钻石矿源有什么特征

钻石矿源有什么特征,第1张

您好

自从钻石在印度被发现以来,我们不断听到人们在河边、河滩上捡到钻石的故事,这是由于位于河流上游某处含有钻石的原岩,被风化、破碎后,钻石随水流被带到下游地带,比重大的钻石被埋在沙砾中。钻石的原岩是什么?1870年人们在南非的一个农场的黄土中挖出了钻石,此后钻石的开掘由河床转移到黄土中,黄土下面就是坚硬的深蓝色岩石,它就是钻石原岩----金伯利岩(kimberlite)。什么是金伯利岩?金伯利岩是一种形成于地球深部、含有大量碳酸气等挥发性成份的偏碱性超基性火山岩,这种岩石中常常含有来自地球深部的橄榄岩、榴辉岩碎片,主要矿物成份包括橄榄石、金云母、碳酸盐、辉石、石榴石等。研究表明,金伯利岩浆形成于地球深部150公里以下。由于这种岩石首先在南非金伯利被发现,故以该地名来命名。

另一种含有钻石的原岩称钾镁煌斑岩(lamproite),它是一种过碱性镁质火山岩,主要由白榴石、火山玻璃形成,可含辉石、橄榄石等矿物,典型产地为澳大利亚西部阿盖尔(Argyle)。

科学家们经过对来自世界不同矿山钻石及其中原生包裹体矿物的研究发现,钻石的形成条件一般为压力在45-60Gpa(相当于150-200km的深度),温度为1100-1500摄氏度。虽然理论上说,钻石可形成于地球历史的各个时期/阶段,而目前所开采的矿山中,大部分钻石主要形成于33亿年前以及12-17亿年这两个时期。如南非的一些钻石年龄为45亿左右,表明这些钻石在地球诞生后不久便已开始在地球深部结晶,钻石是世界上最古老的宝石。钻石的形成需要一个漫长的历史过程,这从钻石主要出产于地球上古老的稳定大陆地区可以证实。另外,地外星体对地球的撞击,产生瞬间的高温、高压,也可形成钻石,如1988年前苏联科学院报道在陨石中发现了钻石,但这种作用形成的钻石并无经济价值。稀少的钻石主要出现于两类岩石中,一类是橄榄岩类,一类是榴辉岩类,但仅前者具有经济意义。含钻石的橄榄岩,目前为止发现有两种类型:金伯利岩(kimberlite)(名字源于南非得一地名----金伯利)和钾镁煌斑岩(lamproite),这两中岩石均是由火山爆发作用产生的,形成于地球深处的岩石由火山活动被带到地表或地球浅部,这种岩浆多以岩管状产出,因此俗称"管矿"(即原生矿)。含钻石的金伯利岩或钾镁煌斑岩出露在地表,经过风吹雨打等地球外营力作用而风化、破碎,在水流冲刷下,破碎的原岩连同钻是被带到河床,甚至海岸地带乘积下来,形成冲积砂矿床(或次生矿床)。

在全世界已被确认的 5000 多种矿物中,半数属于稀有矿物。而下面这6种矿物更是稀有,与它们相比,就连钻石和红

宝石

都只能算常见矿物。

1红钻

在钻石中,最稀有的就是红钻。红钻的成色原理既不是夹杂杂质,也不是被辐射照射,而是因为钻石晶格受到来自一个方向的高压,发生塑性变形,这导致钻石中某些层面反射红光。也有科学家认为红钻的成因可能是晶格中混入了氮原子。

红钻几乎只产于澳大利亚的一个矿坑,从1999年至今这座矿只出产了30颗红钻。

2蓝色黝帘石

一些珠宝公司在广告中宣称坦桑石的稀有度比钻石高上千倍。其实坦桑石只是商品名,它的真正名称叫黝帘石。黝帘石本身不是很稀有,但天然蓝色黝帘石真的十分罕见。蓝色来自于黝帘石中混入的杂质钒。

