天然钻石和人造钻石的区别?

天然钻石和人造钻石的区别?,第1张

天然钻石:是世界上公认的最珍贵的宝石,矿物名称是金刚石。在矿物学上属于金刚石族。

人工钻石:分合成钻石、优化处理钻石。 

人工钻石与天然钻石的区分方法:

1、人工钻石的鉴别方法

(1)合成钻石

[1]高温高压合成钻石

颜色:以**、桔**、褐色为主,价格很有竞争力;而蓝色和近无色等颜色,由于技术难度大,成本高而极难见到。

内部显微特征:可见细小的铁或镍铁合金触媒金属包体。部分合成钻石具磁性,可见不规则状颜色分带、沙漏形色带等。

净度:以P、SI级为主,个别可达VS级甚至VVS级。

吸收光谱:缺失415nm吸收线。

异常双折射:很弱,干涉色变化不明显。

紫外荧光特性:长波紫外线下荧光呈惰性,在短波紫外光下发光性有明显分带现象,为无至中的淡**、橙**、绿**不均匀的荧光,局部可有磷光。

[2]CVD合成钻石

颜色:多为暗褐色和浅褐色,也可以生长近无色和蓝色的产品,但非常困难。

内部显微特征:可见不规则深色包体和点状包体。可有平等的生长色带。

异常双折射:有强烈的异常消光,不同方向上的消光也有所不同。

紫外荧光特性:长短波紫外线下,有弱的橘**荧光。

(2)优化处理钻石

[1]颜色优化处理

①传统颜色优化处理:

古老的处理方法是在钻石表面涂上薄薄一层带蓝色的、折射率很高的物质,这样可使钻石颜色提高1-2个级别,更有甚者在钻石表面涂上墨水、油彩、指甲油等,以便提高钻石颜色的级别,也有的在钻戒底托上加上金属箔。这些方法很原始,也极容易鉴别。

②辐照改色钻石及其鉴定:

辐照改色是物理改色法,只用适用于有色而且颜色不好的钻石。

颜色分布特征:色带分布位置及形状与琢形形状及辐照方向有关。当来自回旋加速器的亚原子粒子,从亭部方向对圆多面型钻石进行轰击时,透过台面可看到辐照形成的颜色呈伞状围绕亭部分布,在这种情况下,阶梯形琢形的钻石仅能显示出靠近底尖的长方形色带。当轰击来自钻石的冠部时,则琢型钻石的腰棱处将显示一深色色环。当轰击来自钻石琢形侧面时,则琢型靠近轰击源一侧颜色明显加深。

吸收光谱:有595nm或H1b和H1c线的出现。

导电性:辐照形成的蓝色钻石不具导电性。 

③GE钻石

又称为高温高压修复型钻石,处理后的颜色大都在D到G的范围内,但稍具雾状外观,带褐或灰色调而不是**调。高倍放大下可见内部纹理,常见羽毛状裂隙,并伴有反光,裂隙常出露到钻石表面、部分愈合的裂隙、解理以及形状异常的包体。这种钻石鉴定起来比较困难,通用电气公司曾承诺由他们处理的钻石在腰棱表面用激光刻上“GE POL”或“Bellataire”字样。

④Nova钻石

一种新的颜色优化处理方法,又称为高温高压增强型或诺瓦钻石(Nova)。该钻石发生强的塑性变形,异常消光强烈,显示强黄绿色荧光并伴有白垩状荧光。这些钻石刻有Nova钻石的标识,并附有唯一的序号和证书。

[2]净度处理

①激光打孔

传统激光打孔处理:钻石表面留下永久性的激光孔眼,而且因充填物质硬度永远不可能与钻石相同,往往会形成难以观察的凹坑。

KM内部破裂法:这种次生裂隙看起来与天然裂隙相似,但这种方法处理不好就容易使钻石破裂。

KM内部缝合法:表面可见蜈蚣状包体,呈不自然弯曲的裂隙,在垂直包体两侧伸出很多裂隙;在激光处理的连续裂隙中有未被完全处理掉的零星黑色残留物。

②裂隙充填

闪光效应:有明显闪光效应,暗域下常见闪光颜色是橙**、紫红色、粉色,其次为粉橙色。亮域下常见闪光颜色是蓝绿色,绿色、绿**和**。同一裂隙的不同部位可表现出不同的闪光颜色,充填裂隙的闪光颜色可随样品的转动而变化。

流动构造:裂隙内常保留充填物充填过程中的流动构造。

捕获气泡:看上去像一组指纹状包体,也可能很小,而呈亮点。

絮状结构:充填物质过厚时可产生一种絮状结构,有时这种絮状结构又可演变成一种网状结构,很容易发现。

微小裂隙:在一些充填裂隙中,发现有白色近于平行的细线,可能是裂隙中的微小裂隙。这一特征很微弱,仅在光纤灯的强光照明下才能观察到。

充填物颜色:充填物比较厚时,能见到浅棕色至棕**或橙**充填物的颜色。这种充填物的体色在充填的空洞和激光孔中才能观察到。

不完全充填:通常极细窄,看上去像细白的划痕或暗域下的擦痕,可能是钻石蒸洗时部分充填物被去除造成的。

表面残余:部分充填物残留于钻石表面。

[3]钻石膜

多晶体,表面有有粒状结构;用拉曼光谱测定,优质DF钻石膜,特征峰在33300px-1附近,半高宽;质量差的DF钻石膜,特征峰频移大,强度减弱,甚至在37500px-1附近出现一个宽峰。

