山东钻石的晶体形态

山东钻石的晶体形态,第1张

山东金刚石晶体形态以平面八面体、阶梯状八面体、八面体与曲面菱形十二面体聚形和曲面菱形十二面体四类形态为主,还有少量的立方体、曲面六八面体、曲面六四面体、八面体与曲面六八面体聚形及立方体类聚形等,金刚石各类晶形见图版Ⅱ。但不同矿区金刚石晶体形态所占的比例略有不同。总体来讲,自南往北的常马庄、西峪和坡里的3个金伯利岩带中的金刚石,其曲面菱形十二面体晶形所占比例由多变少,而八面体晶形所占比例由少变多。常马庄矿带的各金伯利岩体,除红旗14号外,均以曲面菱形十二面体为主(5364%),其次为阶梯状八面体(3552%)、八面体与曲面菱形十二面体聚形(837%)和平面八面体(227%),其他形态很少(020%)。晶形主要为单晶(占7921%~8921%),其次为双晶和连生体。西峪矿带金刚石的晶形组合与常马庄矿带略有不同,主要为阶梯状八面体 (6345%),其次为曲面菱形十二面体(2829%),其他的晶体形态基本上与常马庄岩带相似,且含量都很少。晶体也主要以单晶的形式存在,连生体较多(3059%)。坡里矿带中阶梯状八面体金刚石的含量最高(70%),次为曲面菱形十二面体(21%),八面体与曲面菱形十二面体聚形及其他都较少,分别为7%和2%(山东省地矿局第七地质大队,1990;黄蕴慧等,1992;罗声宣等,1999;王萍等,1999)。

山东701钻石矿是我国目前唯一还在正式生产的钻石矿。2009年5月至8月,“山东蒙阴钻石矿现场统计数据”分类记录结果显示:442颗蒙阴宝石级金刚石晶形以菱形十二面体为主,约占3068%,其次为八面体,约占229 5%,六面体达到659%,存在比较特殊的拉长变形晶,比例达432%,双晶和聚形晶分别占约273%和341%,三角薄片227%,破损者约占250%,无法统计晶形的其他类型占2387%。1883颗工业级金刚石也以菱形十二面体为主,约占1692%,其次为八面体,约占1202%,六面体达到305%,比较特殊的拉长变形晶比例达到571%,双晶和聚形晶分别占约147%和729%,破损者约占1431%,其他无法统计晶形的占3434%。

从以上统计数据可以看出,蒙阴金刚石晶体形态的组合基本上是相同的,以平面八面体、阶梯状八面体、八面体与曲面菱形十二面体聚形和曲面菱形十二面体四类形态为主,还有少量的立方体、曲面四六面体、曲面六八面体、曲面六四面体、八面体与菱形十二面体聚形、八面体与曲面六八面体聚形及立方体类聚形,但各类形态金刚石含量比例在不同的岩脉(筒)有所不同,其中歪晶为蒙阴701矿所产钻石的特征性晶形(图43)。

项目组另外自蒙阴钻石矿(主要是胜利1号,大小岩管)收集的408颗宝石级金刚石样品晶形统计数据显示,金刚石晶形以八面体和菱形十二面体为主,各占267%;其次为聚形(83%),如八面体与十二面体的聚形、八面体、十二面体与立方体聚形等;另外还有一定数量的连生晶体、双晶等;约21%破损者无法统计晶形(表43;图44~图46)。

表43 山东蒙阴钻石矿金刚石晶形统计(2683颗) Table 43 Statistics of diamond crystal forms of Mengyin, Shandong (2683 diamonds)

图43 歪晶

Figure 43 Distorted Crystal

图44 八面体

Figure 44 Octahedron

图45 八面体与十二面体聚形

Figure 45 Combination form of octahedron and dodecahedron

图46 菱形十二面体

Figure 46 Rhombic dodecahedron

通过对图43的歪晶进一步研究分析,可见其表面大小不等的腐蚀斑点密集分布,一组或两组塑性变形滑移线清晰可见,同时在该晶体的一端隐约可见倒三角凹坑(图47,图48),通过分析表明此类长条状歪晶实为严重变形的八面体晶体。