黝帘石只出产于坦桑尼亚马里兰尼矿山 8 平方千米的矿区,它们是在造山运动过程中形成的。珠宝店中的坦桑石几乎都是蓝色的,它们的蓝色来自于热处理工艺。

3海森石

目前人们只在美国加利福尼亚州莫诺湖中发现过海森石——一种呈放射状生长的罕见晶体。有科学家猜测,当湖水长时间干涸,浓度过高的磷会使微生物中毒。因此,湖水中的鞘丝藻用湖水中的氧、钾、钠和镁元素在体内合成海森石晶体,并排出体外。也有科学家猜测,海森石是鞘丝藻死亡后释放的化合物与湖水中元素发生化学反应后形成的。

海森石遇水融解,这也是它们非常罕见的原因之一。

4撒丁石

撒丁石是人类发现的第一种同时含有钼和钍的矿物(目前只发现两种),具有放射性。它得名于意大利撒丁岛,晶体呈白色菱形。

5布里奇曼石

布里奇曼石本身并不稀有,地幔38%的质量来自于这种镁铁硅酸盐。布里奇曼石罕见的原因在于它在常温常压下会转变成非晶质。要想得到布里奇曼石晶体,压强必须超过 120 万个标准大气压。

2014 年,科学家意外在一个陨石坑中发现了一个被其他矿物包裹起来的天然布里奇曼石晶体。

6芬格石

这是一种只生长于萨尔瓦多的伊萨克火山喷气孔中的含砷酸芬钒

铜矿

,它由火山喷气孔中的蒸汽凝华而成。要形成这种矿物,不但需要特定的化合物种类和比例,还需要特定温度。如果其中钒和铜的比例不对,就无法形成芬格石。芬格石遇水会融解,这导致其极为稀有。

20 世纪 80年代,科学家仅在伊萨克火山喷气孔中收集到了数微克芬格石。

钻石就是个骗局,虽然它比较稀少,且不会裸露在地表,但地球上的储量还算丰富, 价格之所以被炒上天,是因为垄断,而钻石的成分与人们日常生活中常见的煤炭、石墨等碳类物质极其相似,只要满足特定的条件,在特殊的环境里就可以人工制造出钻石。

钻石是如何形成的?

钻石是一种天然矿石,一般深埋地下,一些含有钻石的矿石在自然环境的侵袭下会还原成土壤,最终被水流冲积到有人类活动的地区(平原、丘陵缓坡地带),最终被人类发现,世界上第一颗钻石是印度人发现的。钻石一般不会单独存在,它存在伴生矿石,钻石的原石被称为“金伯利岩石”,这种岩石形成于地球深处,属于偏碱性超基性火山岩的一种,伴生矿石包括橄榄石、金云母、碳酸盐、辉石等。

钻石的形成,与它所处的位置和环境有关,钻石的形成环境压力必须达到4~6Gpa,温度在1000~1500℃之间,只要满足该条件,那么就有可能形成钻石。钻石的主要成分是“碳”,它是所有已知宝石中唯一由单一元素组成的轴晶系宝石,但大多数天然形成的钻石会略微带一些杂质,杂质越少,代表纯净度越高,价格越贵。

自己在家是否可以制作钻石?

答案是肯定的,只要满足特定的条件,就可以自己在家制作钻石,在前文中已经提到了,如果想要自制钻石,就必须要拥有碳物质,且制作环境要符合钻石生成的条件,比如高压、高温等。不过这种制造方式不适合在家中操作,虽然人造钻石技术已经成熟,但还无法像日用品一样量产,存在技术门槛,必须在实验室环境下才能制造或合成。

之所以这么肯定,就是因为钻石的化学成分比较单一,它不像其他宝石一样,其含有的化学成分比较复杂,正因为它是单一元素组成,这才可以想办法模拟出它形成的环境,而这意味着,只要拥有制造材料、满足生成条件,那么就可以制造出钻石。以石墨为例,石墨矿石并不稀有,它的主要成分就是碳元素,只要在特定的环境下经过高压、高温的作用,就可以让蜂窝状的(碳原子)结构变成立方体结构,也就是钻石,而石墨的成分与钻石是相同的(不算杂质)。

人工制造钻石到底靠不靠谱?

