王继仁的基础研究

王继仁的基础研究,第1张

(二)煤炭自燃理论及应用基础研究

(1)建立了煤有机大分子和低分子化合物的化学结构模型

(2)应用量子化学理论和红外光谱技术等从理论和实验两方面研究了全国不同矿区和煤种共计570多个易自燃、自燃、不自燃煤中有机大分子和低分子化合物的化学结构,构建了煤的分子结构模型。

(3)创立了煤自燃新理论--煤微观结构与组分量质差异自燃理论

(4) 建立了煤的自燃难易着火活化能理论、判定新方法与技术

(5) 建立了判定煤炭自燃难易的新方法

热重实验结果表明,易自燃煤、自燃煤在热重实验中都出现增重现象,而不自燃煤不出现增重。

红外光谱实验结果表明,易自燃煤、自燃煤的化学结构中都有丰富的侧链基团,而不自燃煤的侧链基团很少。

根据煤自燃新理论和两个实验研究结果,抓住自燃煤在热重实验TG曲线有增重的本质,定义了能发生氧化自燃煤增重阶段的活化能为着火活化能。

以煤的着火活化能为指标,建立了判定煤氧化自燃难易的新方法,开发了判定煤炭自燃难易的软件系统。

(6) 建立了煤炭自燃的预测预报技术

应用量子化学理论和红外光谱技术系统地研究了煤在氧化自燃过程中生成的各种气体。

得到了不同侧链与氧反应生成的不同气体产物。

根据红外光谱图得到了不同温度条件下产生指标气体量。

建立了预测预报判定准则。

(7)首创预防煤炭自燃的阻化机理理论,研制了新型阻化剂PCF系列产品及应用成套技术,建立了预防煤炭自燃新技术和新工艺

(8)煤炭自燃危险性判定方法标准”已正式列为国家标准。

王继仁教授的研究成果与当前国内外同类研究、同类技术的综合比较

热重分析中的待测物质重量值,相应的有TGA,DTG。TGA为热失重分析,即在温度不断变化的情况下通过仪器测定其重量的变化。DTG表示热重的微分。可以用来分析物质在温度不断变化的情况下重量的变化情况。DTG曲线向下为失重峰——这最为常见,向上为增重峰。

关于热重曲线图的分析如下:

TG曲线外推起始点:TG台阶前水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程起始发生的参考温度点,多用于表征材料的热稳定性。

TG曲线外推终止点:TG台阶后水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程结束的参考温度点。

DTG曲线峰值:质量变化速率最大的温度/时间点,对应于TG曲线上的拐点。质量变化:分析TG曲线上任意两点间的质量差,用来表示一个失重(或增重)步骤所导致的样品的质量变化。残余质量:测量结束时样品所残余的质量。

另外,在软件中还可对TG曲线的拐点(与DTG峰温等同)、DTG曲线外推起始点(更接近于真正意义上的反应起始温度)、DTG曲线外推终止点(更接近于真正意义上的反应结束温度)等特征参数进行标示。

由TG-DTA曲线可以得到样品的质量和热效应的变化信息,在实际的数据分析和作图中通常将TG曲线和DTA曲线放在一起进行综合分析。绿色曲线为TG曲线,蓝色曲线为DTA曲线。

当TG曲线的质量发生变化时(第一个台阶对应于失去一分子结晶水的过程,第二个质量变化台阶对应于失去一分子CO的过程,第三个质量变化台阶对应于失去一分子CO2的过程)。DTA曲线中对于这个质量变化过程分别表现出了不同的热效应,分别对应于每一个质量变化过程。

热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。

试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以象碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。 热天平周围气氛的改变对TG曲线影响显著,CaCO3在真空、空气和CO2三种气氛中的TG曲线,其分解温度相差近600℃,原因在于CO2是CaCO3分解产物,气氛中存在CO2会抑制CaCO3的分解,使分解温度提高。

聚丙烯在空气中,150~180℃下会有明显增重,这是聚丙烯氧化的结果,在N2中就没有增重。气流速度一般为40ml/min,流速大对传热和溢出气体扩散有利。 浮力变化是由于升温使样品周围的气体热膨胀从而相对密度下降,浮力减小,使样品表观增重。如:300℃时的浮力可降低到常温时浮力的一半,900℃时可降低到约1/4。实用校正方法是做空白试验,(空载热重实验),消除表观增重。