图47 歪晶上的倒三角凹坑

Figure 47 Reversed triangular pits on distorted diamond

图48 歪晶表面可见两组滑移线及腐蚀斑点

Figure 48 Two groups of slip lines and etch pits on the surface of distorted diamond

与资料相比,本项目研究的2683颗钻石(701矿现场统计2275颗,收集样品实验室统计408颗)中,不可辨认晶形(碎块与其他)者所占的比例相当大(占405%);在可辨认晶形的1597颗钻石中,仍以菱形十二面体(348%)和八面体(270%)为主,其次为聚形、歪晶、六面体、三角形块等。值得一提的是,本项目研究的钻石晶形中歪晶和六面体含量相当高,分别占47%和32%,这在前人资料中未提及,可能与统计方法和归类有关。三角块、双晶、连生等含量有所增多。

前人资料表明,辽宁金刚石的晶体形态特征在含矿性不同的金伯利岩体中具有很大的差别,辽宁瓦房店地区品位较高的50号岩管中金刚石以曲面菱形十二面体为主,其次为阶梯状八面体及平面八面体,菱形十二面体与聚形钻石占60%以上,晶形种类达40余种;中等品位的42号岩管的金刚石晶形以阶梯状八面体为主,接近80%,也含有曲面菱形十二面体,晶形种类明显减少,晶形种类约20种;品位低的(2号岩管)以平面八面体为主,曲面菱形十二面体所占的比例明显低于富矿和中矿岩体,且晶形种类简单,仅有5种,偶见六四面体。金伯利岩中金刚石的晶体形态种类越复杂多样,其品位也越高。部分资料见表41(辽宁省地质局旅大地质六队,1975;1976;赵秀英,1988;池际尚等,1996a ;b;陈征等,2003)。

表41 辽宁金刚石晶体形态统计表(%) Table 41 Statistics of diamond crystal forms of Liaoning(%)

据辽宁省地质局旅大地质六队,1975;1976;池际尚等,1996a;b编

本项目对收集到的辽宁瓦房店钻石样品的晶形(292颗)的统计结果是:八面体为主,约占3733%,其次为菱形十二面体,约占178%,另外还有少量的双晶(约占62%)、连生晶体和聚形等(表42;图41;图42)。

图41 八面体

Figure 41 Octahedron

图42 双晶

Figure 42 Macle

表42 辽宁瓦房店金刚石晶体形态特征统计(292颗) Table 42 Statistics of diamond crystal forms of Wafangdian, Liaoning (292 diamonds)

与前人资料相比,本项目研究的292颗样品中,晶形不可辨认的较多,占363%,但是在可统计晶形的186颗钻石中仍以八面体(586%)和菱形十二面体(28%)为主。与此同时,聚形的含量(16%)较低,双晶和连生晶体的含量较高。

在晶体外形上出现的对称要素中,P,C,L2都只能使晶体上某一部分重复一次,而L3,L4,L6,L4i,L6i等高次对称轴则可使晶体的某一部分重复出现两次以上。晶体上相同部分重复出现的次数越多,晶体的对称程度就越高。所以晶体是按对称程度分类的。

首先,根据对称型将晶体分为32个晶类,即相同对称型的晶体,都属于同一晶类。然后,再根据对称型中有无高次轴以及高次轴的多少,将晶体分为三个晶族。凡没有高次轴的对称型均归于低级晶族,仅有一个高次轴的对称型归于中级晶族;有数个高次轴的对称型属高级晶族。

每一晶族中,又按对称的特点进一步划分晶系。低级晶族划分为三个晶系,即:无P及无L2的对称型属三斜晶系,只有一个L2或P的对称型属单斜晶系,L2或P多于一个的对称型属斜方晶系。中级晶族亦划分为三个晶系,即:具有一个L3的对称型属三方晶系,具有一个L4或L4i的对称型属四方晶系,具有一个L6或L6i的对称型属六方晶系。高级晶族只有一个晶系,即等轴晶系,属于等轴晶系的对称型必有四个三次对称轴(4L3)。