说到人工制造钻石,不得不提到中国,我国在“合成钻石”领域研究比较超前,“人工制造钻石”的技术早就已经成熟了,根据《全球钻石行业报告》显示,全球珠宝级“实验室培育钻石原石”产量约为600万~700万克拉,咱们中国的产量就达到了300万克拉,国内制造厂商早就可以批量生产3~6克拉的钻石毛胚,且标准达到4C及以上,颜色评级达到“D”(无色),净度达到VVS级(最高)。

如果将人工制造的钻石与天然钻石进行对比,质量相差并不大,反而是因为人工制造时使用了更加纯净的碳物质,制造、合成的钻石要比天然钻石看起来更好。

结束语:钻石之所以会卖那么贵,并不是因为它的稀有程度,只是因为全世界的钻石开采和销售都被垄断了,人们误以为它稀少而已,实际上它并不保值。

深层钻石矿石是以深板岩作为容矿岩的钻石矿石变种,于深板岩间代替钻石矿石生成。

钻石矿石是一种较为珍贵的矿石方块。

深层钻石矿石是Y轴为5及以下的钻石矿石变种,当游戏尝试在深板岩或凝灰岩间生成钻石矿石时便会生成深层钻石矿石。在Y轴为0及以下高度生成的化石遗迹中,深层钻石矿石会替换部分骨块和煤矿石。

深层钻石矿石可使用铁质或更好的镐来挖掘,正常情况下掉落1个钻石及3-7点经验。使用带有精准采集魔咒的镐挖掘会掉落其自身。使用带有时运魔咒的镐则每等级增加1个钻石掉落量上限。

8541 澳大利亚金刚石/钻石的颜色及类型

西澳大利亚阿盖尔金刚石中大约72%为棕色(亦称“香槟色”“干邑色”),其余大部分则是**到近无色和无色,不超过1%的金刚石是非常稀有的粉色、灰蓝色和绿色,特征见图831,图832和表88 (Shigley et al,2001)。目前,阿盖尔的棕色金刚石/钻石和粉色金刚石/钻石已经享誉全球。

表88 Argyle金刚石/钻石的颜色特征及类型 Table 88 Argyle diamond colors and diamond types

a 根据 Chapmen et al,1996 整理,数据有更新;b 同样发现比例 <1%的蓝色和绿色金刚石 / 钻石

西澳大利亚Ellendale具有商业价值的金刚石(>1mm)常呈**(图834),1mm以下的金刚石呈无色或浅褐色(Taylor et al,1990)。

南澳大利亚Springfield Basin砂矿和Eurelia原生矿的金刚石/钻石具有相似的颜色特征,据Tappert等(2009a)的统计结果,约40%为淡棕色,20%为深棕色,另外还有无色、**和灰色。两个产地金刚石/钻石的氮赋存状态相似,低氮者(<100×10-6)占绝大多数,包括了各种氮集合体状态(Tappert et al,2009a)。

新南威尔士冲积砂矿产出的A组金刚石/钻石包括了稻草黄至浅黄、白色和褐色,B组金刚石/钻石包括50%的褐色或白色(B1组)和50%的**(B2组)。A组金刚石/钻石可进一步划分,其中A1组占90%,N含量为(250~2500)×10-6,6%~42%为IaB型;A2组占10%,N含量为(140~900)×10-6,44%~95%为IaB型。B组金刚石/钻石中,B1组N含量小于400×10-6,不到12%为IaB型;N含量为(900~2800)×10-6,33%~65%为IaB型(Davies et al,2002;Taylor et al,1990;Davies et al,2003;Barron et al,2008)。

8542 澳大利亚金刚石/钻石的晶体形态、生长结构及微量元素

西澳大利亚阿盖尔金刚石/钻石很重要的一个特征,就是大部分金刚石/钻石都经历了晶格的变形。不规则形态者的比例小于60%,八面体双晶约占25%,晶体集合体约占10%,强烈熔蚀的十二面体及正八面体-十二面体约占5%,立方体少见。通常,金刚石/钻石的内部和表面常经过了蚀刻,有凹蚀管、六边形蚀坑,以及霜化的表面等特征(Chapman et al,1996)。阿盖尔金刚石常见条带状、交叉阴影线、榻榻米等异常消光式样(Shigley et al,2001)。粉钻常见不规则的内部断裂,互相平行或呈60°/120°交角;可见内部位错;阴极发光具同心圆或六边形的发光式样,证实了晶格缺陷的存在(Rolandi et al,2008)。

