钻石的基本性质有哪些?为什么切工对钻石的品质有很重要的影响?

钻石的基本性质有哪些?为什么切工对钻石的品质有很重要的影响?,第1张

钻石基本性质:

1、摩氏硬度为10,为自然界现今已知硬度最高的物质;

2、导热性好;

3、斥油亲水;

4、折射率高。

切工对钻石的品质有很重要的影响,切工是“4C”中是唯一可人为影响到的。只有比例合理、相同切面完全一致的钻石,光线折射后较为集中,可呈现出绚丽火彩,可完美体现钻石自然之美。而切工较差的钻石,光线折射后发散,使钻石显得暗淡无光。因此切工对钻石 品质影响有重要的因素,国际惯例,切工最高可影响到钻石价格的40%

颜慰萱 陈美华

作者简介:颜慰萱,中宝协第三届人工宝石专业委员会高级顾问,原中国地质大学(武汉)珠宝学院院长、教授。

陈美华,中宝协第三届人工宝石专业委员会委员,中国地质大学(武汉)珠宝学院教授。

化学气相沉淀法合成钻石有几种方法,如热丝法、火焰法、等离子体喷射法和微波等离子体法等,但最常用的方法是微波等离子体法。这是高温(800~1000℃)低压(104Pa)条件下的合成方法。用泵将含碳气体——甲烷(CH4)和氢气通过一管子输送到抽真空的反应舱内,靠微波将气体加热,同时也将舱内的一个基片加热。微波产生等离子体,碳从气体化合物的状态分解成单独游离的原子状态,经过扩散和对流,最后以钻石形式沉淀在加热的基片上。氢原子对抑制石墨的形成有重要作用(图1,图2)。

所谓等离子体简单说就是气体在电场作用下电离成正离子及负离子,通常成对出现,保持电中性。这种状态被称为除气、液、固态外物质的第四态。如CH化合物电离成C和H等离子体。

图1 微波等离子体法合成CVD钻石

(据Martineau等,2004)

图2 等离子体及碳结晶示意图

当基片是硅或金属材料而不是钻石时,因钻石晶粒取向各异,所产生的钻石薄膜是多晶质的;若基片是钻石单晶体,就能以它为基础以同一结晶方向生长出单晶体钻石。基片起到了籽晶的作用。用作基片的钻石既可以是天然钻石,也可以是高压高温合成的钻石或CVD合成钻石。基片切成薄板状,其顶、底面大致平行于钻石的立方体面({100}面)。

一、化学气相沉淀法合成钻石的研发史和现状

1952年美国联邦碳化硅公司的William Ever-sole在低压条件下用含碳气体成功地同相外延生长出钻石。这比瑞士 ASEA公司1953年和美国通用电气公司(GE)1954年宣布用高压高温法合成出钻石的时间还要早,因而Eversole被视为合成钻石第一人。但当时CVD法生长钻石的速度很慢,很少有人相信其速度能提升到可供商业性生长。

从1956年开始苏联科学家通过研究显著提高了CVD合成钻石的速度,当时是在非钻石的基片上生长钻石薄膜。20世纪80年代初这项合成技术在日本取得重大突破。1982年日本国家无机材料研究所(NIRIM)的Matsumoto等宣布,钻石的生长速度已超过1μm/h。这在全球范围内引发了将这项技术用于多种工业目的的兴趣。

20世纪80年代末,戴比尔斯公司的工业钻石部(现在的Element Six公司)开始从事CVD法合成钻石的研究,并迅速在这个领域取得领先地位,提供了许多CVD合成多晶质钻石工业产品。

这项技术也在珠宝业得到应用,那就是把多晶质钻石膜(DF)和似钻碳体(DLC)作为涂层(镀膜)用于某些天然宝石也包括钻石的优化处理。

尽管当时CVD合成钻石的生长速度有了很大提高,使得有可能生长出用于某些工业目的和宝石镀膜的较薄的钻石层,但要生产可供切磨刻面的首饰用材料,因需要厚度较大的单晶体钻石,仍无法实现。一颗 05克拉圆钻的深度在3mm以上,若以0001mm/h速度计算,所需的钻坯至少要生长18周。可见,低速度依然是妨碍CVD法合成厚单晶钻石的主要因素。

