都是碳的晶体,为何钻石是透明的石墨不是呢?

都是碳的晶体,为何钻石是透明的石墨不是呢?,第1张

钻石和石墨都完全由碳制成,最近发现的buckminsterfullerene(一种离散的足球状分子,含有60个碳原子)也完全由碳制成。但是,对于三种材料,碳原子在空间中的排列方式不同,这使它们成为碳的同素异形体。碳和钻石的不同特性来自其独特的晶体结构。 

钻石中,碳原子是四面体排列的。每个碳原子与另外四个碳原子相连,距离为1544×10-10米,C-C-C键角为1095度。它是一个坚固的、刚性的三维结构,形成了一个无限的原子网络。由于其四面体结构,钻石表现为一种绝缘体,它的电阻、光透过率和化学惰性也十分显著,因此钻石是透明的。

石墨中的碳原子也排列成无限的阵列,但它们是分层的。这些原子之间有两种相互作用:每个碳原子与另外三个碳原子结合,排列在规则六边形网络的角上,形成120度的C-C-C键角。这些平面排列在两个维度上延伸,形成一个水平的六边形阵列;此外,这些平面阵列被称为叠加相互作用的弱力连接在一起,这种三维结构说明了石墨的物理性质。石墨的平面结构使电子在平面内容易移动,这使得石墨能够传导电、热、吸收光,因此与钻石不同,它的颜色是黑色的。

同时,由于钻石的内部结构和石墨的明显区别,使得钻石拥有强大的硬度、强度和耐用性,钻石的密度高于石墨(每立方厘米3514克)。钻石也表现出很强的抗压性,它可以划伤其他所有的材料,是已知最硬的材料。此外,钻石能分散光线,这意味着红光和紫外光的折射率是不同的(分别为2409和2465)。因此,钻石就像一个棱镜,将白光分为彩虹色,其色散为0056(差值)。色散越大,获得的颜色光谱越好。钻石的“光彩”来源于光的折射、内反射和色散。

天然钻石在阳光下会闪烁,当光源良好时会通过折射等发出五颜六色的荧光。

当金刚石或者光源、观察者相对移动时其表面对于白光的反射和闪光形成荧光。无色透明、结晶良好的八面体或者曲面体聚形钻石,即使不加切磨也可展露良好的闪烁光。

钻石切割后多样的晶面象三棱镜一样,能把通过折射、反射和全反射进入晶体内部的白光分解成白光的组成颜色——红、橙、黄、绿、蓝、靛、紫等色光。

质量高的、坚硬的、平整光亮的钻石晶面对于白光的反射作用特别强烈,而这种非常特征的反光作用就叫作金刚光泽。

扩展资料

钻石光彩:

钻石的光彩也叫“火彩”,它能反射出五光十色、光怪陆离的彩光,尤其以柔和冷艳的蓝光为主,这种现象是钻石色散作用的结果。所谓色散就是折射率的大小随着光颜色的不同而变化。在所有的天然宝石中钻石的色散度是最强的。

因此,钻石会出现火焰般冷艳、璀璨夺目的美丽光彩。如果转动钻石,就会发现钻石上的奇彩光芒能迅速改变、闪烁不定、异常的迷人,这种现象又叫钻石的“闪烁”度。

火彩的产生必须满足两个条件:首先宝石材料必须有足够高的“色散”值,其次该材料在加工中必需遵循一定的角度和比例,这一点因材料不同而有所差异。

——金刚石

钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。

钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。

一、钻石的化学成分和分类

1化学成分

钻石是具有立方结构的碳。主要成分是C,其质量分数可达9995%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。

2分类

钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。

1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。

表14-1-1 钻石的分类

天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。

二、钻石的结构与形态

1晶体结构

钻石属等轴晶系, ;a0=035595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为01542nm,C-C-C键角109°28′16″。

图14-1-1 钻石的晶体结构

2形态

钻石属六八面体晶类,Oh-m3m(3L44L36L29PC),常见单形:八面体o{111},菱形十二面体d{110}、立方体a{100}及其聚形(图14-1-2a和图14-1-2b)。

图14-1-2a 钻石的常见晶形

钻石晶体通常呈歪晶,由于溶蚀作用使晶面棱弯曲,晶面常发育阶梯状生长纹、生长锥或蚀象,且不同单形晶面上的蚀象不同,八面体晶面上可见倒三角形凹坑,立方体晶面上可见四边形凹坑,十二面体晶面上可见线理和显微圆盘状花纹。

钻石的双晶依(111)最普遍,可成接触双晶、星状穿插双晶或轮式双晶。其中三角薄片(macle)接触双晶具有典型的扁平三角形外观,在双晶两个平面结合处环绕钻石有明显的青鱼骨刺纹,在钻石贸易中称为结节。

三、钻石的光学性质

1颜色

钻石的颜色分两个系列:即无色—浅**系列和彩色系列。无色—浅**系列钻石的颜色为:无色至浅黄、浅褐;彩色系列钻石的颜色一般为深黄、褐、灰及浅至深的蓝、绿、橙黄、粉红、红、紫红色,偶见黑色。

图14-1-2b 钻石晶体不同聚形示意图

大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。

(1)黄至棕**钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于22eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列**、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对4772nm有弱吸收,由于人们对4772nm吸收反应灵敏,4772nm蓝光被吸收后,钻石呈现**。

