多肽合成需要细胞核吗

多肽合成需要细胞核吗,第1张

不需要。多肽合成是一种化学方法,可以在试管中通过化学反应合成多肽,而不需要使用活细胞或细胞核。多肽合成的方法包括固相合成和液相合成,其中固相合成是最常用的一种方法。在固相合成中,多肽链是在树脂颗粒表面上合成的,反应发生在固体相中,而不需要使用细胞核。

ziyirenjiajia 你好!

多肽合成技术

多肽药物的研究与开发将作为二十一世纪高新技术竟争的主要项目之一。生物活性多肽在内源性物质中占有非常重要的地位,除酶、受体、金属蛋白等生物大分子外,许多合成或分离的多肽对生理过程或病理过程,对疾病的发生、发展或治疗过程有重要意义。

氨基酸彼此以酰胺键(也称肽键)相互连接的化合物称作肽。一种肽含有的氨基酸少于10个就称作寡肽,超过的就称为多肽。多肽与蛋白质只有肽链长短之别,二者间并没有严格的区分。蛋白质是生命存在的最基本形式。可见多肽是生命之"桥",蛋白质工程从某种意义上而言就是研究多肽。

伴随着分子生学物、生物化学技术的飞速发展,多肽研究取得了惊人的、划时代的飞跃。人们发现存在于生物体的多肽有数万种,并且发现所有的细胞均能合成多肽。同时,几乎所有的细胞也都受多肽调节,它涉及激素、神经、细胞生长与生殖等各个领域,21世纪是一个多肽的世界,人们研究多肽,也渴望着将多肽应用到医疗、保健、检测等多个领域中去,为人类造福。

事实上,肽类药物开发与应用已走出科学家们的实验室,变成了现实,并发挥着其独特的功效。例如,神经紧张肽(NT)能降低血压,对肠和子宫具有收缩作用;内啡肽和脑啡肽的衍生物有着很强的镇痛作用;促甲状腺素释放激素(TRH)是一种能促进产妇乳汁分泌的多肽;能治疗糖尿病、胃溃疡、胰腺炎的多肽是一种环状的14肽;临床上常用的催产素是一种多肽;已获广泛应用的白蛋白多肽、胸腺肽、血清胸腺因子(FTS)等均可以引起免疫T细胞的分化;近日来在中国及日本已开始使用的糖肽辅助治疗肿瘤,其作用机理是使淋巴系统活化等等。应用多肽技术开发的医用蛋白质芯片(肽芯片)只有指甲盖大小,放置了与肾炎、胃溃疡和胃癌等相关的抗原分子,只要通过芯片阅读仪便可检测到有关疾病的功能状态与变异情况。其功能已相当于一个大型或中型实验室、化验室,效率是传统医学检测的成百上千倍,受检者几乎没有任何痛苦。肽芯片的广泛应用,已在医学临床检测业引发一场技术革命。

自从1963年MERRIFIELD发展成功了固相多肽合成(SPPS)方法以来,经过不断的改进和完善,到今天这个方法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。

固相合成的主要设计思想是:先将所要合成肽链的未端氨基酸的羧基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上。氨基酸作为氨基组分经过脱去氨基保护基,并同过量的活化羟基组分反应接长肽链。重复(缩合—洗涤—去保护—中和和洗涤—下一轮缩合)操作,达到所要合成的肽链长度;最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。

http://wwwpharmcocomcn/technical-3htm

多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。

多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。

多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。

1.固相合成的基本原理

多肽合成是一个重复添加氨基酸的过程,合成一般从C端(羧基端)向N端(氨基端)合成。过去的多肽合成是在溶液中进行的,但自从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和和洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法,

2. 固相合成的具体试验过程

2.1树脂的选择及氨基酸的固定

将固相合成与其他技术分开来的最主要的特征是固相载体,能用于多肽合成的固相载体必须满足如下要求:必须包含反应位点(或反应基团),以使肽链连在这些位点上,并在以后除去;必须对合成过程中的物理和化学条件稳定;载体必须允许在不断增长的肽链和试剂之间快速的、不受阻碍的接触;另外,载体必须允许提供足够的连接点,以使每单位体积的载体给出有用产量的肽,并且必须尽量减少被载体束缚的肽链之间的相互作用。用于固相法合成多肽的高分子载体主要有三类:聚苯乙烯-苯二乙烯交联树脂、聚丙烯酰胺、聚乙烯-乙二醇类树脂及衍生物,这些树脂只有导入反应基团,才能直接连上(第一个)氨基酸。根据所导入反应基团的不同,又把这些树脂及树脂衍生物分为氯甲基树脂、羧基树脂、氨基树脂或酰肼型树脂。BOC合成法通常选择氯甲基树脂,如Merrifield树脂;FMOC合成法通常选择羧基树脂如王氏树脂。 氨基酸的固定主要是通过保护氨基酸的羧基同树脂的反应基团之间形成的共价键来实现的,形成共价键的方法有多种:氯甲基树脂,通常先制得保护氨基酸的四甲铵盐或钠盐、钾盐、铯盐,然后在适当温度下,直接同树脂反应或在合适的有机溶剂如二氧六环、DMF或DMSO中反应;羧基树脂,则通常加入适当的缩合剂如DCC或羧基二咪唑,使被保护氨基酸与树脂形成共酯以完成氨基酸的固定;氨基树脂或酰肼型树脂,却是加入适当的缩合剂如DCC后,通过保护氨基酸与树脂之间形成的酰胺键来完成氨基酸的固定。