西澳大利亚艾伦代尔金刚石/钻石中,粒径在1mm以上者由于经历熔蚀作用而呈晶形圆化的十二面体,表面光滑,光泽较好;粒径在1mm以下者形态主要为平面的、有台阶状生长纹,外皮磨砂感强的八面体(Taylor et al,1990)。通常显示为八面体的内部生长习性,与低碳超饱和的生长条件一致;也有一些金刚石显示出复杂的生长区,指示有几个微生长中心(Smit et al,2010)。

阿盖尔金刚石和艾伦代尔4号岩筒、9号岩筒金刚石在微量元素上特征相似,都亏损Mn,Ni,Cr而富集Na,K,Ti,Zn,Cu,Ga,Rb,Sr。其中,绿辉石包裹体具有很高的K质量分数且高的K/Rb比值,可能指示了金刚石形成源区的地幔富集K和Rb(Griffin et al,1988)。

南澳大利亚Springfield Basin砂矿金刚石/钻石的晶体形态和表面特征与Eurelia原生矿金刚石/钻石相似。Tappert等(2009a,b)对122颗Springfield金刚石/钻石和43颗Eurelia金刚石/钻石进行统计,结果表明:八面体晶形的金刚石/钻石在两个产地中的比例相似,约为20%;十二面体晶形分别为23%和40%;不规则晶形(即金刚石/钻石只有不到一半的晶面发育)分别为36%和26%;假异极像晶形分别为21%和12%;Eurelia金刚石/钻石中还出现了立方体晶形(2%)。两个产地的金刚石/钻石都有双晶以及单晶组成集合体。金刚石/钻石表面纹理多出现在八面体或十二面体晶面上,包括较深的凹坑、蚀坑和较少见的微圆盘,变形壳层只出现于十二面体晶面上。不过由于样本容量较小,上述归纳不能完全代表这两个产地的金刚石/钻石形态特征(Tappert et al,2009a,b)。

新南威尔士冲积砂矿产出的金刚石/钻石经历了强烈的熔蚀,只保留了原重量的50%或更少的比例,呈圆化的十二面体形态。A组金刚石/钻石常见四六面体、十二面体,其中35%为双晶,而极少碎片状;B组金刚石/钻石常见扁平状、拉长状或不规则的十二面体,少见双晶,有15%的金刚石/钻石为碎片状。A组和B组金刚石/钻石的表面磨蚀及放射性破坏的程度有差异:A组金刚石/钻石具浅浮雕似的表面,有扇形条纹、楔形微坑、微形盘刻纹;40%的A组金刚石/钻石有滑动平面,粒状表皮上有碰击痕和细微冻裂,30%有绿色和褐色的斑点。B组金刚石/钻石具浅浮雕似的光亮表面,有半球形凹坑、环形坑;95%的B组金刚石/钻石有脆性形变纹,表面有变形小丘和细小新冻裂,少见绿色和褐色的斑点。

新南威尔士冲积砂矿产出的A组金刚石包括了稻草**至浅**、白色和褐色,B组金刚石包括50%的褐色或白色(B1组)和50%的**(B2组)。A组金刚石可进一步划分,其中A1组的占90%,N的质量分数为 0025%~025%,其中6%~42%为IaB型;A2组的占10%,N的质量分数为 0014%~009%,其中44%~95%为IaB型。B组金刚石中,B1组中N的质量分数小于 004%,不到12%为IaB型;B2组中N的质量分数为009~028%,其33%~65%为IaB型(Davies et al,2002;Taylor et al,1990;Davies et al,2003;Barron et al,2008)。