从以上所述,晶体按对称的特点共划分三个晶族、七个晶系和32个晶类,就目前来说,比利时的魔星钻是最好的莫桑钻晶体。

钻石是一种由碳元素组成的矿物,是碳元素的同素异形体。

钻石和石墨都属于碳单质,二者的化学式都是C,在矿物化学组成中,总含有Si、Mg、Al、Ca、Mn、Ni等元素,并常含有Na、B、Cu、Fe、Co、Cr、Ti、N等杂质元素,以及碳水化合物。

钻石和石墨的化学性质完全相同,但钻石和石墨不是同种物质,它们是由相同元素构成的同素异型体。 所不同的是物理结构特征。

扩展资料

钻石的化学性质

钻石是在地球深部高压、高温条件下形成的一种由碳元素组成的单质晶体,是指经过琢磨的金刚石。金刚石是无色正八面体晶体,其成分为纯碳,由碳原子以四价键链接,为目前已知自然存在最硬物质。

由于金刚石中的C-C键很强,所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石硬度非常大,熔点在华氏6900度,金刚石在纯氧中燃点为720~800℃,在空气中为850~1000℃,而且不导电。

钻石矿物晶体构造属等轴晶系同极键四面体型构造。碳原子位于四面体的角顶及中心,具有高度的对称性。单位晶胞中碳原子间以同极键相连结,距离为154pm。常见晶形有八面体、菱形十二面体、立方体、四面体和六八面体等。

-金刚石 (纯碳组成的矿物)

钻石的成分和晶体结构

钻石的主要成分是碳(C),

含C量96%-999%。即使很纯净的钻石也含有0001%的杂质。钻石中的杂质组分有Si、Al、Ca、Mg、Mn、Ti、Cr、N

等。

N

以外,其余杂质通常都以矿物包裹体形式存在,钻石中常含有磁铁矿、钛铁矿、镁铝榴石、铬透辉石、橄榄石、石墨等矿物包裹体。

氮(N)是钻石中一种重要的杂质组分,N在钻石晶体结构中组成各种缺陷中心,可以单个N、A中心、B中心、N3小晶片等形式存在。

根据N的含量和聚结形式可将钻石划分为Ⅰ型和Ⅱ型。Ⅰ型钻石含N量较多(005%-03%)。

Ⅰa型钻石中N以N3小晶片形式存在,Ⅰb型钻石中N以分散状态的顺磁方式存在。

Ⅱ型钻石含N量较少(<005%),N呈自由状态存在。Ⅰ型和Ⅱ型钻石在某些物理性质上有所不同。自然界的钻石绝大部分是Ⅰ型钻石。

钻石为等轴晶系,晶体结构为立方面心格子,晶胞参数a°=356A(1A=1mm/1千万)(见左图)。C原子位于立方晶胞的八个角顶和六个面中心,并在其八个小立方格的半数中心相间地分布着四个C原子,每个C原子都与周围四个C原子相连接,每两个相邻C原子之间的距离都相等(154A)。这种结构C原子间形成极其牢固的共价键,

要分开这种化学健必须给以很大的能量。这就决定了金刚石具有一些特殊的性质,如极高的硬度和化学稳定性。

钻石的晶形最常见的是八面体,其次是菱形十二面体,较少见的是立方体。此外,可长成各种复杂形态的聚形或歪晶。

根据地质队勘探过程的统计及部分学者收集样品的统计结果,湖南金刚石晶体普遍经过了较强烈的溶蚀作用,晶棱圆滑,多为曲面晶体,主要为溶蚀态(曲面晶体)和过渡态(平面–曲面晶体)晶体,其中以曲面菱形十二面体和曲面八面体—菱形十二面体的聚形为主,聚形、异形晶数量较多,此外还有双晶、连生体和多晶集合体。其中单晶金刚石占96%以上,主要晶形为十二面体、八面体、立方体、六面体和类八–十二面体(谈逸梅等,1983;马文运,1989),其中立方体类晶体占5%~10%,这样的高比例在国内外的金刚石矿床中是少见的(郭九皋等,1985)。