20世纪90年代,CVD合成单晶体钻石的研发取得显著进展。先是1990年荷兰 Nijmegen大学的研究人员用火焰和热丝法生长出了厚达05mm的CVD单晶体。后在美国,Crystallume公司在1993年也报道用微波CVD法生长出了相似厚度的单晶体钻石;Badzian等于1993年报道生长出了厚度为12mm的单晶体钻石。DTC和Element Six公司生产出了大量用于研究目的的单晶体钻石,除掺氮的褐色钻石和纯净的无色钻石外,还有掺硼的蓝色钻石和合成后再经高压高温处理的钻石。

进入21世纪,首饰用CVD合成单晶体钻石的研发有了突破性进展。

美国阿波罗钻石公司(Apollo Diamond Inc)多年从事CVD合成单晶钻石的研发。2003年秋,开始了首饰用CVD合成单晶钻石的商业性生产,主要是Ⅱa型褐色到近无色的钻石单晶体,重量达1克拉或更大些。同时,开始实验性生产Ⅱa型无色钻石和Ⅱb型蓝色钻石。阿波罗钻石公司预计其成品刻面钻石在2005年的总产量为5000~10000克拉,大多数是025~033克拉的钻石,但也可生产1克拉的钻(图3,图4)。

图3 无色—褐色CVD钻石

(据Martineau等,2004)

图4 CVD钻石的设备及合成工艺

(据DTC,2005)

2005年5月在日本召开的钻石国际会议上,美国的Yan和Hemley(卡内基实验室)等披露,由于技术方法的改进,他们已能高速度(100μm/h)生长出5~10克拉的单晶体,这个速度约5倍于用高压高温方法和其他CVD方法商业性生产的钻石。他们还预言能够实现英寸级(约300克拉)无色单晶体钻石的生长。

由此可见,首饰用CVD合成钻石的前景是十分喜人的,它对于钻石业的影响也是不可低估的。

二、化学气相沉淀法合成单晶钻石的特征和鉴别

近年来一些研究和鉴定机构一直致力于研究合成单晶钻石的特征和鉴别。我们在这里所要介绍的资料来自于美国宝石学院《Gems&Gemology》杂志上的3篇论文。

1)Wuyi Wang等(2003)对阿波罗钻石公司此前生产的13粒样品的性质和鉴定特征进行了总结。

2)Martineau等(2004),综述了对 DTC和Element Six公司近15年来生产的上千颗实验样品(包括合成后切磨成刻面的样品)的研究结果。样品中除有与阿波罗钻石公司相同的含氮的褐色钻石和纯净的近无色钻石外,还有掺硼的蓝色钻石和合成后再经高压高温处理的钻石。

3)Wuyi Wang等(2005),对法国巴黎第13大学 LIMHP-CNRS实验室生长的6颗实验样品的性质和鉴定特征进行了总结,其中3颗是掺氮的,另外3颗则是在尽量减少杂质含量的条件下生长的高纯度钻石。

上述论文中所涉及的样品都是用化学气相沉淀法中的微波法生长的,因而论文所总结出的特征和鉴别方法有许多共同点,但由于合成技术方法(包括实验目的和条件,掺杂类型和浓度以及基片类型等)的差别,它们的特征也存在某些差别。

1晶体

因为是以天然钻石、高压高温合成钻石或CVD合成钻石切成平行{100}晶面(立方体面)或与{100}交角很小的薄片作为基片,故CVD法生长出的单晶体大都呈板状,有大致呈{100}方向的大的顶面,偶尔可在边部见到小的八面体面{111}和十二面体面{110}。八面体面{111}和十二面体面{110}分布的部位通常含较多的包裹体,是生长质量较差也不易抛光的部位(图5,图6)。

图5 天然钻石、HTHP合成钻石和CVD合成钻石晶体形态

图6 天然钻石和CVD合成钻石的形态差异

用差示干涉差显微镜或宝石显微镜放大观察掺氮钻石的生长表面,可观察到“生长阶梯”,它由“生长台阶”和将它们分隔开的倾斜的“立板”构成(图7,图8)。

图7 CVD钻石在{100}面上看到的表面生长特征(据 Wuyi Wang等,2005)

图8 掺氮钻石表面的“生长阶梯”现象

(据 Martineau等,2004)