(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。

(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。

(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。

2光泽

钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。

3透明度

钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。

4光性

钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。

5折射率

钻石为单折射宝石,在钠光(5893nm)中折射率为2417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。

6色散

钻石的色散强,色散值为0044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。

7发光性

(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、**、橙**、粉色等荧光,通常长波较短波的荧光强。

(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。

(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。

8吸收光谱

无色—浅**的钻石,在紫色区4155nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的**钻石可能在498nm,504nm和592nm处有吸收带。

四、钻石的力学性质

1解理

钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。

图14-1-3 钻石{111}方向解理示意图

2硬度

钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。

钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。

3密度

钻石的密度为352(±001)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。

五、钻石的内含物

钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。

六、钻石的电学性质和热学性质

1电学性质

Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(00024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。

2热学性质

(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。

根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。

(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。

(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。

3其他性质

(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。

(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。

与玻璃相比较,切割的钻石更耀眼的原因在于钻石的折光率会更高,因此当有灯光照射在钻石身上的时候,就会出现非常多绚烂的火彩。但是玻璃本身的折光率就很低,因此就算灯光直射,所折射出来的光彩也要少很多,所以说玻璃看起来并没有那么耀眼,而钻石就显得非常的夺目。

玻璃和钻石的区别

玻璃虽然和钻石看起来都是透明的石头,但是是两种非常不同的物质。因为钻石是一种晶体结构,而玻璃并不是,而且钻石的硬度非常的高,但是玻璃的硬度不高,有的玻璃甚至只用一点点的力气就可以击碎。如果用钻石在玻璃上面滑动的话,一般玻璃都会出现划痕,而钻石都是完好无损的。

而且钻石的火彩一般都是纯天然的,但是玻璃之所以可以折射出五颜六色的火彩,这都是认为制作的。所以说玻璃制作工艺的不同,都会导致玻璃的光芒不同。但是如果一颗天然的钻石本身品质就不错,不需要任何的后期加工,它本身的火彩也很强。人工成分只会让本来就出彩的钻石变得更加闪耀,而不会夺取它本身的光芒。

钻石的价值

虽然现在钻石的价格非常的昂贵,但是其实钻石的主要成分就是碳,由于它的形成时间很久,属于天然宝石,因此才会有价格。但是如果要花几十万甚至上百万购买一颗钻石就没有必要了,还不如购买彩宝。毕竟现在钻石的存量还是比较大的,一般购买的钻石饰品基本上都会贬值,除非是收藏级别的裸钻。

如果就是为了结婚或者平时佩戴的话,其实几千到小万的价格还可以接受,太贵就没有必要了,而且也没有人会回收,黄金还可以换款,钻石就不可以。

图1 写着‘浅’的 钻石切得太浅光线从底部溢出 使得钻石的亮度受损 极少或不能再现火彩

图2 写着‘理想’的 叫做完美切工 光线从冠部到腰部至底部成U字曲线返回到你的眼睛 钻石飞火流星一般绚烂夺目 拥有这样切工的钻石必定出自老师傅之手 这样的切工很少 可以说是一种理想的境界

图3 写着‘深’的 钻石切得太深 光线一下从底部消散 失去了光泽变得非常的幽暗 虽然有火彩但是并不耀眼夺目

然后说入射折射的路径: 冠部的桌面生三角刻面 三角刻面生菱形刻面 菱形刻面与三角刻面相互结合生风筝刻面 两个风筝刻面与环圆生一对腰上刻面排成队列 共有33个刻面 腰下生24刻面 外加底部1个刻面共有58刻面 光线入射到桌面穿透三角刻面到达菱形刻面成为直线(形成‘外现火彩’ ‘散射火彩’) 折射到腰下24刻面时也应为直线(形成‘内部火彩’ ‘发光火彩’) 如若切工过浅过深刻面不均匀 则会形成斜线 导致发光火彩无法形成 如:图1 3 完美折射过腰下24刻面后会形成反射回归眼睛的同时底部发出‘光亮火彩’ 瞬间得到三种视觉享受——闪光 亮光 火花

计算公式为:R0=(n-1)2/(n 1)2 ×100%(R0为反射率 n为折射率)

理论依据为:“光从介质一入射到介质二时 一部分光线被反射 一部分光线被折射 对于折射光来说 当光从光疏介质进入光密介质时 折射光折向法线 入射角 i 大于折射角γ 当光从光密介质进入光疏介质时 折射光折离法线 入射角i小于折射角γ 现在我们来看光从光密介质进人光疏介质时的情况 由于随入射角 i 的逐渐增大 折射角γ也在逐渐增大 当折射角γ等于900时 光便不能进入光疏介质 而是沿两种介质的界面射出 使折射角γ等于900时的入射角i称为临界角(临界角以C表示) 临界角C随两种介质的相对折射率不同而不同 如果我们让入射角i 继续增大(大于临界角) 入射光便全部被反射回光密介质中去 这种现象称为全反射”

现在购买钻石分数和颜色占有很大比重 其次是净度 能够欣赏切工的 必定三者保值 也就是说能够以工为首的是一种卓绝的品味 也是一种金钱的富足

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/8334742.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-16
下一篇2023-09-16

发表评论

登录后才能评论

评论列表(0条)

    保存