钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。
钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。
一、钻石的化学成分和分类
1化学成分
钻石是具有立方结构的碳。主要成分是C,其质量分数可达9995%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。
2分类
钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。
1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。
表14-1-1 钻石的分类
天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。
二、钻石的结构与形态
1晶体结构
钻石属等轴晶系, ;a0=035595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为01542nm,C-C-C键角109°28′16″。
图14-1-1 钻石的晶体结构
2形态
钻石属六八面体晶类,Oh-m3m(3L44L36L29PC),常见单形:八面体o{111},菱形十二面体d{110}、立方体a{100}及其聚形(图14-1-2a和图14-1-2b)。
图14-1-2a 钻石的常见晶形
钻石晶体通常呈歪晶,由于溶蚀作用使晶面棱弯曲,晶面常发育阶梯状生长纹、生长锥或蚀象,且不同单形晶面上的蚀象不同,八面体晶面上可见倒三角形凹坑,立方体晶面上可见四边形凹坑,十二面体晶面上可见线理和显微圆盘状花纹。
钻石的双晶依(111)最普遍,可成接触双晶、星状穿插双晶或轮式双晶。其中三角薄片(macle)接触双晶具有典型的扁平三角形外观,在双晶两个平面结合处环绕钻石有明显的青鱼骨刺纹,在钻石贸易中称为结节。
三、钻石的光学性质
1颜色
钻石的颜色分两个系列:即无色—浅**系列和彩色系列。无色—浅**系列钻石的颜色为:无色至浅黄、浅褐;彩色系列钻石的颜色一般为深黄、褐、灰及浅至深的蓝、绿、橙黄、粉红、红、紫红色,偶见黑色。
图14-1-2b 钻石晶体不同聚形示意图
大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。
(1)黄至棕**钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于22eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列**、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对4772nm有弱吸收,由于人们对4772nm吸收反应灵敏,4772nm蓝光被吸收后,钻石呈现**。
(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。
(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。
(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。
2光泽
钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。
3透明度
钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。
4光性
钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。
5折射率
钻石为单折射宝石,在钠光(5893nm)中折射率为2417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。
6色散
钻石的色散强,色散值为0044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。
7发光性
(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、**、橙**、粉色等荧光,通常长波较短波的荧光强。
(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。
