请问核磁共振对人体有什么危害?听说做了会减寿10年?我只是个半月板损伤医生竟让我作了一次,好后悔!

请问核磁共振对人体有什么危害?听说做了会减寿10年?我只是个半月板损伤医生竟让我作了一次,好后悔!,第1张

磁共振成像

维基百科,自由的百科全书

跳转到: 导航, 搜索

人脑纵切面的核磁共振成像核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像、磁振造影(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。

将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。

从核磁共振现象发现到MRI技术成熟这几十年期间,有关核磁共振的研究领域曾在三个领域(物理、化学、生理学或医学)内获得了6次诺贝尔奖,足以说明此领域及其衍生技术的重要性。

目录 [隐藏]

1 物理原理

11 原理概述

12 数学运算

2 系统组成

21 NMR实验装置

22 MRI系统的组成

221 磁铁系统

222 射频系统

223 计算机图像重建系统

23 MRI的基本方法

3 技术应用

31 MRI在医学上的应用

311 原理概述

312 磁共振成像的优点

313 MRI的缺点及可能存在的危害

32 MRI在化学领域的应用

33 磁共振成像的其他进展

4 诺贝尔获奖者的贡献

5 未来展望

6 相关条目

61 磁化准备

62 取像方法

63 医学生理性应用

7 参考文献

[编辑]

物理原理

通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。[编辑]

原理概述

核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。医生考虑到患者对“核”的恐惧心理,故常将这门技术称为磁共振成像。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。

原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。

核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。

[编辑]

数学运算

原子核带正电并有自旋运动,其自旋运动必将产生磁矩,称为核磁矩。研究表明,核磁矩μ与原子核的自旋角动量S 成正比,即

式中γ 为比例系数,称为原子核的旋磁比。在外磁场中,原子核自旋角动量的空间取向是量子化的,它在外磁场方向上的投影值可表示为

m为核自旋量子数。依据核磁矩与自旋角动量的关系,核磁矩在外磁场中的取向也是量子化的,它在磁场方向上的投影值为

对于不同的核,m分别取整数或半整数。在外磁场中,具有磁矩的原子核具有相应的能量,其数值可表示为

式中B为磁感应强度。可见,原子核在外磁场中的能量也是量子化的。由于磁矩和磁场的相互作用,自旋能量分裂成一系列分立的能级,相邻的两个能级之差ΔE = γhB。用频率适当的电磁辐射照射原子核,如果电磁辐射光子能量hν恰好为两相邻核能级之差ΔE,则原子核就会吸收这个光子,发生核磁共振的频率条件是:

式中ν为频率,ω为角频率。对于确定的核,旋磁比γ可被精确地测定。可见,通过测定核磁共振时辐射场的频率ν,就能确定磁感应强度;反之,若已知磁感应强度,即可确定核的共振频率。

[编辑]

系统组成

[编辑]

NMR实验装置

采用调节频率的方法来达到核磁共振。由线圈向样品发射电磁波,调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化。当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值。核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成。磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;谱仪是将共振信号放大处理并显示和记录下来。

[编辑]

MRI系统的组成

[编辑]

磁铁系统

静磁场:当前临床所用超导磁铁,磁场强度有05到40T,常见的为15T和30T,另有匀磁线圈(shim coil)协助达到高均匀度。

梯度场:用来产生并控制磁场中的梯度,以实现NMR信号的空间编码。这个系统有三组线圈,产生x、y、z三个方向的梯度场,线圈组的磁场叠加起来,可得到任意方向的梯度场。

[编辑]

射频系统

射频(RF)发生器:产生短而强的射频场,以脉冲方式加到样品上,使样品中的氢核产生NMR现象。

射频(RF)接收器:接收NMR信号,放大后进入图像处理系统。

[编辑]

计算机图像重建系统

由射频接收器送来的信号经A/D转换器,把模拟信号转换成数学信号,根据与观察层面各体素的对应关系,经计算机处理,得出层面图像数据,再经D/A转换器,加到图像显示器上,按NMR的大小,用不同的灰度等级显示出欲观察层面的图像。

[编辑]

MRI的基本方法

选片梯度场Gz

相编码和频率编码

图像重建

[编辑]

技术应用

3D MRI[编辑]

MRI在医学上的应用

[编辑]

原理概述

氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础。

当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息。这样,病理变化就能被记录下来。

人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础。人体内器官和组织中的水分并不相同,很多疾病的病理过程会导致水分形态的变化,即可由磁共振图像反应出来。

MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了剖胸或剖腹探查诊断的手术。由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此对人体没有损害。MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。对全身各系统疾病的诊断,尤其是早期肿瘤的诊断有很大的价值。