2.2氨基、羧基、侧链的保护及脱除

要成功合成具有特定的氨基酸顺序的多肽,需要对暂不参与形成酰胺键的氨基和羧基加以保护,同时对氨基酸侧链上的活性基因也要保护,反应完成后再将保护基因除去。同液相合成一样,固相合成中多采用烷氧羰基类型作为α氨基的保护基,因为这样不易发生消旋。最早是用苄氧羰基,由于它需要较强的酸解条件才能脱除,所以后来改为叔丁氧羰基(BOC)保护,用TFA(三氟乙酸)脱保护,但不适用含有色氨酸等对酸不稳定的肽类的合成。1978年,chang Meienlofer和Atherton等人采用Carpino报道的Fmoc(9-芴甲氧羰基)作为α氨基保护基,Fmoc基对酸很稳定,但能用哌啶-CH2CL2或哌啶-DMF脱去,近年来,Fmoc合成法得到了广泛的应用。 羧基通常用形成酯基的方法进行保护。甲酯和乙酯是逐步合成中保护羧基的常用方法,可通过皂化除去或转变为肼以便用于片断组合;叔丁酯在酸性条件下除去;苄酯常用催化氢化除去。 对于合成含有半胱氨酸、组氨酸、精氨酸等带侧链功能基的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。保护基的选择既要保证侧链基团不参与形成酰胺的反应,又要保证在肽合成过程中不受破坏,同时又要保证在最后肽链裂解时能被除去。如用三苯甲基保护半胱氨酸的S-,用酸或银盐、汞盐除去;组氨酸的咪唑环用2,2,2-三氟-1-苄氧羰基和2,2,2-三氟-1-叔丁氧羰基乙基保护,可通过催化氢化或冷的三氟乙酸脱去。精氨酸用金刚烷氧羰基(Adoc)保护,用冷的三氟乙酸脱去。

2.3成肽反应

固相中的接肽反应原理与液相中的基本一致,将两个相应的氨基被保护的及羧基被保护的氨基酸放在溶液内并不形成肽键,要形成酰胺键,经常用的手段是将羧基活化,变成混合酸酐、活泼酯、酰氯或用强的失去剂(如碳二亚氨)形成对称酸酐等方法来形成酰胺键。其中选用DCC、HOBT或HOBT/DCC的对称酸酐法、活化酯法接肽应用最广。

2.4 裂解及合成肽链的纯化 BOC法用TFA+HF裂解和脱侧链保护基,FMOC法直接用TFA,有时根据条件不同,其它碱、光解、氟离子和氢解等脱保护方法也被采用。合成肽链进一步的精制、分离与纯化通常采用高效液相色谱、亲和层析、毛细管电泳等。

3.固相合成的特点及存在的主要问题

固相合成法对于肽合成的显著的优点:简化并加速了多步骤的合成;因反应在一简单反应器皿中便可进行,可避免因手工操作和物料重复转移而产生的损失;固相载体共价相联的肽链处于适宜的物理状态,可通过快速的抽滤、洗涤未完成中间的纯化,避免了液相肽合成中冗长的重结晶或分柱步骤,可避免中间体分离纯化时大量的损失;使用过量反应物,迫使个别反应完全,以便最终产物得到高产率;增加溶剂化,减少中间的产物聚焦;固相载体上肽链和轻度交联的聚合链紧密相混,彼此产生一种相互的溶剂效应,这对肽自聚集热力学不利而对反应适宜。 固相合成的主要存在问题是固相载体上中间体杂肽无法分离,这样造成最终产物的纯度不如液相合成物,必需通过可靠的分离手段纯化。