2钻石类型和颜色

Martineau等(2004)把DTC和Element Six公司迄今的实验样品归纳为4类。

(1)掺氮的CVD合成钻石

因为合成过程中难免会有少量空气进入反应舱,而空气中含氮,添加的原料气体中也会有杂质氮,故要完全排除合成钻石中的氮是困难的。含氮少时属于Ⅱa型,含氮多时属于Ⅰ b型。除少数为近无色外,绝大多数带褐色调(法国巴黎第13大学的样品有带灰色调的),这明显不同于带**调的天然的和高压高温合成的钻石。阿波罗钻石公司现有产品大都属于这一类,多数为Ⅱa型,少数为I b型。已有的实验表明,氮有助于明显提高合成钻石的生长速度,因而有时可人为地有控制地掺氮(图9)。

(2)高压高温处理的掺氮的CVD合成钻石

实验表明,高压高温热处理可以减弱掺氮CVD合成钻石的褐色调。由于掺氮CVD合成钻石的褐色调是与N-V(氮-空穴)心等因素有关而与塑性变形无关,故高压高温减色也是与改造 N-V(氮-空穴)心等有关,而与修复塑性变形无关。

(3)掺硼的CVD合成钻石

合成过程中在原料气体中加入 B2H6,所得到的合成钻石将含少量的硼,属于Ⅱb型,其颜色为浅蓝至深蓝色(图10)。

(4)除氢外无其他杂质的高纯度CVD合成钻石

属于近无色到无色的Ⅱa型钻石。由于氢是原料气体的组成部分,有杂质氢是不可避免的,因而关键是严格控制氮和硼,这有相当难度,而且生长速度比掺氮的要慢许多(图11)。

图9 掺氮褐色CVD钻石

图10 掺硼蓝色CVD钻石

(图9~11据 Martineau等,2004)

图11 高纯度CVD钻石

3颜色分带

在垂直晶体生长方向(即平行于{100}面的方向)进行放大观察,在Element Six公司的实验样品中可看到颜色的成层分布。在掺氮的褐色钻石中可见褐色的条带,而在掺硼的蓝色钻石中可见蓝色的条带(图12)。

在阿波罗钻石公司的产品中也见到有褐色的条带。

图12 阿波罗钻石公司的产品中的褐色条带

(据Wuyi Wang等,2003)

4包裹体

较少含包裹体,不是在所有样品中都能观察到。主要是一些针点状包裹体,还有一些小的黑色不规则状颗粒,叫非钻石碳(图13)。因这些在天然的和高压高温合成的钻石中也能见到,故鉴定意义不大。但微波CVD合成钻石中不会有高压高温合成钻石中常见的金属包裹体,也不会有磁性。

阿波罗钻石样品中的几颗掺氮成品钻石的净度级别为VS1到SI2。

图13 针点状包裹体(左)和非钻石碳包裹体(右)

(据Wuyi Wang等,2003)

5异常双折射(图14,图15)

图14 CVD钻石异常消光(左)和天然钻石异常消光(右)

(据Wuyi Wang等,2003)

图15 平行生长方向观察(上)和垂直方向观察(下)

(据 Martineau等,2004)

在正交偏光显微镜下垂直立方体面观察,通常可见到由残余内应变而导致的格状的异常双折射,显示低干涉色,但围绕一些缺陷可见到高干涉色。整体上其异常双折射弱于天然钻石,但在边部八面体面{111}和十二面体面{110}分布部位有较强的异常双折射和较高的干涉色。

6紫外荧光

阿波罗公司的13颗样品,在LW UV下有8颗呈惰性,其余的呈微弱的橙、橙黄或**;在SW LV下除1颗样品外都显示从微弱到中等的橙到橙**。未见有磷光。

法国巴黎第13大学的样品,包括掺氮的和高纯度的,除1颗是连同基片的未确定外,其余在LW UV和SW UV下均呈惰性。

Element Six的14颗掺氮刻面钻石在LW UV和SW UV下均呈弱橙色到橙色。8颗刻面的高纯度CVD合成钻石在LW UV和SW UV下均呈惰性。5颗刻面的掺硼钻石在LM UV下均呈惰性,在SW UV下均呈绿蓝色并有蓝色磷光。