TG曲线关键温度表示法

失重曲线上的温度值常用来比较材料的热稳定性,所以如何确定和选择十分重要,至今还没有统一的规定。但人们为了分析和比较的需要,也有了一些大家认可的确定方法。A点叫起始分解温度,是TG曲线开始偏离基线点的温度;B点叫外延起始温度,是曲线下降段切线与基线延长线的交点。C点叫外延终止温度,是这条切线与最大失重线的交点。D点是TG曲线到达最大失重时的温度,叫终止温度。E、F、G分别为失重率为5%、10%、50%时的温度,失重率为50%的温度又称半寿温度。其中B点温度重复性最好,所以多采用此点温度表示材料的稳定性。当然也有采用A点的,但此点由于诸多因素一般很难确定。如果TG曲线下降段切线有时不好画时,美国ASTM规定把过5%与50%两点的直线与基线的延长线的交点定义为分解温度;国际标准局(ISO)规定,把失重20%和50%两点的直线与基线的延长线的交点定义为分解温度。

聚合物热稳定性的评价

评价聚合物热稳定性最简单、方便的方法,是做不同材料的TG曲线并画在一张图上比较。右图测定了五种聚合物的热重曲线,由图可知,PMMA、PE、PTFE都可以完全分解,但热稳定性依次增加。PVC稳定性较差,第一步失重阶段是脱HCl,发生在200~300℃,脱HCl后分子内形成共轭双键,热稳定性提高(TG曲线下降缓慢),直至较高温度约420℃时大分子链断裂,形成第二次失重。PMMA分解温度低是分子链中叔碳和季碳原子的键易断裂所致,PTFE是由于链中C-F键键能大,故热稳定性大大提高。聚酰亚胺PI由于含有大量的芳杂环结构,需850℃才分解40%左右,热稳定性较强。 热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。热重法所测的性质包括腐蚀,高温分解,吸附 /解吸附,溶剂的损耗,氧化 /还原反应,水合 /脱水,分解,黑烟末等,目前广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。具体包括:

无机物、有机物及聚合物的热分解; 金属在高温下受各种气体的腐蚀过程; 固态反应; 矿物的煅烧和冶炼; 液体的蒸馏和汽化; 煤、石油和木材的热解过程; 含湿量、挥发物及灰分含量的测定; 升华过程; 脱水和吸湿; 爆炸材料的研究; 反应动力学的研究; 发现新化合物; 吸附和解吸; 催化活度的测定; 表面积的测定; 氧化稳定性和还原稳定性的研究; 反应机制的研究。 使样品处于程序控制的温度下,观察样品的质量随温度或时间的函数。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。

测量物质的重量变化(在受控气氛内受温度变化)。所有塞塔拉姆天平都满足最高的精确度和稳定性标准。由热重分析仪(TGA) 所测的性质包括腐蚀,高温分解,吸附 /解吸附,溶剂的损耗,氧化 /还原反应,水合 /脱水,分解,黑烟末等

仪器特点:

温度范围: RT ~ 1000℃

加热与冷却速率快。

有效精度:1μg (内部精度: 01μg)

真空密封结构。

直接测定样品温度。

顶部装样设计,操作简易。

易与红外(FTIR)、气相质谱(QMS)、脉冲热分析(PulseTA) 及气相分析(GC)联用。

提供 c-DTA(计算型 DTA)功能(选件)

Super-Res(速率控制质量变化)功能(选件)

自动进样系统 ASC(选件)

TG 209 C 热重实验步骤

称取适当重量样品于坩埚中。

打开盖子 - 装入样品坩埚 - 关上盖子

在软件中设定温度程序与气氛等条件。

初始化工作条件,如气体流量、抽真空等。

开始测量。

实验结束后,使用 NETZSCH - Proteus 软件对原始数据进行分析。

1TG——即Triglyceride,甘油三酯,血脂的一种。2TG ——热重。

  热重分析中的待测物质重量值,相应的有TGA,DTG。TGA为热失重分析,即在温度不断变化的情况下通过仪器测定其重量的变化。DTG表示热重的微分。可以用来分析物质在温度不断变化的情况下重量的变化情况。DTG曲线向下为失重峰——这最为常见,向上为增重峰。 http://baikebaiducom/view/51648htm

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10416950.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-06
下一篇2023-11-06

发表评论

登录后才能评论

评论列表(0条)

    保存