2008年至2009年,本项目组从湖南沅水流域地区分多批次收集了377颗宝石级或近宝石级的钻石样品,并对其进行了详细观察和统计。统计分析显示,其晶体多呈圆化曲面状,晶形主要以曲面菱形十二面体为主(占340%),八面体约占265%,另外,各种聚形及粒状、球状晶体比例较大(占297%),四面体晶形占21%,双晶、连生约占(42%),碎块约占35%(表44;图49~图412)。

表44 湖南金刚石晶体形态特征统计(377颗) Table 44 Statistics of diamond crystal forms of Hunan (377 diamonds)

图49 部分磨圆的八面体

Figure 49 Partially rounded octahedron

图410 菱形十二面体

Figure 410 Rhombic dodecahedron

图411 八面体和立方体的聚形

Figure 411 Combination form of octahedron and cube

图412 磨圆球状晶体

Figure 412 Rounded crystal

本项目收集样品的晶体形态特征虽然和前人的研究相比差别不大,但立方体形态晶形的比例明显下降,其原因除了和样品来源有关外,可能和本次收集样品主要是宝石级的钻石有关。由于湖南钻石砂矿的开采具有季节性和偶然性,本项目收集的样品的代表性很难评估。因此,有关的统计数据可能只能代表中低品质的湖南钻石,难以完整体现整个湖南砂矿钻石晶形的图像。

世界不同地区出产的金刚石/钻石,在晶形、完整性、颜色类型及其比例等统计学特征上有一定的差异,这种差异是商业上进行产地区分经验的来源。

但是根据世界不同国家和金刚石/钻石矿区开采历史资料的对比(见附表2),可以看出世界各国以国家作为比较对象来进行比较是非常困难的(甚至是错误的),同一个国家不同矿区之间也存在明显的差异;但从不同的矿区来看,根据其金刚石/钻石最常见晶形的类型至少可以归纳为如下几类(不考虑历史因素):

(1)由八面体金刚石/钻石为主的矿区,包括北美克拉通加拿大Slave克拉通的Jericho、Ekati、Diavik矿区;东西伯利亚克拉通俄罗斯雅库特金刚石/钻石成矿省Malo-Botuobia地区,津巴布韦克拉通Murowa和Sese 矿区;中国华北克拉通辽宁瓦房店42号岩管。

(2)菱形十二面体为主的矿区,包括北美克拉通加拿大Superior省Renard矿区;巴西;俄罗斯东欧克拉通(太古宙Kola克拉通)MVLomonosov矿区;东西伯利亚克拉通俄罗斯乌拉尔地区砂矿;西非克拉通几内亚Kankan地区;南澳克拉通/澳大利亚艾伦代尔(Ellendale矿区,中国华北克拉通辽宁50号岩管,山东蒙阴。

(3)八面体和菱形十二面体比例近似的矿区,包括北美克拉通加拿大Superior省Wawa矿区;俄罗斯东欧克拉通(太古宙Kola克拉通)VGrib原生矿,中非克拉通安哥拉的Catoca field ;中国湖南沅水流域金刚石/钻石砂矿。

(4)出现较多异形金刚石/钻石的矿区,包括北美克拉通加拿大Superior省Lynx矿区,Alberta省Buffalo Head Hills矿区;中非克拉通/刚果(扎伊尔)以及Kaapvaal克拉通南非、博茨瓦纳,Pilbara北澳克拉通阿盖尔(Argyle),南澳克拉通Orroroo(Eurelia)原生金伯利岩和Springfield Basin砂矿;新南威尔士Bingara砂矿、Copeton砂矿、Wellington砂矿、Airly Mountain砂矿A组等。另外,还有Kaapvaal克拉通纳米比亚砂矿和西非克拉通坦桑尼亚Mwadui矿没有见到可靠的晶形统计资料。

