如何鉴别钻石的好坏? 颜色重要还是净度重要?

如何鉴别钻石的好坏? 颜色重要还是净度重要?,第1张

区分标准如下:

1、决定钻石好坏的四个标准分别是颜色、净度、重量、切工,这也就是常说的钻石的“4c”等级。钻石等级越高,价格也就越贵。

2、钻石颜色:钻石颜色一共有11种,又分为分5层色:D-F(无色),G-J(接近无色),K-L(微黄),N-R(轻浅黄),S-Z(浅黄)。无色的钻石是最好的。

3、钻石净度:钻石的净度分为FL,VVS1,VVS2,VS1,VS2,SI1,SI2,P1,P2,P310个级别。选购钻石时最好是VS净度级别以上的。

一FL: 完美无暇—专业人士在10倍放大条件下观察,内外无任何瑕疵,在所有净度等级中这种是最稀有和最珍贵的。

二IF :内无瑕—专业人士在10倍放大条件下观察,内部无瑕疵,但是在钻石表面有很微小的瑕疵。

三VVS1 :极微瑕1级—专业人士在10倍放大条件下观察到只有单个极微小的瑕疵。

四VVS2:极微瑕2级—专业人士在10倍放大条件下观察到个别极微小瑕疵。

五VS1:微瑕1级—10倍放大条件下可见单个微小瑕疵。

六VS2:微瑕2级—10倍放大条件下可见数个微小瑕疵。

七SI1:小瑕疵1级—10倍放大条件下容易观察到明显瑕疵。

八SI2:小瑕疵2级—10倍放大条件下容易观察到数个明显瑕疵。

4、钻石重量:钻石的重量单位是克拉,1克拉=02克=100分。求婚钻戒可以根据个人的条件挑选50分到100分的。

5、钻石切工:好的切工能完美地体现钻石的亮度和火彩。

一差切工:这包含所有没有符合一般切工标准的钻石。这些钻石的切工要么深而窄,要么浅而宽,易于让光线从边部或底部逸出

二一般切工:代表粗糙度为 35% 的钻石切工,虽然仍属优质钻石,但是钻石反射的光线不及G级切工。

三好切工:代表大约25%的钻石切工。是钻石反射了大部分进入钻石内部的光。比VG级便宜的多。

四非常好切工:代表大约 15% 的钻石切工。可以使钻石反射出和标准等级切工的光芒,但是价格不高。

五理想切工:只有3%的一流高质量钻石才能达到的标准。这种切工使钻石几乎反射了所有进入钻石的光线,是一种高雅且杰出的切工。

  宝石具有鲜艳色彩,坚硬而细腻的质地,抛光后具有美丽的光泽等特性,是什么原因导致宝石的形成呢下面就让我来告诉你宝石是怎样形成的吧。

宝石的形成

目前世界上已发现4000种左右的矿物,可用作宝石的矿物仅有200余种。宝石作为地质作用的产物,其形成的地质条件非常复杂,在各种不同的环境下要经历至少几百万年的时间才能形成。通常,按岩石性质,宝石可分三类:岩浆岩、变质岩与沉积岩。

1岩浆岩

岩浆岩又称火成岩,是由岩浆喷出地表或侵入地壳冷却凝固所形成的岩石。在岩浆从上地幔或地壳深处沿着一定的通道上升到地壳形成侵入岩或喷出到地表形成喷出巖的过程中,各种矿物特别是宝石会在特定的条件下形成结晶。

  在岩浆岩中形成的宝石晶体种类繁多,有金刚石、祖母绿、红宝石、蓝宝石、水晶、橄榄石、镁铝榴石等。

2变质岩

变质岩是在高温、高压和矿物质的混合作用下由一种岩石自然变质成的另一种岩石。变质岩中产出的宝石主要有:祖母绿、红宝石、蓝宝石、堇青石、夕线石、蓝晶石、十字石、翡翠等。