[编辑]

磁共振成像的优点

与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography, CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点:

对人体没有游离辐射损伤;

各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效。例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;

通过调节磁场可自由选择所需剖面。能得到其它成像技术所不能接近或难以接近部位的图像。对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。能获得脑和脊髓的立体图像,不像CT(只能获取与人体长轴垂直的剖面图)那样一层一层地扫描而有可能漏掉病变部位;

能诊断心脏病变,CT因扫描速度慢而难以胜任;

对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;

原则上所有自旋不为零的核元素都可以用以成像,例如氢(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。

人类腹部冠状切面磁共振影像[编辑]

MRI的缺点及可能存在的危害

虽然MRI对患者没有致命性的损伤,但还是给患者带来了一些不适感。在MRI诊断前应当采取必要的措施,把这种负面影响降到最低限度。其缺点主要有:

和CT一样,MRI也是解剖性影像诊断,很多病变单凭核磁共振检查仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;

对肺部的检查不优于X射线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;

对胃肠道的病变不如内窥镜检查;

扫描时间长,空间分辨力不够理想;

由于强磁场的原因,MRI对诸如体内有磁金属或起搏器的特殊病人却不能适用。

MRI系统可能对人体造成伤害的因素主要包括以下方面:

强静磁场:在有铁磁性物质存在的情况下,不论是埋植在患者体内还是在磁场范围内,都可能是危险因素;

随时间变化的梯度场:可在受试者体内诱导产生电场而兴奋神经或肌肉。外周神经兴奋是梯度场安全的上限指标。在足够强度下,可以产生外周神经兴奋(如刺痛或叩击感),甚至引起心脏兴奋或心室振颤;

射频场(RF)的致热效应:在MRI聚焦或测量过程中所用到的大角度射频场发射,其电磁能量在患者组织内转化成热能,使组织温度升高。RF的致热效应需要进一步探讨,临床扫瞄仪对于射频能量有所谓“特定吸收率”(specific absorption rate, SAR)的限制;

噪声:MRI运行过程中产生的各种噪声,可能使某些患者的听力受到损伤;

造影剂的毒副作用:目前使用的造影剂主要为含钆的化合物,副作用发生率在2%-4%。

[编辑]

MRI在化学领域的应用

MRI在化学领域的应用没有医学领域那么广泛,主要是因为技术上的难题及成像材料上的困难,目前主要应用于以下几个方面:

在高分子化学领域,如碳纤维增强环氧树脂的研究、固态反应的空间有向性研究、聚合物中溶剂扩散的研究、聚合物硫化及弹性体的均匀性研究等;

在金属陶瓷中,通过对多孔结构的研究来检测陶瓷制品中存在的砂眼;

在火箭燃料中,用于探测固体燃料中的缺陷以及填充物、增塑剂和推进剂的分布情况;

在石油化学方面,主要侧重于研究流体在岩石中的分布状态和流通性以及对油藏描述与强化采油机理的研究。

[编辑]

磁共振成像的其他进展

核磁共振分析技术是通过核磁共振谱线特征参数(如谱线宽度、谱线轮廓形状、谱线面积、谱线位置等)的测定来分析物质的分子结构与性质。它可以不破坏被测样品的内部结构,是一种完全无损的检测方法。同时,它具有非常高的分辨本领和精确度,而且可以用于测量的核也比较多,所有这些都优于其它测量方法。因此,核磁共振技术在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用。

磁共振显微术(MR microscopy, MRM/μMRI)是MRI技术中稍微晚一些发展起来的技术,MRM最高空间分辨率是4μm,已经可以接近一般光学显微镜像的水平。MRM已经非常普遍地用作疾病和药物的动物模型研究。

活体磁共振能谱(in vivo MR spectroscopy, MRS)能够测定动物或人体某一指定部位的NMR谱,从而直接辨认和分析其中的化学成分。

[编辑]

诺贝尔获奖者的贡献

2003年10月6日,瑞典卡罗林斯卡医学院宣布,2003年诺贝尔生理学或医学奖授予美国化学家保罗·劳特布尔(Paul C Lauterbur)和英国物理学家彼得·曼斯菲尔德(Peter Mansfield),以表彰他们在医学诊断和研究领域内所使用的核磁共振成像技术领域的突破性成就。

