单原子的离散状态存在。在漫长地质年代的高温高压作用下,钻石晶体内的单个氮原子逐渐聚合在一起形成氮原子的聚合体。氮原子的聚合体可能是2个、3个或4个氮原子的聚合体,也可能更多。具有氮原子聚合体的钻石属于Ⅰa型钻石。Ⅰa型钻石占天然钻石的绝大部分,约占98%。Ⅰa型钻石的颜色与含氮量有关,含氮量极低时,钻石为无色,含氮量越高**的饱和度越高。图1-6所示为一颗亮圆形切工的彩**钻石和一颗天然**钻石晶体。

(1)Ⅰa型钻石

Ⅰa型钻石中存在诸多种类的氮聚合体,对钻石颜色产生贡献的是由3个氮原子组成的聚合体,其余氮聚合体在可见光范围不产生吸收,对钻石的颜色没有贡献。3个氮原子组成的聚合体是一个颜色中心(简称色心),记作N3色心,是钻石中最重要的色心。

Ⅰa型钻石晶体中的2个氮原子聚合体被称为A 聚合体,4个氮原子聚合体为B聚合体。Ⅰa型钻石晶体中的A 聚合体和B聚合体的比例不尽相同。根据A 聚合体和B聚合体的比例,Ⅰa型钻石又可细分为几个次类型:①当Ⅰa型钻石中只有A 聚合体时,为ⅠaA型;②当只有B聚合体时,为ⅠaB型;③当Ⅰa型钻石中同时具有A 聚合体和B聚合体并且比例相近时,为ⅠaA B型;①当Ⅰa型钻石的A 聚合体多于B聚合体时,为ⅠaA> B型;⑤当A 聚合体远远多于B聚合体时,为ⅠaA>>B型;⑥当Ⅰa型钻石的A 聚合体少于B聚合体时,为ⅠaA< B型;⑦当A 聚合体远远少于B 聚合体时,为ⅠaA<<B型。Ⅰa型钻石的次类型可以由A 聚合体和B聚合体的红外吸收峰强度加以确定。

(2)Ⅰb型钻石

Ⅰb型钻石所含的氮元素以单原子的状态随机分布在钻石的晶体中,这些单个氮原子被称为离散氮原子。Ⅰb型钻石的含氮量很低,氮原子在钻石晶体之间的距离较大,即使在很长地质年代的高温高压作用下也不能聚合在一起。Ⅰb型天然钻石极少,只占天然钻石的01%。未经高温高压处理的合成钻石几乎都属Ⅰb型。Ⅰb型钻石的颜色也与含氮量有关,含氮量越高**的饱和度越高。当Ⅰa型钻石和Ⅰb型钻石的含氮量相同时,Ⅰa型钻石的颜色饱和度要远小于Ⅰb型的饱和度。

2Ⅱ型钻石

Ⅱ型钻石不含氮元素,或含有可忽略不计的氮,但可能含硼元素,又分为Ⅱa型和Ⅱb型。

(1)Ⅱa型钻石

Ⅱa型钻石的氮元素含量小于10×10-6,不含有硼元素。Ⅱa型钻石约占天然钻石总量的2%。若Ⅱa型钻石没有任何晶体缺陷,则颜色为无色。许多Ⅱa型钻石呈现粉红色、红紫色和棕色,主要是由于晶体缺陷塑性变形所造成的。Ⅱa型棕色钻石经高温高压处理后可变成无色钻石或较浅的棕色及其他颜色。

图1-7 天然Ⅱb型蓝色钻石(Tino Hammid/Courtesy of Aurora Gem Collection)

北极光钻石集第7号,027ct; Ⅱb型钻石的蓝色是由搀杂硼元素造成的

(2)Ⅱb型钻石

Ⅱb型钻石含有微量的硼元素,呈现蓝色,如图17所示。Ⅱb型天然钻石十分罕见,价格相当昂贵。因硼原子外层有3个电子,在钻石晶体内产生1个电子空穴。这一电子空穴在钻石的能级中生成1个受子能带,可以吸收长波可见光,也可使 Ⅱb型钻石变成半导体。