3沉积岩

沉积岩,又称为水成岩,是在地表不太深的地方,将其他岩石的风化产物和一些火山喷发物,经过水流或冰川的搬运、沉积、成岩作用形成的岩石。

沉积岩中可有多种优质宝石,如钻石、红宝石、蓝宝石、玛瑙、欧泊、翡翠等。

宝石的现代应用

奈米氧化铝XZ-L14显白色蓬松粉末状态,晶型是α型。粒径是20nm;比表面积≥50m2/g。粒度分布均匀、纯度高、高分散、α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;耐热性强,成型性好,晶相稳定、硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变效能和高分子材料产品的耐磨效能尤为显著。由于α相氧化铝也是效能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外,α相氧化铝电阻率高,具有良好的绝缘效能,可应用于YGA镭射晶的主要配件和积体电路基板中。

其主要技术指标:

奈米氧化铝浆料XZ-L14外观 白色粉末。

奈米氧化铝XZ-L14晶相 α相。

奈米氧化铝XZ-L14平均粒度nm 20±5

奈米氧化铝XZ-L14含量% 大于 999%。

应用范围:

奈米氧化铝XZ-L14透明陶瓷:高压钠灯灯管、EP-ROM视窗。

奈米氧化铝XZ-L14化妆品填料。

奈米氧化铝XZ-L14单晶、红宝石、蓝宝石、白宝石、钇铝石榴石。

奈米氧化铝XZ-L14高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管。

奈米氧化铝XZ-L14精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带。

奈米氧化铝XZ-L14涂料、橡胶、塑料耐磨增强材料、高阶耐水材料。

奈米氧化铝XZ-L14气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料。

奈米氧化铝XZ-L14催化剂、催化载体、分析试剂。

奈米氧化铝XZ-L14宇航飞机机翼前缘。

宝石的共性

宝石按其价值特征可分为三大类,即高档宝石、中档宝石及低档宝石。每一类宝石由于生长环境条件等方面的差异,形成各自独有的特性。但这些宝石都是晶体,因而具有晶体共性,这些共性也就构成了宝石的特征标志—宝石共性。宝石的共性内容如下:

一、宝石均为单晶体

宝石在自然界主要以单晶体形式出现,个别会出现双晶体。在形成环境比较理想的条件下,会呈现相对完好的晶体形态,如海蓝宝石往往形成完整的六方柱状体。这些完整的晶体形态展示一种美丽的魅力,可以供人们欣赏、收藏,但大多数情况下,晶体的形态是不完美的。

二、宝石的颜色具有均匀单一性

宝石由于是单晶体,其组成的化学元素比较严格地遵守成分组成定律,对杂质离子有相对排他性,因而化学成分相对均匀、纯净,所以宝石颜色具有单一性,即一种宝石的颜色是由一种或两种比较固定的离子所引起的,如红宝石的颜色是由cr离子引起的,蓝宝石的颜色是由铁与钛离子所引起的。宝石的颜色是相对均匀的,即一种宝石的颜色基本上分布于整个晶体中。一种宝石由一种或两种色素离子构成一种较均匀的颜色。

三、宝石多呈透明体

宝石是单晶体,其组成的化学元素主要是惰性气体型离子和部分过渡型离子,其化学键主要是离子键、共价键及其二者的混合或复合键,这些化学键所形成的晶体呈透明状,因而宝石大部分为透明体。如钻石晶体由碳原子以共价键形成,所以钻石是透明的。

四、宝石的光泽

宝石的光泽是宝石表面的反光能力,它的特征取决于宝石晶体化学键的性质及晶体的相对密度等因素。不同种类的化学键的宝石晶体引起的光泽不同,如钻石的化学键为典型的共价键,形成的光泽为金刚光泽;磁铁矿晶体的化学键为共价键与离子键的复合键,形成的光泽为半金属光泽;水晶晶体的化学键为共价键,但晶体的密度小,光通过容易,所形成的光泽为玻璃光泽;黄金的化学键为典型的金属键,形成的光泽为金属光泽。

五、宝石的密度变化具有很小范围性

宝石晶体由于形成环境比较复杂,形成的温度压力相对要高,对其化学元素的组成相对要求严格,成分比较纯净,所以宝石的密度值比较稳定,变化范围相对要小得多,如钻石的相对密度值为352左右,变化范围较小,352值可作为鉴别钻石的标志。