劳特布尔的贡献是,在主磁场内附加一个不均匀的磁场,把梯度引入磁场中,从而创造了一种可视的用其他技术手段却看不到的物质内部结构的二维结构图像。他描述了怎样把梯度磁体添加到主磁体中,然后能看到沉浸在重水中的装有普通水的试管的交叉截面。除此之外没有其他图像技术可以在普通水和重水之间区分图像。通过引进梯度磁场,可以逐点改变核磁共振电磁波频率,通过对发射出的电磁波的分析,可以确定其信号来源。

曼斯菲尔德进一步发展了有关在稳定磁场中使用附加的梯度磁场理论,推动了其实际应用。他发现磁共振信号的数学分析方法,为该方法从理论走向应用奠定了基础。这使得10年后磁共振成像成为临床诊断的一种现实可行的方法。他利用磁场中的梯度更为精确地显示共振中的差异。他证明,如何有效而迅速地分析探测到的信号,并且把它们转化成图像。曼斯菲尔德还提出了极快速的梯度变化可以获得瞬间即逝的图像,即平面回波扫描成像(echo-planar imaging, EPI)技术,成为20世纪90年代开始蓬勃兴起的功能磁共振成像(functional MRI, fMRI)研究的主要手段。

雷蒙德·达马蒂安的“用于癌组织检测的设备和方法”值得一提的是,2003年诺贝尔物理学奖获得者们在超导体和超流体理论上做出的开创性贡献,为获得2003年度诺贝尔生理学或医学奖的两位科学家开发核磁共振扫描仪提供了理论基础,为核磁共振成像技术铺平了道路。由于他们的理论工作,核磁共振成像技术才取得了突破,使人体内部器官高清晰度的图像成为可能。

此外,在2003年10月10日的《纽约时报》和《华盛顿邮报》上,同时出现了佛纳(Fonar)公司的一则整版广告:“雷蒙德·达马蒂安(Raymond Damadian),应当与彼得·曼斯菲尔德和保罗·劳特布尔分享2003年诺贝尔生理学或医学奖。没有他,就没有核磁共振成像技术。”指责诺贝尔奖委员会“篡改历史”而引起广泛争议。事实上,对MRI的发明权归属问题已争论了许多年,而且争得颇为激烈。而在学界看来,达马蒂安更多是一个生意人,而不是科学家。

[编辑]

未来展望

人脑是如何思维的,一直是个谜。而且是科学家们关注的重要课题。而利用MRI的脑功能成像则有助于我们在活体和整体水平上研究人的思维。其中,关于盲童的手能否代替眼睛的研究,是一个很好的样本。正常人能见到蓝天碧水,然后在大脑里构成图像,形成意境,而从未见过世界的盲童,用手也能摸文字,文字告诉他大千世界,盲童是否也能“看”到呢?专家通过功能性MRI,扫描正常和盲童的大脑,发现盲童也会像正常人一样,在大脑的视皮质部有很好的激活区。由此可以初步得出结论,盲童通过认知教育,手是可以代替眼睛“看”到外面世界的。

快速扫描技术的研究与应用,将使经典MRI成像方法扫描病人的时间由几分钟、十几分钟缩短至几毫秒,使因器官运动对图像造成的影响忽略不计;MRI血流成像,利用流空效应使MRI图像上把血管的形态鲜明地呈现出来,使测量血管中血液的流向和流速成为可能;MRI波谱分析可利用高磁场实现人体局部组织的波谱分析技术,从而增加帮助诊断的信息;脑功能成像,利用高磁场共振成像研究脑的功能及其发生机制是脑科学中最重要的课题。有理由相信,MRI将发展成为思维阅读器。

20世纪中叶至今,信息技术和生命科学是发展最活跃的两个领域,专家相信,作为这两者结合物的MRI技术,继续向微观和功能检查上发展,对揭示生命的奥秘将发挥更大的作用。

[编辑]

相关条目

核磁共振

射频

射频线圈

梯度磁场

[编辑]

磁化准备

反转回复(inversion recovery)

饱和回覆(saturation recovery)

驱动平衡(driven equilibrium)

[编辑]

取像方法

自旋回波(spin echo)

梯度回波(gradient echo)

平行成像(parallel imaging)

面回波成像(echo-planar imaging, EPI)

定常态自由进动成像(steady-state free precession imaging, SSFP)

[编辑]

医学生理性应用

磁振血管摄影(MR angiography)

磁振胆胰摄影(MR cholangiopancreatogram, MRCP)

扩散权重影像(diffusion-weighted image)

扩散张量影像(diffusion tensor image)

灌流权重影像(perfusion-weighted image)

功能性磁共振成像(functional MRI, fMRI)

[编辑]