钻石的简单分类如表1—l所列。Ⅰa型钻石大约占全部天然钻石的98%,颜色为无色到**。Ⅰb型钻石只占全部天然钻石的01%,颜色为无色到**。Ⅱa型钻石占全部天然钻石的2%,颜色为无色。Ⅱb型钻石只含硼不含氮,极为稀少,颜色为蓝色。

表1-1 钻石的简单分类

3鉴定特征

不同类型的钻石具有不同的红外吸收光谱,图1-8所示为典型的不同类型的钻石红外吸收光谱。Ⅰa型与Ⅰb型钻石红外吸收光谱的主要在1400~1000cm-1的波数区间有所区别:Ⅰa型钻石在1282cm-1处11有一A 聚合体的吸收峰,在1175cm-1处有一个B聚合体的吸收峰;Ⅰb型钻石在1344和1130cm-1处具有两个离散氮原子的吸收峰。Ⅱa型钻石在1400~1000cm-1的区间没有吸收峰。Ⅱb型钻石特征吸收峰位于2930,2800,2455和1300cm-1处。实际的钻石红外吸收光谱可能比图1—8所示的典型的钻石分类光谱要复杂得多,主要是由于钻石的类型可能有混合,另外,其他各种钻石晶体缺陷也可能产生红外吸收。

图1-8 不同类型钻石的红外光谱图

由于不同形式的氮可以同时存在于钻石之中,氮和硼也可能同时存在,钻石的类型也可以混合。当钻石中同时具有聚合氮和离散氮时,其类型为混合型Ⅰa+Ib。如果钻石中同时含有离散氮原子和硼原子,其类型应为Ib和Ⅱb的混合型Ib+Ⅱb,人工合成绿蓝色钻石常有这种混合类型。

由于含搀杂元素的种类和浓度的不同,不同类型的钻石对紫外和可见光的吸收也不同。Ⅰ型钻石在紫外波长范围的截止波长为330nm,Ⅱ型钻石的紫外截止波长为220nm。Ⅰ型钻石紫外截止波长较长的原因是由氮元素造成的,硼元素并不改变紫外截止波长的位置。另外,钻石搀杂氮的浓度对截止波长没有影响。

钻石又称金刚钻,矿物名称金刚石,是目前人最为喜爱的宝石之一,现在随着人们生活水平的提高,钻石已经走入寻常百姓家中。下面就来详细讲解下钻石的化学成分是什么

  钻石的化学成分是碳,这在宝石中是唯一由单一元素组成的。属等轴晶系。晶体形态多呈八面体、菱形十二面体、四面体及它们的聚形。纯净的钻石无色透明,由于微量元素的混入而呈现不同颜色。强金刚光泽。折光率2417,色散中等,为0044。均质体。热导率为035卡/厘米•秒•度。用热导仪测试,反应最为灵敏。硬度为10,是目前已知最硬的矿物,绝对硬度是石英的1000倍,刚玉的150倍,怕重击,重击后会顺其解理破碎。一组解理完全。密度352克/立方厘米。钻石具有发光性,日光照射后 ,夜晚能发出淡青色磷光。X射线照射,发出天蓝色荧光。钻石的化学性质很稳定,在常温下不容易溶于酸和碱,酸碱不会对其产生作用。

  钻石成份为C元素,其中含有少量的N(氮)、B(硼),有的还含有极少量的Be(铍)、Al(铝)等元素,而N元素的多少决定了钻石的具体类型。大多数天然钻石中含有较多的N,N和B常以类质同象的形式替代C进入钻石晶格中。N含量一般在0001~025%,有时可达 050%。

  按照是否含有N元素以及N元素的存在形态,可将钻石分为以下几种类型:

  Ⅰ型(含N)

  Ⅰa 型:N在晶格中以聚合的形式存在,如N2 、N3 等形式。多数天然无色—**系列的钻石属于此种类型。

  Ⅰb 型:N在晶格中以孤N的形式存在。合成钻石及少量天然钻石属于此类型。

  Ⅱ型(基本不含N)