综上所述,除掺硼钻石外大多数CVD合成钻石在 LW UV和SW UV下的反应变化很大,可呈惰性到橙色,很难作为鉴定依据。

7用 DiamondView(钻石观测仪)观察到的发光现象

用戴比尔斯的DiamondView观察CVD合成钻石在短波紫外光下的发光特点,发现掺氮钻石呈现强橙到橙红色的荧光(图16,图17,图18),这与N-V心有关。经高压高温处理的掺氮钻石主要呈绿色。高纯度的CVD合成钻石在 DiamondView下不显橙色荧光,但有些样品有微弱的蓝色发光,这与晶格中的位错有关。这种蓝色发光也会出现在掺氮钻石的四个角。CVD合成掺硼钻石呈亮蓝色荧光,一些部分为绿蓝色(图19),有磷光效应,可延续几秒到几十秒钟。CVD钻石在Diamond-View下不显示天然钻石的八面体发光样式和高压高温合成钻石的立方-八面体发光样式。有趣的是,当CVD钻石是在高压高温合成钻石的基片上生长,而基片又未去掉时,可看到高压高温合成钻石的立方-八面体发光样式(图20)。

图16 DiamondView观察CVD钻石的发光现象

(据Martineau等,2004)

图17 DiamondView观察阿波罗钻石的发光现象

(据Wuyi Wang等,2003)

CVD掺氮钻石在垂直{100}的切面上可看到密集的斜的条纹(条纹间距相当稳定,不同样品中从0001mm到 02mm不等)。这是CVD合成掺氮钻石一个重要的鉴别特征。天然Ⅱa型钻石虽偶尔也有橙色发光,但没有这种条纹。掺氮钻石经高压高温处理后的发光变为绿色到蓝绿色,但密集的条纹依然可见(图21)。

图18 在高压高温合成钻石基片上生长的CVD钻石,在DiamondView下与基片呈不同颜色

(据Wuyi Wang等,2003)

图19 CVD合成掺硼钻石的荧光

(据Wuyi Wang等,2003)

图20 CVD掺氮(左)和CVD高纯度钻石(右)荧光

(据Wuyi Wang等,2005)

图21 未处理及高温高压处理后荧光对比

(据 Martineau等,2004)

CVD掺硼钻石在DiamondView下同样显示条纹或是凹坑或两者都有,这一特征未见于天然Ⅱb型蓝色钻石(图22)。

图22 CVD掺硼钻石的条纹和凹坑

(据Martineau等,2004)

8阴极发光图像

同上述DiamondView发光特征。

9光致发光光谱和阴极发光光谱(图23,图24)

在拉曼光谱仪上分别使用325nm(HeCd,氦镉)、488nm(氩离子)、514nm(氩离子)、633nm(HeNe,氦氖)和785nm(近红外二极管)激光束照射Element Six公司的各种样品并研究其发光光谱,以及用阴极射线照射 Element Six公司的各种样品并研究其发光光谱,Martineau等(2004)得出了表1结果。

表1 各种钻石的发光光谱特征

Martineau等同意Zaitsev(2001)的意见,认为467nm和533nm只出现在CVD合成钻石中,但指出高压高温处理后将不复存在;也同意Wuyi Wang等(2003)的意见,认为596nm和597nm对于CVD掺氮钻石有鉴定意义,但指出并非所有样品都有596/597峰。

10紫外-可见光-近红外吸收谱和红外吸收谱(图25,图26,图27)

图23 用514氩离子激光束辐照掺氮CVD钻石产生的发光光谱

(据Martineau等,2004)

图24 用325nm氦镉激光束辐照含氮CVD钻石(A)和同一样品经高压高温(B)产生的发光光谱

(据Martineau等,2004)

图25 掺氮CVD钻石(A)和同一钻石经高压高温处理后(B)的紫外-可见光吸收谱

(据Martineau等,2004)

用几种类型的光谱仪研究Element Six公司各种类型的CVD合成钻石后,Martineau等(2004)得出了表2结果。

表2 各种钻石的光谱特征

Martineau等(2004)认为,紫外-可见光-近红外光谱中的365nm、520nm、596 nm和625nm吸收对于CVD合成掺氮钻石是特征的,在高压高温处理的掺氮钻石中已不见,也未见于天然钻石和高压高温合成钻石中。