参考文献

傅杰青〈核磁共振——获得诺贝尔奖次数最多的一个科学专题〉《自然杂志》, 2003, (06):357-261

别业广、吕桦〈再谈核磁共振在医学方面的应用〉《物理与工程》, 2004, (02):34, 61

金永君、艾延宝〈核磁共振技术及应用〉《物理与工程》, 2002, (01):47-48, 50

刘东华、李显耀、孙朝晖〈核磁共振成像〉《大学物理》, 1997, (10):36-39, 29

阮萍〈核磁共振成像及其医学应用〉《广西物理》, 1999, (02):50-53, 28

Lauterbur P C Nature, 1973, 242:190

黄卫华〈走近核磁共振〉《医药与保健》, 2004, (03):15

叶朝辉〈磁共振成像新进展〉《物理》, 2004, (01):12-17

田建广、刘买利、夏照帆、叶朝辉〈磁共振成像的安全性〉《波谱学杂志》, 2002, (06):505-511

蒋子江〈核磁共振成像NMRI在化学领域中的应用〉《化学世界》, 1995, (11):563-565

樊庆福〈核磁共振成像与诺贝尔奖〉《上海生物医学工程》, 2003, (04):封三

取自"http://wikipediacnblogorg/wiki/%E6%A0%B8%E7%A3%81%E5%85%B1%E6%8C%AF%E6%88%90%E5%83%8F"

页面分类: 电磁学 | 原子核物理学 | 医疗设备

随着养生意识的提高,人们对身体健康越来越重视,一旦患上出现不适的症状,就会去医院进行检查,核磁共振检查是临床上应用比较广泛的一种检查方式,可以直观看到患者的病灶。

磁共振成像是目前临床上常用的诊断性检查手段。该检查主要利用磁共振设备,通过扫描患者患病部位,得到该部位的图像,帮助医生了解患者检查部位是否存在病变以及病变的范围程度等,为后续诊断和治疗提供依据。

不知道大家去医院检查时是否遇到过这种情况,很多医生并不建议患者做核磁共振检查,其中的缘由到底是什么?不妨来了解一下。

什么是核磁共振?

核磁共振也叫磁共振成像,是用于医学影像检查的一种成像设备。它的基本原理是将人体置于特殊的磁场当中,用无线射频脉冲,激发人体内的氢质子核引起氢质子的发生共振,并且吸收能量。

在停止射频脉冲后,氢质子核在特定的频率,发出微弱的电磁信号,并将这个信号释放出来。

探测器可以捕捉到这种微弱的电磁信号,并且通过电子计算机的处理,得到人体内部的组织和器官的图像,这就是核磁共振检查。

为什么不建议大家做“核磁共振”呢?

有些病不适合用磁共振检查

我们都知道对症下药,检查也是一样的。很多器官都有特定的检查方式,并不是说一个检查方式能够检查所有的器官。就比如说,胃肠镜就不能检查肺部。

磁共振也是一样的道理,磁共振的工作原理是利用患者体内氢原子的共振,转化为图像进行检查的。所以如果哪个部位没有水分,那磁共振就没什么用处,就比如肺部和心脏水分含量都很少,很明显就不适合用磁共振检查。

检查费用较高

虽然磁共振检查更加清晰,提高了医生的诊断,但是磁共振检查的机器也是比较先进的,那么成本就要更高。

当然这些费用需要均摊到每一个病人的身上,所以这一项检查也是比较昂贵的,磁共振检查少则上千元,对于普通家庭来说也是一笔不小的费用。

检查时间长

核磁共振不像普通的CT,它需要的时间比较长,在检查时需要对全身进行扫描,而且会把身体分成好几个部位检查,大约需要半个小时,如果在检查中不小心出现意外,还需要第二次第三次检查。

现在医院做核磁检查的人太多,每天都有人在排队,所以不是一些除了核磁共振不能看清除病灶部位的疾病,医生都不会建议做核磁共振。

做核磁共振的禁忌事项

1、患有幽闭恐惧症的人群,幽闭恐惧症患者进入密闭空间会产生恐惧。

2、装有心脏起搏器的患者,心脏起搏器者,属于电子设备,如患者进入核磁共振检查,电子设备可能会出现紊乱或停止。

3、装有胰岛素泵的患者,胰岛素泵含有金属成分,并属于电子设备,患者不宜进行核磁共振检查。

4、体内有巨大金属移植物的患者,比如早期髋关节置换为不锈钢质地,如患者进入磁场,可能会对身体产生机械性影响。

5、不要化妆,素颜检查,部分化妆品,如指甲油、防晒霜、粉底液等,含有金属成分,也会与磁场发生反应,尽量选择素颜接受检查。

结语:

建议大家都应该遵医嘱进行自身各方面的检查,不要以为觉得贵的检查就是诊断率是最高的境界,其实,只有适合自己的检查方式才是最正确的!