4.固相合成的研究发展前景

固相多肽合成已经有40年的历史了,然而到现在,人们还只能合成一些较短的肽链,更谈不上随心所欲地合成蛋白质了,同时合成中的试剂毒性,昂贵费用,副产物等一直都是令人头痛的问题,而在生物体内,核糖体上合成肽链的速度和产率都是惊人的,那么,是否能从生物体合成蛋白质的原理上得到一些启发,应用在固相多肽合成(树脂)上,这是一个令人感兴趣的问题,也许是今后多肽合成的发展。

http://wwwptgcncom/bbs/simple/indexphpt181html

His是最容易发生消旋化的氨基酸,必须加以保护

对咪唑环的非π-N开始用苄基(Bzl)和甲基磺酰基(TOS)保护但这两种保护基均不太理想TOS对亲核试剂不稳定,Bzl需要用氢解或Na/NHs除去,并且产生很大程度消旋Boc基团是一个较理想的保护基,降低了咪唑环的碱性,抑制了消旋,成功地进行了一些合成但是当反复地用碱处理时,也表现出一定的不稳定性哌啶羰基在碱中稳定,但是没能很好地抑制消旋,而且脱保护时要用很强的亲核试刘如

对咪唑环π-N保护,可以完全抑制消旋,π-N可以用苄氧甲基(Bom)和叔丁氧甲基(Bum)保护,(Bum)可以用TFA脱除,Bom更稳定些,需用催化氢解或强酸脱保护,Bum是目前很有发展前途的His侧链保护基,其不足之处在于Fmoc(His)Bum在DCM和DMF中的溶解度较差 Arg的胍基具有强亲核性和碱性,必须加以保护理想的情况是三个氮都加以保护,实际上保护1或2个胍基氮原子保护基分四类:(1)硝基(2)烷氧羰基(3)磺酰基(4)三苯甲基

硝基在制备、酰化裂解中产生很多副反应,应用不广烷氧羰基应主要有Boc和二金刚烷氧羰基(Adoc)2、Fmoc(Arg)Boc的耦联反效率不高,哌啶理时不处稳定,会发生副反应;Adoc保护了两个非π-N,但有同样的副反应发生对磺酰基保护,其中TOS应用最广,但它较难脱除近年来2,3,6-三甲基-4-甲氧苯横酰基(Mtr)较受欢迎,在TFA作用下,30分钟即可脱除,但是它们都不能完全抑制侧链的酰化发生三苯甲基保护基可用TFA脱除缺点是反应较慢,侧链仍有酰化反应,且其在DCM、DMF中溶解度不好 固相中的接肽反应原理与液相中基本一致将两个相应的氨基被保护的及羧基被保护的氨基酸放在溶液内,并不形成肽键要形成酰胺键,经常用的手段是将羧基活化,其方法是将它变成混合酸酐,或者将它变为活泼酯、酰氯,或者用强的失去剂(碳二亚胺)也可形成酰胺键。

碳二亚胺是常用的活化试剂,其中Dcc使用范围最广,其缺点是形成了不溶于DCM的DCH,过滤时又难于除尽其他一些如二异丙基碳二亚胺(DCI)、甲基叔丁基碳二亚胺也用于固相合成中,它们形成的脲溶于DCM中,经洗涤可以除去其他活化试剂,还有Bop(Bop-C1)、氯甲酸异丙酯、氯甲酸异丁酯、SOC12等其中Dcc、Bop活化形成对称酸酐、SOC12形成酰氯,其余三种形成不对称酸酐。 '[)V#e'{8E2c 活化酯法在固相合成中应用最为广泛采用过的试剂也很多,近来最常用的有HOBt酯、ODhbt酯、OTDO酯等

HOBt酯反应快,消旋少,用碳二亚胺很容易制得;ODhbt酯很稳定,容易进行分离纯化,与HOBt酯具有类似的反应性和消旋性能,它还有一个优越之处,在酰化时有亮**、耦联结束时颜色消失,有利于监测反应;OTDO酯与ODhbt酯类似,消旋化极低,易分离,酰化时伴有颜色从桔红色到**的变化等 b1Z7n+k:E5w3n2E2l7\ 将碳二亚胺和α-N保护氨基酸直接加到树脂中进行反应叫做原位法。

用DIC代替Dcc效果更好其他的活化试剂还有Bop和Bop-C1等原位法反应快、副反应少、易操作其中DIC最有效,其次是Bop、Bop-C1等遗憾的是Bop酰化时生成致癌的六甲基磷酰胺,限制了其应用 Fmoc法裂解和脱侧链保护基时可采用弱酸TFA为应用最广泛的弱酸试剂,它可以脱除t-Bu、Boc、Adoc、Mtr等;条件温和、副反应较少不足之处:Arg侧链的Mtr很难脱除,TFA用量较大;无法除掉Cys的t-Bu等基因也有采用强酸脱保护的方法:如用HF来脱除一些对弱酸稳定的保护基,如Asp、Glu、Ser、Thr的Bzl(苄基)保护基等,但是当脱除Asp的吸电子保护基时,会引起环化副反应而TMSBr和TMSOTf在有苯甲硫醚存在时,脱保护速度很快此外,根据条件不同,碱、光解、氟离子和氢解等脱保护方法也有应用