(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。
8吸收光谱
无色—浅**的钻石,在紫色区4155nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的**钻石可能在498nm,504nm和592nm处有吸收带。
四、钻石的力学性质
1解理
钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。
图14-1-3 钻石{111}方向解理示意图
2硬度
钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。
钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。
3密度
钻石的密度为352(±001)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。
五、钻石的内含物
钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。
六、钻石的电学性质和热学性质
1电学性质
Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(00024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。
2热学性质
(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。
根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。
(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。
(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。
3其他性质
(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。
(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。
世界不同地区出产的金刚石/钻石,在晶形、完整性、颜色类型及其比例等统计学特征上有一定的差异,这种差异是商业上进行产地区分经验的来源。
但是根据世界不同国家和金刚石/钻石矿区开采历史资料的对比(见附表2),可以看出世界各国以国家作为比较对象来进行比较是非常困难的(甚至是错误的),同一个国家不同矿区之间也存在明显的差异;但从不同的矿区来看,根据其金刚石/钻石最常见晶形的类型至少可以归纳为如下几类(不考虑历史因素):
(1)由八面体金刚石/钻石为主的矿区,包括北美克拉通加拿大Slave克拉通的Jericho、Ekati、Diavik矿区;东西伯利亚克拉通俄罗斯雅库特金刚石/钻石成矿省Malo-Botuobia地区,津巴布韦克拉通Murowa和Sese 矿区;中国华北克拉通辽宁瓦房店42号岩管。
(2)菱形十二面体为主的矿区,包括北美克拉通加拿大Superior省Renard矿区;巴西;俄罗斯东欧克拉通(太古宙Kola克拉通)MVLomonosov矿区;东西伯利亚克拉通俄罗斯乌拉尔地区砂矿;西非克拉通几内亚Kankan地区;南澳克拉通/澳大利亚艾伦代尔(Ellendale矿区,中国华北克拉通辽宁50号岩管,山东蒙阴。
(3)八面体和菱形十二面体比例近似的矿区,包括北美克拉通加拿大Superior省Wawa矿区;俄罗斯东欧克拉通(太古宙Kola克拉通)VGrib原生矿,中非克拉通安哥拉的Catoca field ;中国湖南沅水流域金刚石/钻石砂矿。
(4)出现较多异形金刚石/钻石的矿区,包括北美克拉通加拿大Superior省Lynx矿区,Alberta省Buffalo Head Hills矿区;中非克拉通/刚果(扎伊尔)以及Kaapvaal克拉通南非、博茨瓦纳,Pilbara北澳克拉通阿盖尔(Argyle),南澳克拉通Orroroo(Eurelia)原生金伯利岩和Springfield Basin砂矿;新南威尔士Bingara砂矿、Copeton砂矿、Wellington砂矿、Airly Mountain砂矿A组等。另外,还有Kaapvaal克拉通纳米比亚砂矿和西非克拉通坦桑尼亚Mwadui矿没有见到可靠的晶形统计资料。