颈椎病自我疗法大全

1、保持良好坐姿

纠正改善工作中的不良习惯性体位 不良的工作体位,不仅影响治疗效果,而且是本病发生、发展与复发的主要原因之一,放必须引起重视。故此类工作人员应定期或及时纠正头颈部的不良体位,其时间间隔不应超过半小时,并且做一些领部保健操,使颈椎各方向得以活动及休息。并且注意要改变自己不良的读书、写字或工作的姿势。

办公室人员:正确的坐姿应该是颈、腰、背挺直,下颌回缩,眼睛平视前方,肩部放松,肘关节屈曲90度,给予前臂和手腕足够的支持,髋、膝关节保持屈曲90度及双足平放于地面。

2、选对枕头,舒适睡眠改善与调整睡眠状态

睡眠姿势不当,不仅易引起腰腿痛,而且更容易引起或加剧颈椎病。因此注意改善与调整颈椎在睡眠中的体位及枕头的软硬高低等,则可起到预防及治疗作用。枕头的高低应以仰卧时颈不过屈,侧卧时无侧屈为宜,枕头以放置在枕颈部后方为好,这样可以维持头颈部生理曲线,使椎节内外处于平衡放松状态。或者挑一个薄、软的枕头,竖放,三分之一向上叠,头部位于三分之二处,此法也能改变头颈部的生理曲线。

3、自我牵引疗法

这是一项可立即见效的措施。如你突然感到颈部酸痛,或肩背部及上肢有放射痛时,可将双手十字合拢交叉,将其举过头顶置于枕颈部,之后将头后仰,双手逐渐用力向头方向牵引5~10秒钟,如此连续3~4次即可起到缓解椎间隙压力的作用。其原理是利用双手向上牵引之力,使颈椎间隙李开,使后突之髓核有可能还纳,也可改变颈椎关节列线而起到缓解症状之作用。

4、颈椎牵引治疗

可用市面出售的或自制的四头带进行牵引,可坐位也可卧位牵引,牵引重量一般为15~6公斤,可根据情况自己选择,若有时间则可较轻一点长时间牵引(30分钟以上),若时间紧张可以大重量短时间牵引,牵引时注意颈部和身体纵轴相一致,不要扭转或过伸、过屈。

每工作1个小时适当休息活动工作1小时左右,应起身活动一下,尤其是头颈肩部,以放松紧张的肌肉和关节。站在窗前抬头远眺,利于颈椎的保健。

颈椎病的症状

1、视力下降

颈椎病还可表现为视力下降、间歇性视力模糊、一眼或双眼胀痛、怕光、流泪、视野缩小,甚至出现视野缩小和视力锐减,个别患者还可发生失明,但多数伴有颈椎病的其他症状,如颈肩疼痛、颈部活动受限等。

2、高血压

有些高血压是由颈椎病引发,也就是颈性高血压。当中下段颈椎错位时,刺激了颈动脉窦,使血压突然升高(如起床时、低头时),有时却又降到低于正常血压值。颈性高血压患者无血管、心、脑和肾等器质性病变,使用降压药物治疗无效,并且常常伴有颈部疼痛、上肢麻木等现象。

3、心绞痛或心律不齐

颈背神经根受颈椎骨刺的刺激和压迫,会引发心前区疼痛、胸闷、气短等心绞痛症状以及心动过速或过缓。当患者的颈部症状不明显而心血管症状较重时,往往被误诊。和冠心病不同的是,颈椎病患者的疑似心绞痛症状多在低头工作过久、突然的扭头或甩头后发生,患者还会自觉颈部活动受限、颈椎伴有压痛。

4、脑动脉硬化或小脑疾患

由于颈椎增生性改变压迫椎动脉引起基底动脉供血障碍,导致一时性脑供血不足,患者会在行走中因突然扭头、身体失去支持而摔倒,并伴有剧烈眩晕或头痛、恶心、呕吐、出汗等症状。但和脑动脉硬化不同,颈椎病患者发病跌倒后,会因颈部位置改变而很快清醒并站起,不伴昏迷,亦无后遗症。

就是肩部磁共振。

主要用来检查肩部肌肉,筋腱,滑膜,软组织和关节的损伤或病变。有很高的准确性和分辨性。是检查肩部疾病最强准确的影像方式。

所以对于有长期或严重肩膀疾病或疼痛的推荐做磁共振做完全检查。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10805517.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-15
下一篇2023-11-15

发表评论

登录后才能评论

评论列表(0条)

    保存