六、宝石的导热性

宝石晶体对热的传导能力相对较强,即传热的速度较快,作为首饰使人们有凉爽的感觉。不同的宝石由于化学组成和化学键及其他因素的影响,它们之间的导热性差异也较大,如钻石晶体是自然界导热能力最大的—种晶体;而水晶晶体的导热能力相对要低。但与非晶体、玉石和有机宝石相比,宝石的导热能力要远远大于它们。

七、宝石的加工具有标准性

宝石是由各种晶面组成的几何体,宝石的美丽主要是通过面对光的反射、折射或透射表现出来的。要使光线照在宝石上呈现最佳的光学效果,对宝石刻面的加工则要求特别严格。不同的宝石晶体由于化学组成与化学键的差异,所形成的晶体特征也不同,同时也形成不同光性特征与光学方位。宝石的加工要求则体现在对每一种宝石必须按一定的光学方位来加工,具体反映在对宝石的晶面数目、大小、形状、面之间的夹角等要求上,形成一定的加工标准,这样才能保证其呈现出最佳的光学效果。如钻石的晶面数目要加工成57或58,刻面的形状要有八边形、三角形、邻边相等的四边形及三角扇形等,这些面要按照一定方式进行规律的分布,同时还要求各面的大小及面之间的夹角保持一定角度,即形成了很严格的规范。否则,则为加工失误,会影响宝石的美丽与价值。

八、宝石的体积相对要小,重量也轻

宝石由于是单晶体,在自然界的条件与环境下,其生长的速率很慢,生长的时间很长,所形成的晶体体积相对玉石则要小得多,其重量同样也小得多。如钻石晶体在自然界形成1克拉o2g,就被称为大宝石晶体。

九、宝石硬而脆

宝石是单晶体,化学键多为共价键、离子键或二者组成的复合键,这些化学键的特征是键的强度特大,形成的晶体硬度也大,抗击外力的打击和研磨的能力强,所以宝石的硬度都比较大。但由于这些化学键都是离子或原子在晶体结构中呈平衡的结果,其握力大小、离子或原子的位置都是固定不变的,因而其弹性系数低,导致晶体的弹性特差,容易超过弹性界限,使晶体呈现出脆性特征,即怕碰怕摔,容易碎裂。如钻石就是最硬最脆的晶体。

钻石就是戴出去好看点,你像我买的DR钻戒,带出去之后他们都问我是在哪买的,说款式非常好看,还是很保值的,你像我和男朋友买的时候基本上价格都没有变化,而且他的寓意也很好,男士一生只能买一枚,一生一世一双人,相信没有哪个女孩子会拒绝的。

钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。

钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。

一、钻石的化学成分和分类

1化学成分

钻石是具有立方结构的碳。主要成分是C,其质量分数可达9995%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。

2分类

钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。

1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。

表14-1-1 钻石的分类

天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。

二、钻石的结构与形态

1晶体结构

钻石属等轴晶系, ;a0=035595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为01542nm,C-C-C键角109°28′16″。

图14-1-1 钻石的晶体结构

2形态

钻石属六八面体晶类,Oh-m3m(3L44L36L29PC),常见单形:八面体o{111},菱形十二面体d{110}、立方体a{100}及其聚形(图14-1-2a和图14-1-2b)。

图14-1-2a 钻石的常见晶形

钻石晶体通常呈歪晶,由于溶蚀作用使晶面棱弯曲,晶面常发育阶梯状生长纹、生长锥或蚀象,且不同单形晶面上的蚀象不同,八面体晶面上可见倒三角形凹坑,立方体晶面上可见四边形凹坑,十二面体晶面上可见线理和显微圆盘状花纹。

钻石的双晶依(111)最普遍,可成接触双晶、星状穿插双晶或轮式双晶。其中三角薄片(macle)接触双晶具有典型的扁平三角形外观,在双晶两个平面结合处环绕钻石有明显的青鱼骨刺纹,在钻石贸易中称为结节。

三、钻石的光学性质

1颜色

钻石的颜色分两个系列:即无色—浅**系列和彩色系列。无色—浅**系列钻石的颜色为:无色至浅黄、浅褐;彩色系列钻石的颜色一般为深黄、褐、灰及浅至深的蓝、绿、橙黄、粉红、红、紫红色,偶见黑色。