[4]拼合钻石

由钻石(作为顶层)与廉价的水晶或人造无色蓝宝石等(作为底层)粘合而成,粘合技术非常高,可将其镶嵌在首饰上将粘合隐藏起来,使人不容易发现。这种宝石台面上放置一个小针尖,就会看到两个反射像,一个来自台面,另一个来自接合面,而天然钻石不会出现这种现象。仔细观察,无论什么方向,天然钻石都因其反光闪烁,不可能被看穿,而钻石拼合就不同,因为其下部分是折射率低的矿物,拼合石的反光能力差,有时光还可透过。

2、天然钻石的鉴别方法(这里介绍肉眼鉴别方法)

(1)毛坯鉴定:

[1]光泽:金刚光泽,“亮晶晶”的外表。

[2]外观形态和表面特征:常见晶体形态是八面体、菱形十二面体及二者的聚形,在无色透明矿物中具有这几种晶形的矿物为数较少。另外,还有一个特征是钻石的晶石花纹,不同晶面具有不同特征的生长纹,如八面体晶面常见三角形生长纹,三角形的尖端指向八面体的晶棱;立方体晶面常具正方形或长方形生长纹,与立方体平面呈45度夹角;菱形十二面体晶面则常见平行于长对角线方向的凹槽等。

[3]密度:天然钻石352g/cm3。

(2)抛光后鉴定:

[1]线条实验:样品台面向下放在一张有线条的纸上,如果是钻石则看不到纸上的线条。

[2]倾斜实验:将样品中台面向上,置于黑色背景中,从垂直于台面方向开始观察,将观察者处向外倾斜,观察台面离观察者最远的区域,如果出现一个暗窗,则说明该样品不是钻石。

[3]亲油性实验:用油性笔在天然钻石表面划过时可留下清晰而连续的线条;相反,划过钻石仿制品表面时,墨水常用聚成一个个小液滴,不能出现连续的线条。

[4]托水性实验:充分清洗样品,将小水滴点在样品上,如果水滴能在样品的表面保持很长时间,则说明该样品为钻石。

都是又碳元素组成的,称为碳的同素异形体

它们之所以物理性质差异大时因为它们内部碳原子排列顺序不同,如C60的球型等

附:同素异形体的形成方式有三种:

1.组成分子的原子数目不同,例如:氧气O2和臭氧O3

2.晶格中原子的排列方式不同,例如:金刚石和石墨

3.晶格中分子排列的方式不同,例如:正交硫和单斜硫

碳的同素异形体

(1)碳的同素异形体有金刚石、石墨和碳60等富勒烯,它们的不同性质是由微观结构的不同所决定的。

金刚石呈正四面体空间网状立体结构,碳原子之间形成共价键。当切割或熔化时,需要克服碳原子之间的共价键,金刚石是自然界已经知道的物质中硬度最大的材料,它的熔点高。上等无暇的金刚石晶莹剔透,折光性好,光彩夺目,是人们喜爱的饰品,也是尖端科技不可缺少的重要材料。颗粒较小、质量略为低劣的金刚石常用在普通工业方面,如用于制作仪器仪表轴承等精密元件、机械加工、地质钻探等。钻石在磨、锯、钻、抛光等加工工艺中,是切割石料、金属、陶瓷、玻璃等所不可缺少的;用金刚石钻头代替普通硬质合金钻头,可大大提高钻进速度,降低成本;镶嵌钻石的牙钻是牙科医生得心应手的工具;镶嵌钻石的眼科手术刀的刀口锋利光滑,即使用1000倍的显微镜也看不到一点缺陷,是摘除眼睛内白内障普遍使用的利器。金刚石在机械、电子、光学、传热、军事、航天航空、医学和化学领域有着广泛的应用前景。

石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以三个共价键与其它碳原子结合,同层中的离域电子可以在整层活动,层间碳原子以分子间作用力(范德华力)相结合。石墨是一种灰黑色、不透明、有金属光泽的晶体。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。石墨被大量用来做电极、坩埚、电刷、润滑剂、铅笔等。具有层状结构的石墨在适当条件下使某些原子或基团插入层内与C原子结合成石墨层间化合物。这些插入化合物的性质基本上不改变石墨原有的层状结构,但片层间的距离增加,称为膨胀石墨,它具有天然石墨不具有的可绕性,回弹性等,可作为一种新型的工程材料,在石油化工、化肥、原子能、电子等领域广泛应用。