固相合成法对于肽合成的显著的优点:简化并加速了多步骤的合成;因反应在一简单反应器皿中便可进行,可避免因手工操作和物料重复转移而产生的损失;固相载体共价相联的肽链处于适宜的物理状态,可通过快速的抽滤、洗涤未完成中间的纯化,避免了液相肽合成中冗长的重结晶或分柱步骤,可避免中间体分离纯化时大量的损失;使用过量反应物,迫使个别反应完全,以便最终产物得到高产率;增加溶剂化,减少中间的产物聚焦;固相载体上肽链和轻度交联的聚合链紧密相混,彼此产生一种相互的溶剂效应,这对肽自聚集热力学不利而对反应适宜。固相合成的主要存在问题是固相载体上中间体杂肽无法分离,这样造成最终产物的纯度不如液相合成物,必需通过可靠的分离手段纯化。

多肽类化合物广泛存在于自然界中,其中对具有一定生物活性的多肽的研究,一直是药物开发的一个主要方向。生物体内已知的活性多肽主要是从内分泌腺组织器官、分泌细胞和体液中产生或获得的,生命活动中的细胞分化、神经激素递质调节、肿瘤病变、免疫调节等均与活性多肽密切相关。随着现代科技的飞速发展,从天然产物中获得肽类物质的手段也不断得到提高。一些新方法、新思路的应用。不断有新的肽类物质被发现应用于防病治病之中。本文介绍了近几年肽类物质分离、分析的主要方法研究进展。

1 分离方法

采取何种分离纯化方法要由所提取的组织材料、所要提取物质的性质决定。对蛋白质、多肽提取分离常用的方法包括:盐析法、超滤法、凝胶过滤法、等电点沉淀法、离子交换层析、亲和层析、吸附层析、逆流分溶、酶解法等。这些方法常常组合到一起对特定的物质进行分离纯化,同时上述这些方法也是蛋白、多肽类物质分析中常用的手段,如层析、叫泳等。

11 高效液相色谱(HPLC)

HPLC的出现为肽类物质的分离提供了有利的方法手段,因为蛋白质、多肽的HPLC应用与其它化合物相比,在适宜的色谱条件下不仅可以在短时间内完成分离目的,更重要的是HPLC能在制备规模上生产具有生物活性的多肽。因此在寻找多肽类物质分离制备的最佳条件上,不少学者做了大量的工作。如何保持多肽活性、如何选择固定相材料、洗脱液种类、如何分析测定都是目前研究的内容。

1.1.1 反相高效液相色谱(RP-HPLC)

结果与保留值之间的关系:利用RP-HPLC分离多肽首先得确定不同结构的多肽在柱上的保留情况。为了获得一系列的保留系数,Wilce等利用多线性回归方法对2106种肽的保留性质与结构进行分析,得出了不同氨基酸组成对保留系数影响的关系,其中极性氨基酸残基在2~20氨基酸组成的肽中,可减少在柱上的保留时间;在10~60氨基酸组成的肽中,非极性氨基酸较多也可减少在柱上的保留时间,而含5~25个氨基酸的小肽中,非极性氨基酸增加可延长在柱上的保留时间。同时有不少文献报道了肽链长度、氨基酸组成、温度等条件对保留情况的影响,并利用计算机处理分析得到每种多肽的分离提取的最佳条件。

肽图分析(Peptide Mapping):肽图分析是根据蛋白质、多肽的分子量大小以及氨基酸组成特点,使用专一性较强的蛋白水解酶[一般未肽链内切酶(endopeptidase)]作用于特殊的肽链位点将多肽裂解成小片断,通过一定的分离检测手段形成特征性指纹图谱,肽图分析对多肽结构研究合特性鉴别具有重要意义。利用胰蛋白酶能特意性作用于Arg和Lys羧基端的肽链的性质,通过RP-HPLC法采用C18柱检测了重组人生长激素特征性胰肽图谱。同时胰岛素的肽图经V8酶专一裂解也制得,并可鉴别仅相差一个氨基酸残疾的不同种属来源的胰岛素。人类肿瘤坏死因子的单克隆抗体结构也应用酶解法及在线分析技术确定了肽图,便于鉴定分析。此项技术已经在新药开发中得到广泛应用。

112 疏水作用色谱(Hydrophobic interaction chromatogrphy,HIC)

HIC是利用多肽中含有疏水基因,可与固定相之间产生疏水作用而达到分离分析的目的,其比RP-GPLC具有较少使多肽变性的特点。利用GIC分离生产激素(GH)产品的结构与活性比EP-GPLC分离的要稳定,活性较稳定。Geng等利用HIC柱的低变性特点,将大肠杆菌表达出的经盐酸胍乙啶变性得到人重组干扰素-γ。通过HIC柱纯化、折叠出高生物活性的产品。不同人尿表皮生长因子(EGF)也利用HIC纯化到了,均具有良好的生物活性。HIC可将未经离子交换柱的样品纯化。而RP-HPLC则不能达到这一要求。