上述分类还可以按照是否明显出现立方体形金刚石/钻石和不出现立方体金刚石/钻石分两大类。一是明显出现立方体金刚石/钻石的矿区包括:北美克拉通加拿大Slave克拉通的Diavik矿区;北美克拉通加拿大Superior省Wawa矿区,Alberta省Buffalo Head Hills矿区;东西伯利亚克拉通俄罗斯雅库特金刚石/钻石成矿省Udachnaya岩管;中非克拉通安哥拉Catoca field矿区,塞拉利昂的Koidu矿区;Kaapvaal克拉通南非的Venetia矿区;博茨瓦纳Orapa和Jwaneng;津巴布韦克拉通Murowa和Sese;南澳克拉通Eurelia矿区,中国湖南沅水流域的砂矿。二是明确没有出现或者少见立方体及其聚形金刚石/钻石的矿区,只有Kaapvaal克拉通南非普列米尔和北澳克拉通阿盖尔(Argyle)。其余的地区可能是没有发现或者数量较少,因此没有提及。

金刚石/钻石晶形是金刚石/钻石形成过程环境条件的综合反映(ЮЛ奥尔洛夫等,1977;Haggerty,1986;Besk等,1989;黄蕴慧等,1992;池际尚等,1996),具有复杂晶体形态的矿区通常是结晶条件复杂,物理化学条件或者流体供应变化比较大(伊 ПФ等,1989;陆太进等,2011; Kriulina et al,2011),金刚石/钻石在形成后受到过明显的塑性变形或强烈的溶蚀也可能造成金刚石/钻石晶形强烈的变形(例如,Udachnaya岩管和华北克拉通山东蒙阴金刚石/钻石矿区)(Chapman,1996;Lu et al,2001)。而立方体及其聚型最容易出现在高温高压合成金刚石/钻石中,天然金刚石/钻石中出现的比例往往较少,如果某些矿区大量出现这种形态的金刚石/钻石实际上也反映了该矿区金刚石/钻石的形成条件和其他矿区有明显的差异(Kaminsky et al,2009)。

金刚石/钻石表面色斑很多时候是金刚石/钻石周围环境中存在放射性物质形成的(马文运,1989;Harris,1992),多数经历过搬运和再沉积的砂矿金刚石/钻石表面往往存在绿色或者褐色的色斑(杨明星等,2002),但在某些原生矿的金刚石/钻石中也有色斑的存在(De Stefanol et al,2008,2009;Hunt et al,2008),因此,色斑是金刚石/钻石一种具有来源标型性的特征之一。根据不同金刚石/钻石矿区金刚石/钻石表面是否存在色斑可以将金刚石/钻石分为两大类,有色斑的和无色斑的,前者产地通常比较少见。

出现色斑的产地主要包括:北美克拉通加拿大Slave克拉通的Jericho矿区,该地绿色金刚石表面具有暗绿色圆形色斑;北美克拉通加拿大Superior省Renard矿区部分金刚石/钻石也具有绿色色斑;巴西Amazonian克拉通,Sao Francisco克拉通和Rio De La克拉通金刚石/钻石砂矿的金刚石/钻石大多具有色斑,并且绿色和棕色色斑出现的比例接近,例外的只有Juina地区Rio Soriso矿区;乌拉尔地区砂矿金刚石多数具有褐色或绿色的色斑;中非克拉通安哥拉Catoca field矿区的金刚石/钻石带特别的橙斑和黑斑,而津巴布韦克拉通的金刚石/钻石常具有特征的红色色斑;南澳克拉通新南威尔士金刚石/钻石砂矿金刚石/钻石30%有绿色和褐色的斑点,同样这种特征也出现在印尼加里曼丹和中国湖南沅水流域以及山东砂矿来源金刚石/钻石中。砂矿中不出现色斑的是巴西Juina地区Rio Soriso矿区的金刚石/钻石,它们很少见到有绿色和棕色色斑的出现。

欢迎分享,转载请注明来源:浪漫分享网

原文地址: https://hunlipic.com/liwu/8340983.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-09-16
下一篇 2023-09-16

发表评论

登录后才能评论

评论列表(0条)

保存