从生长结构上看,A组金刚石中,75%的为十二面体(包括25%的多元生长),20%的生长结构均匀,5%的呈区块状;B组金刚石中,50%的为不规则脆性形变(B1),50%的生长结构均匀 (B2)(Davies et al,2002)。此外,B组金刚石的矿物包裹体成分特别:石榴石富Ca,单斜辉石亏K,Na,一些透辉石富Ni,Cr,橄榄石含较少的镁橄榄石、Ni和Cr(Davies et al,2003)。

8543 澳大利亚金刚石/钻石的包裹体特征

西澳大利亚Argyle金刚石/钻石的包裹体,包括75%的榴辉岩型包裹体,10%的橄榄岩型包裹体,以及10%不能确定的硫化物。其中,榴辉岩型的原生/同生包裹体包括橙色的石榴子石(57%),石榴子石与单斜辉石(16%),绿辉石(6%),蓝晶石(3%),金红石(2%),柯石英(1%),混合物如金红石-石榴子石,石榴子石-硫化物,石榴子石-单斜辉石-硫化物,石榴子石-蓝晶石,蓝晶石-硫化物(15%)。橄榄岩型的原生/同生包裹体包括橄榄石(45%)、镁铝榴石(9%)、顽火辉石(9%),混合物如橄榄石–透辉石,橄榄石-石榴子石,橄榄石-石榴子石-顽火辉石,顽火辉石-石榴子石(37%)。后生包裹体石墨沿解理和裂隙分布,是Argyle金刚石/钻石最常见的内含物(Chapman,et al,1996;Jaques et al,1989;Griffin et al,1988)。Argyle金刚石/钻石的晶体形态和矿物包裹体类型之间有一定联系,榴辉岩型金刚石/钻石的外皮磨砂感强,有明显的凹蚀管,表面见六边形的蚀坑,而橄榄岩型金刚石/钻石的熔蚀和变形特征不明显(Jaques et al,1989;Taylor et al,1990)。

西澳大利亚Ellendale金刚石/钻石的内含物有榴辉岩型和橄榄岩型两种共生序列。其中榴辉岩型内含物包括石榴子石、绿辉石、柯石英和金红石。而橄榄岩型内含物包括橄榄石、顽火辉石、铬透辉石以及少量的铬镁铝榴石和硫化物(Griffin et al,1988)。Ellendale4号和9号岩筒产出的金刚石/钻石中,橄榄岩型与榴辉岩型的内含物约占相等的比例(Jaques et al,1989)。

南澳大利亚Springfield basin砂矿金刚石/钻石和Eurelia原生矿金刚石/钻石中最常见的包裹体为石墨,常沿裂隙呈絮状分布。Eurelia原生矿金刚石/钻石的一个重要特征就是包裹体组合中含低铁方镁石,指示这类金刚石/钻石是超深部、次岩石圈来源(Scott-Smith et al,1984;Tappert et al,2009a)。Springfield Basin砂矿金刚石/钻石中也有含低铁方镁石的包裹体组合,两个产地的金刚石/钻石成因来源相似(Tappert et al,2009b)。

图836 金刚石/钻石中柯石英包裹体及其Raman散乱光谱

(据 Barron et al,2011)

Figure 836 Coesite inclusion in diamond and its Raman spectra

(Barron et al,2011)

新南威尔士冲积砂矿产出的A组金刚石/钻石主要含橄榄岩型包裹体,橄榄石最常见(具方辉橄榄岩的特征),其次为镍黄铁矿、铬铁矿和自然铁;也有极少数榴辉岩型的石榴子石和辉石类包裹体出现(Davies et al,1999)。B组金刚石/钻石中最多的为透辉石包裹体,其次有绿辉石、单斜辉石、SiO2、钙铝榴石、橄榄石、辉钼矿和榍石,同时还发现了黄长石和自然铜,但不确定是否为同生。除了出现橄榄石这一例外特征,B组金刚石/钻石应归类为榴辉岩型。因为尽管石榴子石、透辉石和单斜辉石的组成很独特,但是它们与金刚石/钻石中的其他榴辉岩型包裹体具有成分上的连续性,表明金刚石/钻石可能是在消减环境中生长的(Davies et al,2002)。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/8642429.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-23
下一篇2023-09-23

发表评论

登录后才能评论

评论列表(0条)

    保存