上述分类还可以按照是否明显出现立方体形金刚石/钻石和不出现立方体金刚石/钻石分两大类。一是明显出现立方体金刚石/钻石的矿区包括:北美克拉通加拿大Slave克拉通的Diavik矿区;北美克拉通加拿大Superior省Wawa矿区,Alberta省Buffalo Head Hills矿区;东西伯利亚克拉通俄罗斯雅库特金刚石/钻石成矿省Udachnaya岩管;中非克拉通安哥拉Catoca field矿区,塞拉利昂的Koidu矿区;Kaapvaal克拉通南非的Venetia矿区;博茨瓦纳Orapa和Jwaneng;津巴布韦克拉通Murowa和Sese;南澳克拉通Eurelia矿区,中国湖南沅水流域的砂矿。二是明确没有出现或者少见立方体及其聚形金刚石/钻石的矿区,只有Kaapvaal克拉通南非普列米尔和北澳克拉通阿盖尔(Argyle)。其余的地区可能是没有发现或者数量较少,因此没有提及。
金刚石/钻石晶形是金刚石/钻石形成过程环境条件的综合反映(ЮЛ奥尔洛夫等,1977;Haggerty,1986;Besk等,1989;黄蕴慧等,1992;池际尚等,1996),具有复杂晶体形态的矿区通常是结晶条件复杂,物理化学条件或者流体供应变化比较大(伊 ПФ等,1989;陆太进等,2011; Kriulina et al,2011),金刚石/钻石在形成后受到过明显的塑性变形或强烈的溶蚀也可能造成金刚石/钻石晶形强烈的变形(例如,Udachnaya岩管和华北克拉通山东蒙阴金刚石/钻石矿区)(Chapman,1996;Lu et al,2001)。而立方体及其聚型最容易出现在高温高压合成金刚石/钻石中,天然金刚石/钻石中出现的比例往往较少,如果某些矿区大量出现这种形态的金刚石/钻石实际上也反映了该矿区金刚石/钻石的形成条件和其他矿区有明显的差异(Kaminsky et al,2009)。
金刚石/钻石表面色斑很多时候是金刚石/钻石周围环境中存在放射性物质形成的(马文运,1989;Harris,1992),多数经历过搬运和再沉积的砂矿金刚石/钻石表面往往存在绿色或者褐色的色斑(杨明星等,2002),但在某些原生矿的金刚石/钻石中也有色斑的存在(De Stefanol et al,2008,2009;Hunt et al,2008),因此,色斑是金刚石/钻石一种具有来源标型性的特征之一。根据不同金刚石/钻石矿区金刚石/钻石表面是否存在色斑可以将金刚石/钻石分为两大类,有色斑的和无色斑的,前者产地通常比较少见。
出现色斑的产地主要包括:北美克拉通加拿大Slave克拉通的Jericho矿区,该地绿色金刚石表面具有暗绿色圆形色斑;北美克拉通加拿大Superior省Renard矿区部分金刚石/钻石也具有绿色色斑;巴西Amazonian克拉通,Sao Francisco克拉通和Rio De La克拉通金刚石/钻石砂矿的金刚石/钻石大多具有色斑,并且绿色和棕色色斑出现的比例接近,例外的只有Juina地区Rio Soriso矿区;乌拉尔地区砂矿金刚石多数具有褐色或绿色的色斑;中非克拉通安哥拉Catoca field矿区的金刚石/钻石带特别的橙斑和黑斑,而津巴布韦克拉通的金刚石/钻石常具有特征的红色色斑;南澳克拉通新南威尔士金刚石/钻石砂矿金刚石/钻石30%有绿色和褐色的斑点,同样这种特征也出现在印尼加里曼丹和中国湖南沅水流域以及山东砂矿来源金刚石/钻石中。砂矿中不出现色斑的是巴西Juina地区Rio Soriso矿区的金刚石/钻石,它们很少见到有绿色和棕色色斑的出现。
山东金刚石晶体形态以平面八面体、阶梯状八面体、八面体与曲面菱形十二面体聚形和曲面菱形十二面体四类形态为主,还有少量的立方体、曲面六八面体、曲面六四面体、八面体与曲面六八面体聚形及立方体类聚形等,金刚石各类晶形见图版Ⅱ。但不同矿区金刚石晶体形态所占的比例略有不同。总体来讲,自南往北的常马庄、西峪和坡里的3个金伯利岩带中的金刚石,其曲面菱形十二面体晶形所占比例由多变少,而八面体晶形所占比例由少变多。常马庄矿带的各金伯利岩体,除红旗14号外,均以曲面菱形十二面体为主(5364%),其次为阶梯状八面体(3552%)、八面体与曲面菱形十二面体聚形(837%)和平面八面体(227%),其他形态很少(020%)。晶形主要为单晶(占7921%~8921%),其次为双晶和连生体。西峪矿带金刚石的晶形组合与常马庄矿带略有不同,主要为阶梯状八面体 (6345%),其次为曲面菱形十二面体(2829%),其他的晶体形态基本上与常马庄岩带相似,且含量都很少。晶体也主要以单晶的形式存在,连生体较多(3059%)。坡里矿带中阶梯状八面体金刚石的含量最高(70%),次为曲面菱形十二面体(21%),八面体与曲面菱形十二面体聚形及其他都较少,分别为7%和2%(山东省地矿局第七地质大队,1990;黄蕴慧等,1992;罗声宣等,1999;王萍等,1999)。