(2)碳60

1985年,美国德克萨斯洲罗斯大学的科学家们制造出了第三种形式的单质碳C60, C60是由60个碳原子形成的封闭笼状分子,形似足球,C60为黑色粉末,易溶于二硫化碳、苯等溶剂中。人们以建筑大师B富勒的名字命名了这种形式的单质碳,称为富勒烯(fullarene)。这是因为富勒设计了称为球状穹顶的建筑物,而某些富勒烯的结构正好与其十分相似。C60曾又被称足球烯、巴基球等,它属于球碳族,这一类物质的分子式可以表示为Cn,n为28到540之间的整数值,有C50、C70、C84、C240等,在这些分子中,碳原子与另外三个碳原子形成两个单键和一个双键,它们实际上是球形共扼烯。

富勒烯分子由于其独特的结构和性质,受到了广泛的重视。人们发现富勒烯分子笼状结构具有向外开放的面,而内部却是空的,这就有可能将其他物质引入到该球体内部,这样可以显著地改变富勒烯分子的物理和化学性质。例如化学家已经尝试着往这些中空的物质中加进各种各样的金属,使之具有超导性,已发现C60和某些碱金属化合得到的超导体其临界温度高于近年研究过的各种超导体,科学家预言C540有可能实现室温超导;也有设想将某些药物置入C60球体空腔内,成为缓释型的药物,进入人体的各个部位。在单分子纳米电子器件等方面有着广泛的应用前景,富勒烯已经广泛地影响到物理、化学、材料科学、生命及医药科学各领域。

(3)碳纳米管

碳纳米管可分单层及多层的碳纳米管,它是由单层或多层同心轴石墨层卷曲而成的中空碳管,管直径一般为几个纳米到几十个纳米,多层碳纳米管是管壁的石墨层间距为034纳米,与平面石墨层的间距一样,不论是单层还是多层碳纳米管,前后末端类似半圆形,结构基本上与碳六十相似,使整个碳管成为一个封闭结构,故纳米碳管也是碳簇的成员之一。碳纳米管非常微小,5万个并排起来才有人的一根头发丝宽,是长度和直径之比很高的纤维。

碳纳米管强度高具有韧性、重量轻、比表面积大,性能稳定,随管壁曲卷结构不同而呈现出半导体或良导体的特异导电性,场发射性能优良。自1991年单层碳纳米管的发现和宏观量的合成成功以来,由于具有独特的电子结构和物理化学性质,碳纳米管在各个领域中的应用已引起了各国科学家的普遍关注,已成为富勒烯和纳米科技领域的研究热点。

利用碳纳米管可以制成高强度碳纤维材料和复合材料,如其强度为钢的100倍,重量则只有钢的1/6,被科学家称为未来的“超级纤维”;在航天事业中,利用碳纳米管制造人造卫星的拖绳,不仅可以为卫星供电,还可以耐受很高的温度而不会烧毁;用金属灌满碳纳米管,然后把碳层腐蚀掉,还可以得到导电性能非常好的纳米尺度的导线;利用碳纳米管做为锂离子电池的正极和负极材料可以延长电池寿命,改善电池的充放电性能;利用碳纳米管制成极好的发光、发热、发射电子的准点光源,制成平面显示器等,使壁挂电视成为可能;在电子工业上、用碳纳米管生产的晶体管,体积只有半导体的1/10,用碳基分子电子装置取代电脑芯片,将引发计算机的新的革命;碳纳米管可以在较低的气压下存储大量的氢元素,利用这种方法制成的燃料不但安全性能高,而且是一种清洁能源,在汽车工业将会有广阔的发展前景;碳纳米管还可作为催化剂载体和膜材料。

蓝色钻石,是彩色钻石的一种。蓝色钻石是因为硼原子在钻石的晶体中产生一个受子能带。受子能带能够吸收近红外辐射和长波的可风防染印花,因而使钻石呈现蓝色。天然蓝色钻石十分罕见。可以人工合成蓝色钻石,合成钻石对加入适量的硼元素即可产生蓝色。

蓝色钻石产生的原因:

人工

合成钻石对加入矢量的硼元素即可产生蓝色。在合成钻石过程中主要是在装填原料时空所职的氮分子会残留其中,所以合成蓝色钻石往往带有绿色。合成蓝色钻石所呈现的编绿色调是由离散氮元素对短波可见光吸收所造成的。

天然

天然蓝色钻石十分罕见,属于IIB型。天然蓝色钻石不含氮元素,但含极少量的硼元素。硼原子在钻石的晶体中产生一个受子能带。受子能带能够吸收近红外辐射和长波的可风防染印花,因而使钻石呈现蓝色。受子能带与价带之间的能差很小,价带电子在热的作用下即可跃迁到受子能带,使钻石导电,所以蓝色钻石是半导体。

辐射所产生的GR1色心也会使不含氮的无色IIA型钻石产生饱和度较低的蓝色。这种GR1致色的蓝色钻石不含硼,它的红外吸收光谱不具典型的蓝色钻石和吸收峰,一览珠宝英才网。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/7807830.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存