113 分子排阻色谱(Sizs-Exclusion chromatogrphy,SEC)

SEC是利用多肽分子大小、形状差异来分离纯化多肽物质,特别对一些较大的聚集态的分子更为方便,如人重组生长激素(hgH)的分离,不同结构、构型的GH在SEC柱上分离行为完全不同,从而可分离不同构型或在氨基酸序列上有微小差异的变异体,利用SEC研究修饰化的PEG的分离方法,此PEC具有半衰期长、作用强的特点。一些分子量较大的肽或蛋白均可利用此法分离分析。

1.1.4离子交换色谱(Iron-Exchange chromatography,IEXC)

IEXC可在中性条件下,利用多肽的带电性不同分离纯化具有生物活性的多肽。其可分为阳离子柱与阴离子柱两大类,还有一些新型树脂,如大孔型树脂、均孔型树脂、离子交换纤维素、葡聚糖凝胶、琼脂糖凝胶树脂等。在多肽类物质的分离分析研究中,对多肽的性质、洗脱剂、洗脱条件的研究较多,不同的多肽分离条件有所不同,特别是洗脱剂的离子强度、盐浓度等对纯化影响较大。Wu等报道利用离子交换柱层析法,探讨分离牛碳酸酐异构体和牛血清白蛋白、鸡血清白蛋白酶的提取条件,获得了有价值的数据供今后此类物质分离研究。

1.1.5膜蛋白色谱(Chromatography of Membrane Protein,CMP)

CMP+分离强蔬水性蛋白、多肽混合物的层析系统,一般有去垢剂(如SDS)溶解膜蛋白后形成SDS-融膜蛋白,并由羟基磷灰石为固定相的柱子分离纯化。羟基磷灰石柱具有阴离子磷酸基团(P-端),又具有阳离子钙(C-端),与固定相结合主要决定于膜蛋白的大小、SDS结合量有关。利用原子散射法研究cAMP的分离机制发现,样品与SDS结合后在离子交换柱上存在SDS分子、带电荷氨基酸与固定相中带电离子间的交换,从而达到分级分离的目的。

1.1.6高效置换色谱(High-Performance Displacement Chromatography,HPDC)

HPDC是利用小分子高效置换剂来交换色谱柱上的样品,从而达到分离的目的。它具有分离组分含量较少成分的特性。利用HPDC鉴定分离了低于总量1%组分的活性人重组生长激素(rHG )。在研究非毒性交换剂时Jayarama发现硫酸化葡萄糖(Detran Sulfate,DS)是对β乳球蛋白A和B的良好置换剂,一般DS的相对分子质量为1×104和4×104最宜。研究表明置换剂的相对分子质量越低,越易于与固定相结合,因此在分离相对分子质量小的多肽时,需要更小的置换剂才能将其置换纯化出来。

117 灌注层析(Perfusion Chromatography,PC)

PC是一种基于分子筛原理与高速流动的流动相的层析分离方法,固定相孔径大小及流动相速度直接影响分离效果。试验证明其在生产、制备过程中具有低投入、高产出的特性。目前市场上可供应的PC固定相种类较多,适合于不同分子量的多肽分离使用。

12 亲和层析(Affinity Chromatography,AC)

AC是利用连接在固定相基质上的配基与可以和其特异性产生作用的配体之间的特异亲和性而分离物质的层析方法。自1968年Cuatrecasas提出亲和层析概念以来,在寻找特异亲和作用物质上发现了许多组合,如抗原-抗体、酶-催化底物、凝集素-多糖、寡核苷酸与其互补链等等。对多肽类物质分离目前主要应用其单抗或生物模拟配基与其亲和,这些配基由天然的,也有根据其结构人工合成的。Patel等人利用一系列亲和柱分离纯化到了组织血浆纤维蛋白酶原激活剂蛋白多肽。

固定金属亲和层析(Immobilized Metal Affinity ChromatographyLMAC)是近年来发展起来的一种亲和方法。其固定相基质上鳌合了一些金属离子,如Cu2+、Ni2+、Fe3+等,此柱可通过配为键鳌合侧链含有Lys、Met、Asp、Arg、Tyr、Glu和His的多肽,特别是肽序列中含有His-X-X-X-His的结构最易结合到金属离子亲和柱上,纯化效果较好。其中胰岛素样生长因子(Insylin Like Growth Factor,IGF)、二氢叶还原酶融合蛋白等均用此方法分离到纯度较高的产品。