山东701钻石矿是我国目前唯一还在正式生产的钻石矿。2009年5月至8月,“山东蒙阴钻石矿现场统计数据”分类记录结果显示:442颗蒙阴宝石级金刚石晶形以菱形十二面体为主,约占3068%,其次为八面体,约占229 5%,六面体达到659%,存在比较特殊的拉长变形晶,比例达432%,双晶和聚形晶分别占约273%和341%,三角薄片227%,破损者约占250%,无法统计晶形的其他类型占2387%。1883颗工业级金刚石也以菱形十二面体为主,约占1692%,其次为八面体,约占1202%,六面体达到305%,比较特殊的拉长变形晶比例达到571%,双晶和聚形晶分别占约147%和729%,破损者约占1431%,其他无法统计晶形的占3434%。
从以上统计数据可以看出,蒙阴金刚石晶体形态的组合基本上是相同的,以平面八面体、阶梯状八面体、八面体与曲面菱形十二面体聚形和曲面菱形十二面体四类形态为主,还有少量的立方体、曲面四六面体、曲面六八面体、曲面六四面体、八面体与菱形十二面体聚形、八面体与曲面六八面体聚形及立方体类聚形,但各类形态金刚石含量比例在不同的岩脉(筒)有所不同,其中歪晶为蒙阴701矿所产钻石的特征性晶形(图43)。
项目组另外自蒙阴钻石矿(主要是胜利1号,大小岩管)收集的408颗宝石级金刚石样品晶形统计数据显示,金刚石晶形以八面体和菱形十二面体为主,各占267%;其次为聚形(83%),如八面体与十二面体的聚形、八面体、十二面体与立方体聚形等;另外还有一定数量的连生晶体、双晶等;约21%破损者无法统计晶形(表43;图44~图46)。
表43 山东蒙阴钻石矿金刚石晶形统计(2683颗) Table 43 Statistics of diamond crystal forms of Mengyin, Shandong (2683 diamonds)
图43 歪晶
Figure 43 Distorted Crystal
图44 八面体
Figure 44 Octahedron
图45 八面体与十二面体聚形
Figure 45 Combination form of octahedron and dodecahedron
图46 菱形十二面体
Figure 46 Rhombic dodecahedron
通过对图43的歪晶进一步研究分析,可见其表面大小不等的腐蚀斑点密集分布,一组或两组塑性变形滑移线清晰可见,同时在该晶体的一端隐约可见倒三角凹坑(图47,图48),通过分析表明此类长条状歪晶实为严重变形的八面体晶体。
图47 歪晶上的倒三角凹坑
Figure 47 Reversed triangular pits on distorted diamond
图48 歪晶表面可见两组滑移线及腐蚀斑点
Figure 48 Two groups of slip lines and etch pits on the surface of distorted diamond
与资料相比,本项目研究的2683颗钻石(701矿现场统计2275颗,收集样品实验室统计408颗)中,不可辨认晶形(碎块与其他)者所占的比例相当大(占405%);在可辨认晶形的1597颗钻石中,仍以菱形十二面体(348%)和八面体(270%)为主,其次为聚形、歪晶、六面体、三角形块等。值得一提的是,本项目研究的钻石晶形中歪晶和六面体含量相当高,分别占47%和32%,这在前人资料中未提及,可能与统计方法和归类有关。三角块、双晶、连生等含量有所增多。
狭义的钻石是指金刚石,广义的钻石是指制作轴承及饰品的硬度很高的宝石。金刚石的化学成分是c,等轴晶系,常呈八角体晶形,晶面常鼓成球面。纯的钻石无色透明,但可染成各种颜色。金刚石的硬度为10,比重351,是自然界中最硬的物质。透明的金刚石经过仔细琢磨,叫做钻石,用作饰品。
[钻石的重量单位及品质分级]
克拉(carat)
钻石的重量以“克拉”(carat)计,1carat=200mg(1克拉等于02克)。每克拉分为100分,比如一颗50分的钻石重量是05克拉。两颗颜色、净度及切工级别相同的钻石,克拉数越大,就具有更高的保值性。
切工(cut)
钻石的切工(cut)是指切割钻石瓣面排列的比例与角度,这是衡量钻石品质因素中直接受人为因素影响的。钻石的切工不是指钻石的形状,而是切割加工的位置。优良的切工可使钻石充分折射一切光线,匀称的切割足以增添钻石的火彩。切割太浅的钻石,光线会从底部漏掉;切割太深的钻石,光线会从钻腰下侧漏掉;而切割完美的钻石,更多的光线和光芒会从台面散发出来。