  Ⅱa 型:不含B,自然界少见,导热性很好。

  Ⅱb 型:含少量B,为半导体,天然蓝色钻石多为此类型,是唯一可以导电的钻石。

  钻石与相似宝石、合成钻石的区别

  宝石市场上常见的代用品或赝品有无色宝石、无色尖晶石、立方氧化锆、钛酸锶、钇铝榴石、钇镓榴石、人造金红石。合成钻石于1955年首先由日本研制成功,但未批量生产。因为合成钻石要比天然钻石费用高,所以市场上合成钻石很少见。钻石以其特有的硬度、密度、色散、折光率可以与其相似的宝石区别。如:仿钻立方氧化锆多无色,色散强(0060)、光泽强、密度大,为58克/立方厘米,手掂重感明显。钇铝榴石色散柔和,肉眼很难将它与钻石区别开。

  钻石的化学是什么上面的讲解已经很清楚,钻石是唯一一种有单个元素组成的宝石,也许这正是它看起来如此纯净的原因。

钻石是一种由碳元素组成的矿物,几乎完全由单一碳原子组成,矿物名称为金刚石。钻石与常见的石墨的物质成分完全一致,均由纯碳元素构成,它们之间的区别在于不同的晶体结构。由于晶体结构的不同,钻石与石墨的物理性质有天壤之别。其中又以硬度的差别最大,钻石的硬度在所知的所有物质中最高,摩氏硬度为10,恰恰相反,石墨的硬度几乎最小,摩氏硬度甚至小于1;另外无色钻石是电的绝缘体,而石墨是电的良导体,常用于制作电极。

碳的原子序数为6,有2个电子层,其中内层的第一电子层由2个电子构成,外层由4个电子构成。根据原子物理学原理,原子的第一层可容纳2个电子,第二层可容纳8个电子。当原子的外电子层填满时,原子的化学性质呈惰性,例如惰性气体氖等;当原子的外电子层未填满时,原子的化学性质活泼。碳原子内层的第一电子层为稳定的电子层,外层的第二电子层由于没有填满8个电子,为不稳定电子层,因而碳原子化学性质活泼。碳原子外层的4个电子可以与其他原子外层的电子发生作用而产生价键结合,非常容易发生化学反应,例如与空气中的氧反应发生燃烧。另外,由于外层自由电子的存在,碳也是电的良好导体。

在钻石的结晶过程中,碳原子外层的4个自由电子与周围的碳原子的外层自由电子产生共价键结合,每一碳原子可与周围4个碳原子结合,形成立方晶体结构,如图1-2所示。当1个碳原子与周围的4个碳原子结合时,每一碳原子都与另外1个碳原子各贡献1个外层电子组成1个共价键。在钻石晶体中,每一个碳原子都有4个共价键和8个共价电子,从而使每一碳原子都形成一个稳定的原子结构。相邻的碳原子之间共享的共价键电子对产生极强的结合,使相邻的碳原子紧密地结合在一起。钻石晶体中碳原子之间的距离为154Å(1 Å=10-10m),碳原子之间由共价键结合形成紧密的立方结构,因此,钻石的晶体结构是所有已知晶体中最坚固的。最坚固的钻石晶体结构必然导致最高的硬度。

图1-2 钻石的晶体结构

钻石晶体中每一个碳原子与周围的4个碳原子结合,碳原子之间的距离为154Å,碳原子之间由共价键结合形成紧密的立方结构

石墨晶体结构与钻石的立方结构不同,每一碳原子与周围在同一晶体面上的3个碳原子结合。每一碳原子都剩余1个外层电子,使每一碳原子都没有达到稳定状态。在石墨晶体的层与层之间没有价键连接,为十分不稳定结构,所以其硬度极低;另外,碳原子晶体层之间的滑动摩擦系数很小,因此,石墨是一种非常好的润滑填充剂。

在钻石结晶过程中,晶体沿特定晶面生长。最常见的钻石晶形是八面体。钻石八面体的8个面都是面积相等的等边三角形。其他的晶形有菱形十二面体、立方体、三八面体和聚形等。图1-3所示为天然钻石的天然晶形和利用相似晶形、颜色的天然钻石晶体所加工出的彩色钻石。