Chaiken等人报道了另一种亲和层析方法,利用反义DNA表达产生,其与正链DNA表达产生的肽或蛋白具有一定的亲和性,如Arg加压素受体复合物,已用此法分离得到。DNA与蛋白、多肽复合物之间的作用也是生物亲和中常用的方法。将人工合成的寡核苷酸结合在固定相基质上,将样品蛋白或多肽从柱中流过,与之结合可达到分离特定结构多肽的目的。

13 毛细管电泳(Capillary electrophoresis,CE)--分离分析方法

CE是在传统的电泳技术基础上于本世纪60年代末由Hjerten发明的,其利用小的毛细管代替传统的大电泳槽,使电泳效率提高了几十倍。此技术从80年代以来发展迅速,是生物化学分析工作者与生化学家分离、定性多肽与蛋白类物质的有利工具。CE根据应用原理不同可分为以下几种;毛细管区带电泳Capillary Zone electrophoresis,CZE)、毛细管等电聚焦电泳(Capillary Isoeletric Focusing,CIEF)毛细管凝胶电泳(CapillaryGelElectrophoresis,CGE)和胶束电动毛细管层析(Micellar Electokinetic Electrophoresis Chromatorgraphy,MECC)等。

131 毛细管区带电泳(Capillary Zone Electrophoresis,CZE)

CZE分离多肽类物质主要是依据不同组分中的化合物所带电性决定,比传统凝胶电泳更准确。目前存在于CZE分离分析多肽物质的主要问题是天然蛋白或肽易与毛细管硅胶柱上的硅醇发生反应,影响峰形与电泳时间,针对这些问题不少学者做了大量实验进行改进,如调节电池泳液的PH值,使与硅醇反应的极性基团减少;改进毛细管柱材料的组成,针对多肽性质的不同采取不同的CZE方法研究分离5个含9个氨基酸残基的小肽,确定了小肽分析的基本条件,即在低PH条件下,缓冲液中含有一定浓度的金属离子如Zn2+等,此时分离速度快而且准确。

1.3.2细管等电聚电泳(Capillary Isleletric Focusing,CIEF)

由于不同的蛋白、多肽的等电点(PI)不同,因此在具有不同pH梯度的电泳槽中,其可在等电点pH条件下聚集沉淀下来,而与其他肽类分离开来。CIEF在分离、分析混合多肽物质中应用不多,主要应用与不同来源的多肽异构体之间的分离,如对rHG不同异构体分离。由于在CIEF柱表面覆盖物的不稳定性限制了此法的广泛应用。

1.3 3毛细管凝胶电泳 (Capillary Gel Electrophoresis,CGE)

CGE是基于分子筛原理,经十二烷基磺酸钠(SDS)处理的蛋白或多肽在电泳过程中主要靠分子形状、分子量不同而分离。目前,又有一种非交联欢、线性、疏水多聚凝胶柱被用于多肽物质的分离分析,此电泳法适于含疏水侧链较多的肽分离,这种凝胶易于灌注,使用寿命长,性质较为稳定。

1.3.4胶束电动毛细管层析(Micellar Electrokinetic Electorphoresis Chromatography, MECC)

MECC的原理是在电泳液中加入表面活性剂,如SDS,使一些中性分子带相同电荷分子得以分离。特别对一些小分子肽,阴离子、阳离子表面活性剂的应用都可使之形成带有一定电荷的胶束,从而得到很好的分离效果。有文献报道在电解液中加入环糊精等物质,可使用权含疏水结构组分的多肽选择性与环糊精的环孔作用,从而利用疏水作用使多肽得到分离。

1.4多肽蛋白质分离工程的系统应用

以上提到的分离多肽的技术在实际应用过程中多相互结合,根据分离多肽性质的不同,采用不同的分离手段。特别是后基因组时代,对于蛋白质组深入的研究,人们对于分离多肽及蛋白质的手段不断改进,综合利用了蛋白质和多肽的各种性质,采用包括前面提到的常规蛋白多肽提取方法,同时利用了高效液相色谱,毛细管电泳,2-D电泳等手段分离得到细胞或组织中尽可能多的蛋白多肽。在蛋白质组学研究中系统应用蛋白和多肽分离鉴定的技术在此研究中即是分离手段也是分析方法之一。特别是以下提到的质谱技术的发展,大大的提高了蛋白多肽类物质的分析鉴定的效率。

2 分析方法

2.1 质谱分析(Mass Spectrometry, MS)

MS在蛋白、多肽分析中已经得到了广泛应用,特别是在分离纯化后的在线分析中,MS的高敏性、快速性特别适合多肽物质分析鉴定。其中连续流快原子轰击质谱(Continuous-Flow Fast Atom Bombardment, cf-FAB)和电雾离子化质谱(Electrospray Ionization, EIS)是近几年发展起来的新方法。