净度(clarlty)
钻石的净度是指钻石的内含物的多少。大部分钻石都含有非常小,未晶化完全的细微碳物质,内含物的数量越少、体积越小,品质就越好,也越罕见,价格也就越昂贵。不过,钻石是宝石中最晶莹剔透的,即便不是完全没有内含物的,也不影响钻石的美感。
具体的净度等级:lc-放大镜下无瑕;vvs1,vvs2-含有极微细的瑕疵;vs1,vs2-含有微细的瑕疵;sl1,sl2-含有肉眼无法看到的小瑕疵;p1,p2,p3-含有肉眼可见的瑕疵。
颜色(color)
钻石的颜色范围很广,从完全无色到黄、褐色,但是完全无色的钻石非常罕见。虽然大部分钻石看起来都是白色,但是对它们的颜色做进一步划分,可分为极白到白,从d开始,分为d,e,f,g,h,i,j,k,l,m,n。
理想的情况下,晶体的生长遵守布拉维面网法则,即形成的晶体往往为面网密度最大的晶面所包围。但实际的情况下,晶体最终出现的晶面会受到环境物理化学条件及成分变化的影响。高温高压法人工合成钻石实验已经证明,钻石的大小、结晶习性和合成条件关系密切,在温度梯度很大的低温条件下,合成出来的主要是立方体生长习性的钻石,钻石畸变的情形比较常见(伊 ПФ等,1989)。因此,钻石的形态是钻石生长过程、形成条件、成分及搬运条件综合作用的结果。细分来说,影响形态特征的因素包括:钻石形成的温度、压力、氧逸度、生长速率、生长机制、流体作用、挥发分的影响、母岩携带钻石喷出环境构造应力的大小以及时间差异、杂质的存在、碳的过饱和度等。钻石最终的形态是上述条件综合影响的结果( Haggerty,1986; Besk等,1989;杨志军等,2010);另外,钻石的晶形还和钻石杂质元素及形变有明显的联系,例如,多数Ⅱ型钻石很难见到平坦的晶面,该类型钻石的{111}面往往呈不规则状或扁平状,分选钻石原石的过程中,可以根据这种形态特征把II型钻石从I型钻石中区分开来(Ichiro Sunagawa,2001)。显然,利用钻石形态来进行产地的区分应该非常困难,但不同产地由于有独特的钻石稳定条件及其组合(图413),理想的情况下可以依据钻石形态组合具有的特征性,获得产地来源的信息。
一般的情况下,天然宝石级的钻石最常出现的是圆化的八面体晶形,其次是菱形十二面体,但是对世界上不同国家钻石形态的观测统计表明,实际的情况各不相同,这些事实构成了产地来源判断最基本的依据。
图413 天然金刚石结晶演化模式示意图
(据Besk等,郑建平等译,1989)
Figure 413 A schematic diagram showing the crystallization evolution of natural diamond
(After Besk et al,Zheng Jianping,et al translated,1989)
图414 中国三个产地金刚石晶体类型对比图
Figure 414 Comparison chart of diamond crystal forms of the three diamond fields in China
对中国三个主要钻石产地的晶形进行的对比研究显示(表45;图414),三个产地的主要晶形虽然都是以菱形十二面体和八面体为主,但是不同地区的组合也存在差异。其中,辽宁金刚石以八面体(373%)和菱形十二面体(178%)为主,双晶次之,连生和聚形较少,晶体多以面平棱直状出现,极少呈现角顶、晶棱钝化的曲面状,同时辽宁完整晶形钻石的比例较高,达到6404%,优质钻石中具平面八面体的类型成为辽宁瓦房店优质钻石的重要特征;山东金刚石以菱形十二面体(207%)和八面体(161%)为主,聚形(68%)、歪晶(47%)、六面体(32%)等次之,同时含有一定量的三角薄片、双晶、连生等,晶体多以面平棱直状出现,极少呈现角顶、晶棱钝化的曲面状,高比例的歪晶和六面体是山东金刚石晶形特征之一;湖南钻石也以菱形十二面体(340%)和八面体(265%)为主,但聚形的含量(159%)高于辽宁和山东,晶体多以角顶、晶棱钝化的曲面状出现,极少呈现面平棱直状,高比例的圆化曲面晶体含量(27%)是湖南金刚石重要特征。
表45 中国三产地金刚石晶体类型对比 Table 45 Comparison of diamond crystal forms of the three diamond fields in China
显然三个产地钻石的晶形及其组合具有一定的产地来源的意义,可以成为区分产地来源的基础。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)