图26 阿波罗公司掺氮CVD钻石的红外光谱

(据Wuyi Wang等,2003)

Martineau等(2004)还同意 Wuyi Wang等(2003)的意见,认为红外光谱中与氢有关的8753cm-1,7354 cm-1,6856 cm-1,6425 cm-1,5564 cm-1,3323 cm-1和3123 cm-1对于CVD合成掺氮钻石是特征的,在高压高温处理的掺氮钻石中已不见,也未见于天然钻石和高压高温合成钻石中。3107cm-1吸收出现在高压高温处理后,也见于某些天然钻石。

图27 阿波罗掺氮CVD钻石的红外吸收谱

(据Wuyi Wang,2005)

11X射线形貌分析

在平行于生长方向的切面上进行的X射线形貌分析显示出明显的柱状结构,而在垂直生长方向的切面上看到的是许多暗色斑点或呈模糊的格子状。分析认为这种柱状结构是钻石晶体生长过程中一些位错从基片分界面或靠近分界面处出现并开始向上延伸的结果。

三、结束语

对于现今少量进入市场的成品掺氮钻石,略带褐色调、成品厚度较薄以及异常消光特点等能为鉴别提供一些线索,但最终的鉴别需要依靠大型实验室的DiamondView和阴极发光图像分析和谱学资料,包括发光光谱和吸收光谱资料。由于CVD合成单晶体钻石工艺的不断完善,特别是高纯度CVD钻石的出现及对掺氮CVD钻石的高压高温热处理,使现今能有效鉴别掺氮CVD钻石的发光图像特征和谱学特征也不再有效,这就进一步增加了鉴别的难度。但我们相信宝石学界一定会不断分析总结新出现的情况,找到鉴别的办法。

主要参考文献

Philip MMartineau,Simon CLawson,Andy JTay-lor2004Identification of synthetic diamond grown using chemical vapor deposition(CVD)Gems&Gemology,40(1):2~25

Wuyi Wang,Thomas Moses,Robert CLinares2003Gem-quality synthetic diamonds grown by a chemical vapor deposition(CVD)methodGems&Gemolo-gy,39(4):206~283

Wuyi Wang,Alexandre Tallaire,Matthew SHall2005Experimental CVD synthetic diamonds from LIMHP-CNRS,FranceGems&Gemology,41(3):234~244

棕色钻石自古以来都有出产,但并不被人们所喜爱。过去多数的棕色钻石都被用作工业用途。20世纪80年代,澳大利亚的阿盖尔矿大量产出棕色钻石。澳大利亚向全世界极力推销棕色钻石,利用各种方法来促销,大力提高其接受程度。现在棕色钻石都以法国葡萄酒来命名,冠以浅棕色钻石为香槟钻石,冠以深棕色钻石为考涅克(Cognic,干邑白兰地)钻石。在香槟钻石首饰设计比赛和诱人的颜色级别的促销下,现在棕色钻石已成为流行时尚,主要用于中价位的钻石珠宝首饰。图3-13为北极光钻石集中的一颗天然棕色钻石。

棕色钻石的颜色主要是由晶体的塑性变形所产生的。塑性变形的程度越高,其棕色就越深。在显微镜F观察,其晶体的塑性变形呈棕色带状分布。这里所述的塑性变形实际包括真正意义上的塑性变形和不可恢复的永久变形。塑性变形在高温高压下会恢复到固有的立方晶格结构,由塑性变形所产生的棕色也会随之消失;永久变形经高温高压处理也不会恢复到固有的立方晶格结构,由其所产生的棕色也不会消失。

图3-13 北极光彩色钻石集中的一颗棕色钻石(Tino Hammid/Courtesy of Aurora Gem Collection)

第236 号,重164ct

钻石的塑性变形在可见光波长范围的中部产生一个中心位于 550nm的宽吸收峰。这一吸收峰使钻石呈现紫红色调的颜色。这一宽吸收峰的相对强度较低,而且总是伴随较强的无选择性吸收,使颜色为棕色,而不是高饱和度的紫红色。