2.1.1连续流快原子轰击质谱(Continuous-Flow Fast Atom Bombardment, cf-FAB)

cf-FAB是一种弱离子化技术,可将肽类或小分子量蛋白离子化成MH+或(M-H)形式。主要应用于肽类的分离检测,其具有中等分辨率,精确度大于+02amu,流速一般在05-15μl·Ml-1。在测定使流动相需加05%-10%基质如甘油和高有机溶剂成分,使样品在检测探针处达到敏感化。cf-FAB常与HPLC、CEZ等方法结合使用达分离分析的目的,许多多肽的cf-FAB分析方法已经建立,并得到很好的应用。如Hideaki等利用此法研究L-Pro、L-Ala的四肽化合物系列。证明L-Pro在保持小肽构相稳定性。连接分子方面具有重要意义。

212 电雾离子化质谱(Electrospray Ionozation,EIS)

EIS可产生多价离子化的蛋白或多肽,允许相对分子质量达1×105蛋白进行分析,分辨率在1500-2000amu。精确度在001%左右。EIS更适合相对分子质量大的蛋白质的在线分析,且需要气化或有机溶剂使样品敏感化。利用EIS与HPLC联合分离分析GH和血红蛋白均获成功,其也可与CEZ联合应用。

213 基质辅助激光解析/离子化-飞行时间质谱(Matrix-associated laser disso-ciation/ionization time of flight mass spectrmtry,MALDI-TOF MS)

MALDI-TOF是目前蛋白质鉴定中精确测定测定分子质量的手段,特别适合对混合蛋白多肽类物质的相对分子质量的测定,灵敏度和分辨率均较高。它是目前蛋白质组学研究的必备工具。同时结合液相色谱的联用技术可以高效率的鉴定多肽物质。特别是当各种原理的质谱技术串联应用时,不但可以得到多肽的相对分子质量信息,还可以测定它的序列结构,此项技术将在未来蛋白质组学研究中起到决定性作用。

22 核磁共振(Nuclear Magnetic resonance,NMR)

NMR因图谱信号的纯数字化、过度的重叠范围过宽(由于相对分子质量太大)核信号弱等原因,在蛋白、多肽物质的分析中应用一直不多。随着二维、三维以及四维NMR的应用,分子生物学、计算机处理技术的发展,使NMR逐渐成为此类物质分析的主要方法之一。NMR可用于确定氨基酸序列、定量混合物中的各组分组成含量等分析中。但要应用于蛋白质分析中仍有许多问题需要解决,例如,如何使分子量大的蛋白质有特定的形状而便于定量与定性分析,如何减少数据处理的时间问题等。这些问题多有不少学者在进行研究。虽然在蛋白质分析中应用较少,NMR在分析分子中含少于30个氨基酸的小肽时是非常有用的,可以克服上述蛋白质分析中的缺点而达到快速准确分析的目的。

23 其他

除上述方法之外,氨基酸组成分析、氨基酸序列分析、场解析质谱、IR、UV光谱、CD、圆而色谱、生物鉴定法、放射性同位素标记法及免疫学方法等都已应用于多肽类物质的结果鉴定、分析检测之中。

以上简要的介绍了近几年多肽物质分离、分析的常用方法及最新研究方向。随着科学技术水平的不断发展,会有许多更新的分离分析手段不断涌现,因此这一领域的研究具有广阔的前景。

应用SDS-PAGE显示小分子多肽

SDS-PAGE在分离、鉴定和纯化蛋白质方面有着广泛应用,其有效分离范围取决于聚丙烯酰胺的浓度和交联度,其孔径随着双丙烯酰胺与丙烯酰胺比率的增加而减小,比率接近于1:20时,孔径达到最小值。分子量低于10kD的小分子肽类,即使用较高浓度的聚丙烯酰胺凝胶的SDS-PAGE也不能完全分离,或是显不出色,或是显带较弱,带型弥散。且分子量越小,效果也越差。

为了能在SDS-PAGE上显示测定小分子量的多肽,通常采取两种方法:一是增加凝胶的浓度和交联度,在制胶时加入一些可以降低聚丙烯酰胺凝胶网限孔径的溶质分子,使用尿素、甘油或蔗糖等物质;二是选择缓冲液中的拖尾离子的种类和浓度以达到改善多肽的分离效果。

操作步骤

1.电泳缓冲液的配制如下表所示

缓冲液Tris

(mol/L)Tricine

(mol/L)pHSDS

(%)

阳极缓冲液

阴极缓冲液

胶缓冲液02

01

30—

01

—89

825

84—

01

03

用HCl调pH

pH约为825

2.丙烯酰胺贮存液的配制

单丙-双丙混合物单丙的百分数双丙的百分数

495% T, 3%C

495% T, 6%C48

46515

30

T:丙烯酰胺的总浓度

C:交联度

3.胶的制备,与一般SDS-PAGE相似,按下表配制分离胶和浓缩胶

组 份分离胶

16% T,6%C浓缩胶

6% T,3%C

495% T, 3%C丙烯酰胺溶液(ml)