图14-1-2b 钻石晶体不同聚形示意图

大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。

(1)黄至棕**钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于22eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列**、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对4772nm有弱吸收,由于人们对4772nm吸收反应灵敏,4772nm蓝光被吸收后,钻石呈现**。

(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。

(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。

(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。

2光泽

钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。

3透明度

钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。

4光性

钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。

5折射率

钻石为单折射宝石,在钠光(5893nm)中折射率为2417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。

6色散

钻石的色散强,色散值为0044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。

7发光性

(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、**、橙**、粉色等荧光,通常长波较短波的荧光强。

(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。

(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。

8吸收光谱

无色—浅**的钻石,在紫色区4155nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的**钻石可能在498nm,504nm和592nm处有吸收带。

四、钻石的力学性质

1解理

钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。

图14-1-3 钻石{111}方向解理示意图

2硬度

钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。

钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。

3密度

钻石的密度为352(±001)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。

五、钻石的内含物

钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。

六、钻石的电学性质和热学性质

1电学性质

Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(00024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。

2热学性质

(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。

根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。

(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。

(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。

3其他性质

(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。

(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。

金刚石是钻石的原石。

1、金刚石表面摩氏硬度为10,显微硬度比石英高1000倍;

2、有极高的抗磨能力;

3、金刚石表面有标准的金刚光泽;

4、金刚石表面具有非磁性、不良导电性(电阻率:5×104Ωcm)和摩擦生电性;

5、金刚石表面亲油疏水,对油脂及污垢有较强的亲和力,油污很容易被金刚石吸附;

6、人造金刚石常为浅**、浅黄褐色、浅黄绿色、褐色等,无色人造金刚石很少;天然金刚石98%都是无色至浅**,白色金刚石很少,玫瑰色、粉红色、蓝色、绿色、黑色、茶色十分稀少。

扩展资料:

钻石原石鉴别几种方法:

1、钻石的晶体形态

钻石是一种经过底层高温、挤压千万年的变化而成的矿物结晶体,钻石原石的晶体形态呈现出来的是八面体还有菱形状的十二面体,它的硬度非常,用宝石也不能出现划痕。

2、呵气的方法

真正钻石的导热、传热性能非常好,你可以将钻石放置于嘴边,哈上几口热气,如果是真钻石的话,热气很快速地就会消失不见,只要仔细观察观察就能鉴别了。

3、光线测定法

真钻石的单折光性好,在光线下会发现光芒四射的迷人色彩,将钻石置于手心,真钻石是不能透过看到掌纹的

4、滴水法

钻石具有排水性,如同荷叶一样,水滴落偶在钻石表面的话就会立马掉落,不留下一丝水痕。

参考资料:

金刚石

1、硬度

摩氏硬度10,新摩氏硬度15,显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。

2、颜色

金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些**,这主要是由于金刚石中含有杂质。

金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。金刚石在X射线照射下会发出蓝绿色荧光。

3、亮度

金刚石因为具有极高的反射率,其反射临界角较小,全反射的范围宽,光容易发生全反射,反射光量大,从而产生很高的亮度。

4、结构

金刚石结构分为;等轴晶系四面六面体立方体与六方晶系钻石。

在钻石晶体中,碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。

每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。

5、稳定性

金刚石化学性质稳定,具有耐酸性和耐碱性,高温下不与浓HF、HCl、HNO3作用,只在Na2CO3、NaNO3、KNO3的熔融体中,或与K2Cr2O7和H2SO4的混合物一起煮沸时,表面会稍有氧化;在O、CO、CO2、H、Cl、H2O、CH4的高温气体中腐蚀。

1、金刚石表面摩氏硬度为10,显微硬度比石英高1000倍;

2、有极高的抗磨能力;

3、金刚石表面有标准的金刚光泽;

4、金刚石表面具有非磁性、不良导电性(电阻率:5×104Ωcm)和摩擦生电性;

5、金刚石表面亲油疏水,对油脂及污垢有较强的亲和力,油污很容易被金刚石吸附;

6、人造金刚石常为浅**、浅黄褐色、浅黄绿色、褐色等,无色人造金刚石很少;天然金刚石98%都是无色至浅**,白色金刚石很少,玫瑰色、粉红色、蓝色、绿色、黑色、茶色十分稀少。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/7815058.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存