图1-3 天然钻石的晶形和利用相似晶形、颜色的天然钻石晶体所加工出的彩色钻石(Robert Weldon/Courtesy of Aurora Gem Collection)

图1-3中后排左起第五颗**天然钻石晶体是晶形和晶面都非常好的典型八面体;后排左起第四颗**天然钻石晶体也是八面体,但晶面受到磨损变得圆滑而不平整,晶面交角也失去棱角变成不规则圆弧形;后排最右边两颗绿色天然钻石晶体都呈立方体;后排左起第三颗**天然钻石的晶形为典型经磨损的三八面体;后排最左边两颗天然钻石晶体都是不规则形状,由最左边的那颗形状不规则的天然钻石晶体可以切割出紫红或粉红紫红色的刻面彩色钻石,十分难得。形状不规则的天然钻石晶体都是由于外力的破坏,通常是在冲刷过程中钻石之间的摩擦和钻石与砂石之间的摩擦,以及开采过程中的撞击造成的。

因为彩色钻石价格昂贵,而且价格与切工和净度关系不大,切割彩色钻石时,首先要考虑的是获得最大重量。刻面彩色钻石的形状要与原天然晶体形状尽量相似以获得最大重量。市面上绝大多数的彩色钻石的形状都是不规则的花形切工,很少见到理想亮圆形切工的彩色钻石。1997年在日内瓦以805000美元拍卖成交的一颗175ct的紫红红色钻石的形状与原晶体形状相似,主要的加工是将原晶体的自然面抛光。

钻石晶体也可能呈双晶或是多晶。图1-4是一颗晶形十分完整的天然双晶钻石晶体,主要晶体呈典型的八面体,在顶部又生长出一个小八面体。这一双晶钻石晶体的颜色为灰色,是由在钻石晶体中含有许多微小的石墨晶体或未结晶的炭黑造成的。由于石墨或炭黑呈黑色,几乎完全吸收可见光,即使很低的含量也会使得钻石变为灰色,甚至是黑色。天然灰色和黑色钻石原石一般用于工业用途。这颗灰色天然双晶钻石晶体来自钻石次生矿,经冲刷和磨损,晶面和棱角都呈圆滑状。

图1-5是另外一种天然双晶钻石晶体,由两个立方体互相嵌入构成穿插双晶(Pene—tration twin)。这颗天然双晶钻石晶体的颜色为**,如果精心加工以增强饱和度,它可能成为一颗彩**钻石。这颗**天然双晶钻石晶体的晶面和棱角都为圆滑状,也来自钻石次生矿。

图1-4 由两个八面体构成的天然双晶钻石晶体

(刘严摄影/刘严收藏)

图1-5 由两个立方体构成的天然穿插双晶

(刘严摄影/刘严收藏)

钻石可以区分为Ⅰ型和Ⅱ型种类。

Ⅰ型种类:能透过400-300nm的紫外光,并在红外区显示与N相关的吸收带,根据N的分布可分为:

Ⅰa型种类:N以小片晶形式存在于钻石晶体结构中。

Ⅰb型种类:N以分散状形式存在于钻石晶体结构中。

Ⅱ型种类:能透过低到220nm紫外光,并在红光区无明显吸收带,自然界含量少,且形态为不规则状,著名例子是库里南和塞拉利昂之星。按不同的电学性质分为:

Ⅱa型种类:不导电,具有最高的导热性,室温下至少是铜的五倍,在短波紫外光下不发磷光。

Ⅱb型种类:半导体,短波紫外光下发磷光。

更多回答

奋发有为奶茶M

2021-12-30•Ta已获得116赞同

从颜色的角度来看,钻石有白钻、红钻、蓝钻、绿钻等,其中白钻是常见的钻石饰品镶嵌的钻石,纯洁透明象征着圣洁和永恒的爱情:红钻有粉红到鲜红组成,主要的产地是澳大利亚,是比较稀有的品种:蓝钻主要有天然到深蓝色,这种颜色的钻石比较特别的地方就是,它含有具有导电性能的硼元素。

  天然钻石与合成钻石的区别:

  鉴定特征

  1、晶体形态

  天然钻石为八面体,凸晶。菱形十二面体或它们聚形,不规则形态。

  合成钻石为八面体和立方体聚形,晶形完美,晶面平直,晶棱锐利。

  2、吸收光谱

  天然钻石415nm特征吸收线,除此之外还有423nm、435nm、478nm吸收谱线。

  合成钻石缺失415nm吸收线,有时出现470nm-700nm宽吸收带。

  3、异常双折射

  天然钻石带状、波状、斑块状,格子状异常消光。

  合成钻石不显示或弱的异常清光。

  4、内含物

  天然钻石为天然矿物包襄体,如钻石、石榴石、透辉石等。

  合成钻石为Fe-Ni合全包襄体,呈棒状、针状、片状等。

  5、色带

  天然钻石颜色均匀,难见色带,有时可见平行分布的斑块状色带。

  合成钻石颜色不均匀,蓝色、**合成钻石显示四边形、八边形、柱状等色带和色区。

  6、发光性

  天然钻石LW无成蓝白、黄等各色荧光;SW不显示或弱的荧光。

  合成钻石LW无荧光或黄—黄绿色荧光;SW黄-黄绿色荧光,强于LW荧光。

  7、阴极发光

  天然钻石可以产生蓝白色荧光,且颜色和发光强度均匀一致。

  合成钻石阴极发光图像具有X形状。

  补充:

  钻石是指经过琢磨的金刚石,在地球深部高压、高温条件下形成的一种由碳 (C)元素构成,具有立方结构的天然白色晶体。钻石具有宗教色彩的崇拜和畏惧,同时又把它视为勇敢、权力、地位和尊贵的象征。现在已成为百姓们都可拥有、佩戴的大众宝石。钻石的文化源远流长,也有人把它看成是爱情和忠贞的象征。

根据地质队勘探过程的统计及部分学者收集样品的统计结果,湖南金刚石晶体普遍经过了较强烈的溶蚀作用,晶棱圆滑,多为曲面晶体,主要为溶蚀态(曲面晶体)和过渡态(平面–曲面晶体)晶体,其中以曲面菱形十二面体和曲面八面体—菱形十二面体的聚形为主,聚形、异形晶数量较多,此外还有双晶、连生体和多晶集合体。其中单晶金刚石占96%以上,主要晶形为十二面体、八面体、立方体、六面体和类八–十二面体(谈逸梅等,1983;马文运,1989),其中立方体类晶体占5%~10%,这样的高比例在国内外的金刚石矿床中是少见的(郭九皋等,1985)。

2008年至2009年,本项目组从湖南沅水流域地区分多批次收集了377颗宝石级或近宝石级的钻石样品,并对其进行了详细观察和统计。统计分析显示,其晶体多呈圆化曲面状,晶形主要以曲面菱形十二面体为主(占340%),八面体约占265%,另外,各种聚形及粒状、球状晶体比例较大(占297%),四面体晶形占21%,双晶、连生约占(42%),碎块约占35%(表44;图49~图412)。

表44 湖南金刚石晶体形态特征统计(377颗) Table 44 Statistics of diamond crystal forms of Hunan (377 diamonds)

图49 部分磨圆的八面体

Figure 49 Partially rounded octahedron

图410 菱形十二面体

Figure 410 Rhombic dodecahedron

图411 八面体和立方体的聚形

Figure 411 Combination form of octahedron and cube

图412 磨圆球状晶体

Figure 412 Rounded crystal

本项目收集样品的晶体形态特征虽然和前人的研究相比差别不大,但立方体形态晶形的比例明显下降,其原因除了和样品来源有关外,可能和本次收集样品主要是宝石级的钻石有关。由于湖南钻石砂矿的开采具有季节性和偶然性,本项目收集的样品的代表性很难评估。因此,有关的统计数据可能只能代表中低品质的湖南钻石,难以完整体现整个湖南砂矿钻石晶形的图像。

欢迎分享,转载请注明来源:浪漫分享网

原文地址: https://hunlipic.com/liwu/7724310.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-09-07
下一篇 2023-09-07

发表评论

登录后才能评论

评论列表(0条)

保存