因为棕色钻石的颜色是由钻石晶体的塑性变形所产生,只要消除钻石晶体内部的应力就可以消除晶格的塑性变形,以改善棕色钻石颜色。很多Ⅱa型棕色钻石只有塑性变形,不具有其他任何与氮有关的色心和能带。这种Ⅱa型棕色钻石经过高温高压处理后,可以消除塑性变形,使棕色钻石的颜色大为改观,甚至变成完全无色的钻石,其颜色能够最高达到 D 级。现在美国的通用电气公司和世界上其他几家公司从事棕色钻石的高温高压改色业务。国际钻石珠宝市场上很容易购买到经高温高压处理的无色钻石。

经高温高压处理的无色钻石与天然无色钻石外观相差无几,很难用肉眼或宝石学仪器鉴定出来。但经高温高压处理的无色钻石的类型是Ⅱa,因此可以借助红外光谱测量或紫外光谱测量加以鉴定。经高温高压处理的无色钻石的红外光谱没有天然无色Ⅰa和Ⅰb型钻石的红外吸收峰。另外,经高温高压处理的Ⅰb型无色钻石的紫外截止波长在220nm,而天然Ⅰa型和Ⅰb型无色钻石的紫外截止波长在330nm,因此,使用紫外分光光度仪测量钻石的紫外截止波长也可以准确鉴定经高温高压处理的无色钻石。

根据法律规定,经高温高压处理的无色钻石在出售时必须向顾客说明不可隐瞒经高温高压处理的事实。美国通用电气公司在经高温高压处理的无色钻石的腰围上用激光刻有经高温高压处理的标记“GE POL”,其中“GE”为通用电器公司(General Electric)的缩写,“POL”为派加索斯海外公司(Pegasus Overseas Ltd)的缩写,派加索斯海外公司是美国通用电器公司销售高温高压处理钻石的伙伴公司。GE POL激光标记可以供钻石交易时的鉴别。虽然高温高压处理钻石的颜色是永久性的,但磨去高温高压处理的标记是违法行为。

已知最大的香槟钻石为“金巨人”(Golden Giant),重达40743ct;最大的考涅克钻石为11159ct的“地球之星”(Earth Star)。

天然颜色天然彩色钻石十分稀少,价格昂贵,绝大多数人只能望洋兴叹。许多彩色钻石的饱和度较低或色调不尽理想,不被彩色钻石顾客所青睐。通过对天然钻石的人工改色,可以将某些钻石改变成彩色钻石,例如利用放射性辐射将**钻石改变成诱人的绿色钻石;也可以提高彩色钻石的饱和度,例如将淡绿色钻石颜色经辐射处理后变成高饱和度的彩绿色,甚至为艳绿色。尽管经改色处理的彩色钻石的颜色十分诱人,但一般情况下,经改色处理的天然钻石的价格是同样颜色的天然颜色天然钻石价格的几分之一到几十分之一。

天然钻石人工改色处理的另外一项广泛的应用是将棕色天然钻石经过高温高压处理变成无色钻石。这种钻石并不难鉴别,只要对Ⅱb型无色钻石稍加进一步的测试和观察即可获得结论。但对一般钻石顾客来说分辨经高温高压处理的天然无色钻石并不容易,好在高温高压处理厂商在钻石的腰围处用激光刻有标记,在10倍放大镜下即可清楚地看到。

高秀清 陈炳贤 董鹤琴

第一作者简介:高秀清,中宝协第三届人工宝石专业委员会副主任委员,原中国原子能研究院高级工程师。

一、引言

随着科学技术的发展,社会财富的积累,人们对珠宝饰品的需求量越来越大。然而,自然产出的矿产资源是有限的,由于长期大量开采,天然宝石资源日益减少,其中色彩、质地、光泽皆佳的高品位的宝石更加稀缺。为满足市场的需求,人们进行了宝石品位的改善研究,采用各种优化处理工艺对颜色不佳,透明度差等影响外观美的各种有缺陷的宝石进行人工技术处理,使其颜色、透明度和净度等外观特征得到改善,将天然宝石自身的潜在美质充分展现出来,从而提高它的美学价值和商业价值。同时,使宝石的自然资源得到充分利用。

世界上宝石优化处理技术发展很快,许多国家和部门设立了专门的研究机构,并拥有一批专家队伍和先进的技术设备,专门从事天然宝石的优化处理技术研究和商业化生产。而我们国家在这方面还需要大力加强。

二、宝石优化处理技术分类

宝石优化处理技术的采用,要根据宝石的特性和我们欲求的目标而定,如对颜色的改善可采用热处理,也可采用辐照和热处理相结合的多道工艺过程来实现。宝石优化处理技术大致分为五类。

1热处理技术

热处理技术是应用最早的,最古老的,也是应用面最宽的技术。热处理技术需要多种工艺条件相配合,如①温度,由低到高,从 150~2000℃不同温度段的选择;②升降温速率,温度梯度的选择,最高温度及恒温时间等选择;③炉内气氛,氧化或还原气氛,或惰性气体保护等;④真空,真空度控制等,市场上出售的红、蓝宝石,海蓝宝石和蓝色坦桑石等都经过热处理;⑤通气加压。

2辐照-热处理技术

辐照是使高能粒子进入宝石晶体内,通过能量交换,晶体内产生大量的点阵缺陷和离位原子缺陷,形成色心。色心的能量有高有低,形成不同颜色的混合,这使颜色很难看。但低能量色心不稳定,故再进行热处理,可破坏低能量色心,即清除杂色,使漂亮的颜色固定下来,这就是采用辐照着色,热处理固色的技术。此方法不改变宝石自身的物理化学性质,只在外观上使颜色变得鲜艳,透明度有一定的提高。按照我国国家标准,此方法属于优化处理中的“处理”范畴。

目前,国际市场上很多天然宝石是经过人工处理的,并已得到业界的认同和消费者的欢迎。

本着充分利用天然宝石资源和提高宝石价值的宗旨,我们开展了宝石优化处理技术的研究工作,主要是热处理和用辐照处理的方法对宝石晶体进行优化处理。不同品种的宝石,以及不同目标的实现,要采用不同的工艺条件。采用此种技术优化处理效果最好的是托帕石(topaz)、水晶、金绿宝石、金刚石、碧玺等。关于辐照技术及主要设备在后面做重点介绍。

3化学处理技术

通过化学反应,化学扩散和化学沉淀方法,把致色元素渗入到晶体中,或把着色剂沉淀于裂隙或孔道中,使其外观颜色得到改善。

4高温高压法钻石漂白技术

采用高温高压专用设备将淡褐色钻石处理成白色,有的可达到D色美钻。

5钻石高温高压改色技术

将淡褐色钻石处理成**、黄绿、蓝绿、蓝色和粉红色等色泽艳丽的彩钻。

三、人工辐照改色方法与主要设备

宝石辐照的辐射源种类很多,按其射线种类可分为:①γ射线辐照,主要采用60Co辐射源;②高能带电粒子辐照,主要采用加速器,如直线加速器,回旋加速器;③快中子辐照,用核反应堆的专门辐照装置进行辐照处理。

1)γ射线辐照:处理宝石后着色力弱,不能使金刚石着色,对于黄玉处理,只能达到天空蓝色,其优点是不诱发放射活性。

2)高能带电粒子辐照:用加速器产生的高能带电粒子(如高能电子、质子等)对宝石优化处理。一般情况下,带电粒子的能量越高改色效果越好;如果能量能够达到20MeV以上,作为辐射源比较好,其好处是残余放射活性比较低。但由于束流比较窄,因此辐照时间长,辐照费用高。以黄玉为例,经过高能电子辐照处理后,一般能达到浅蓝色。

3)快中子辐照:反应堆产生的快中子对宝石进行辐照改善时,由于快中子(E≥1MeV)的能量高,穿透力强,它轰击宝石晶体时能造成晶格损伤,产生大量的点缺陷,出现空位和离位原子,形成新的色心,出现颜色的变化,因此,改善的效果比较理想。但是,反应堆中的热中子同时轰击宝石晶体,宝石中的微量杂质元素会产生(n,γ)核反应,从而被“活化”生成不同半衰期的人工放射性核素。用堆中子辐射处理宝石时,其改善效果比较好,但热中子也诱发一定量的残余放射活性。为减少宝石中的杂质元素的活化作用,因此,要采取特殊的热中子屏蔽装置,以尽可能降低辐射后宝石晶体的放射活性。这方法我们已研究成功,并被成功地应用于黄玉的辐照改善,其改色效果非常理想。

四、辐照后的热处理

以黄玉辐照处理为例:辐照后黄玉晶体的颜色并非是单一的,可以观察到多种颜色,如灰蓝、蓝绿、浅棕、深棕、浅褐、深褐等色,偶尔出现过紫红色和橘**。热处理的目的,就是要消除杂色,使所需要的颜色充分地显现出来,并且使其颜色稳定,称为“固色”处理。

黄玉辐照与热处理过程产生的颜色变化如图1。

图1 黄玉经辐照与热处理的颜色变化示意图

热处理的温度和保温时间是十分重要的,热处理条件恰当,处理后的晶体显现出艳丽的色彩,迷人的光泽,晶莹剔透,十分诱人。热处理条件不适宜,蓝色中含有黑灰色,显得浓重而且沉闷。

本工作采用综合处理技术,处理过的黄玉、水晶、绿柱石等都得到明显的改善效果,尤其是黄玉处理后,色彩鲜艳,刻磨后折光效果好,有“天空蓝”、“瑞士蓝”和“伦敦蓝”等多种色调(表1)。

表1 辐照处理宝石的颜色效应

五、中子辐照宝石的放射活性

1放射活性来源

中子辐照宝石时,因热中子的核反应活化作用会产生放射活性,并且要持续相当长的时间,活性强度随着时间的延长而逐渐衰减。

以黄玉为例,基本上是铝和硅的氧化物,除此之外,还含有微量杂质元素。样品经中子活化分析可以知道,多数黄玉中都含有 Ta,Cr,Fe,Mn,Cs,Co等。这些元素经中子辐照之后,被“活化”变成带有人工放射性的核素。这些人工放射性放出不同能量的7射线和β射线,它们的半衰期不同,长的百天以上,短的仅有几分钟。

对于半衰期的核素如28Al,31Si,18O等,在一周内即可衰变完,组成黄玉的基体元素都生成上述短半衰期的人工放射性核素,故对人们的影响很小。黄玉中含有的微量杂质元素被活化后,不仅带有高能量的7射线,而且半衰期较长,故放射活性主要来自黄玉中的杂质元素。

2放射活性强度与持续时间

经中子辐照后的宝石,在一定时间内都带有放射活性,它的活性强度随时间的延长而有规律地衰减,最后衰减到豁免值。

产生的放射性强度和持续时间由辐照处理方法、宝石材料基体元素和杂质元素的种类及浓度所决定。杂质的种类与含量因产地、成矿条件不同而异,而且,差异很大。因此,应当选择基体元素和杂质元素的核特征性适宜的宝石原料进行辐照改色,只有这样,辐照后材料才不会带有长寿命核素。

六、放射活性的测量仪器

对于辐照处理的宝石必须进行残余活性的监测,采用仪表分类筛选,进行严格的管理,以保证安全。

核探测器种类很多,功能各异,可采用 Nal晶体探测器;Ge(Li)探测器(高灵敏度,高分辨率),该仪器与计算机联用可以很快地给出各种核素的比活度数据。除此之外,还可以采用α、β、γ表面沾污仪表进行现场测量和分级筛选,此种仪表不能给出绝对强度,只表示相对强度,作为粗测量筛选用比较合适。在我们的工作中,采用仪表筛选分级和仪器测量相结合,对每批材料进行跟踪测试直到合格为止。

七、豁免值

关于辐照处理过的宝石的残余放射性豁免值,目前国际上尚无统一规定,我国也没有制定出相应的标准。根据上述情况,我们以国际原子能委员会规定的“放射性物质安全运输规程”中的有关条款和我国国家技术监督局发布的中华人民共和国国家标准“对辐射源和实践豁免管理的基本标准”文件中的有关规定为依据,采用74Bq/g(2nCi/g)作为放射性物质的豁免比活度限值。低于74Bq/g的固体物即可作为非放射性物质管理。

豁免值是权衡多方面因素制定的管理规程,不超过豁免值的物质不会对人体造成危害,因为这一数值远低于危险度10-6~10-7Ci/g。而且,辐照宝石的残余活性随着时间的延长而逐渐衰减,只要放置足够长的时间,按照其规程办事,是不会给运输、加工和佩戴者造成危害的。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/874887.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-10
下一篇2023-07-10

发表评论

登录后才能评论

评论列表(0条)

    保存