495% T, 6%C 丙烯酰胺溶液(ml)

胶缓冲液(ml)

脲(g)[甘油(ml)]

水(ml)

10%过硫酸铵(μl)

TEMED(μl)

总体积(ml)—

33

33

36[24]

1

40

40

1004048

100

150

25

25

303

4.样品缓冲液

4% SDS

12%甘油

50mmol/L Tris

2%巯基乙醇

001% Serva blue

多肽样品与样品缓冲液混合沸煮2min(或40℃温浴30min)。

5.将灌胶的玻璃板固定在电泳装置上,用1%琼脂糖封边,倒入阴极缓冲液,依次加样。

6.将电泳装置放入电泳槽内,倒入阳极缓冲液,将正负极与电泳仪相接,恒电压50~60V,待指示剂进入分离胶后,电压可升至70~90V,恒压约3h待指示剂走出凝胶下缘停止电泳。

7.染色、脱色及胶的保存同SDS-PAGE

组合化学是一门将化学合成、组合理论、计算机辅助设计及机械手结合一体,并在短时间内将不同构建模块用巧妙构思,根据组合原理,系统反复连接,从而产生大批的分子多样性群体,形成化合物库(compound library),然后,运用组合原理,以巧妙的手段对库成分进行筛选优化,得到可能的有目标性能的化合物结构的科学。

组合化学与传统合成有显著的不同。传统合成方法每次只合成一个化合物;组合合成用一个构建模块的n个单元与另一个构建模块的n个单元同时进行一步反应,得到n×n个化合物;若进行m步反应,则得到(n×n)m个化合物。有人作过统计,一个化学家用组合化学方法在2~6周的工作量,十个化学家用传统合成方法要花费一年的时间才能完成。所以,组合化学大幅度提高了新化合物的合成和筛选效率,减少了时间和资金的消耗,成为20世纪末化学研究的一个热点。

组合化学的合成技术及对传统药物合成化学的冲击 组合化学合成技术

组合化学合成包括化合物库的制备、库成分的检测及目标化合物的筛选三个步骤。化合物库的制备包括固相合成和液相合成两种技术,一般模块的制备以液相合成为主,而库的建立以固相合成为主。

固相技术 液相技术

优点 纯化简单,过滤即达纯化目的,反应完全;合成方法可实现多设计;操作过程易实现自动化 反应条件成熟,不需调整;无多余步骤;适用范围宽。

缺点 发展不完善;反应中,连接和切链是多余步骤;载体与链接的范围有限 ;反应可能不完全;纯化困难;不易实现自动化。

1多针同步合成

多针同步合成是固相合成的基该方法。将96只带有载体针的小棒固定在同一块板上,其位置与96孔滴度板相对应,然后在96个孔中分别加入不同的反应物及试剂,即可同步合成96个样品。

Dewitt等对此法进行改进,使用下图装置(装置图 动画),在玻璃管的上端加一个硅橡胶垫片,可用注射器加样,管的外面有一个列管式夹层,可对反应物加热或冷却。

他们以此装置合成40个乙酰脲衍生物和具有生理活性的1,4-苯并二氮卓衍生物。(反应式6-43 动画)

2混合-分离随机合成法

1991年Lam等报道了以树脂为载体,进行随机合成,可以同步合成上百万个分子,并提出一珠一肽的概念。首先将19种保护的天然氨基酸分别连在树脂上,混合脱除保护,再分成19份分别与19种保护氨基的氨基酸进行偶联反应,可以得到19×19种连在树脂上的二肽,如此进行五次,可合成出195=

2,476,099种连在树脂上的侧链保护的五肽,脱除侧链保护但不从树脂上切下,可得到由近25万连在树

脂上的不同肽段的五肽组成的肽库。此法保证同一树脂上的肽段序列是相同的,即“一珠一肽”。

用该肽库与受体分子反应,可形成显色络合物的肽段树脂就会由无色变为有色,在显微镜下把显色的树脂拣出,用8摩尔/升的盐酸胍洗掉络合物后,用微量多肽测序仪即可测出该肽序列。

Lam等用该法合成的五肽库对抗β-内啡肽的单克隆抗体进行了亲和性研究,找到天然抗原位点肽的六个有效类似物,还用该肽库进行了结合抗生蛋白链菌素的研究,找到一些有结合作用的肽段。

(混分法示意图)

一珠一肽法的优点是可以同步合成大量的化合物,并可对多种受体进行筛选,但只适合于合成能微量测定的样品,如多肽和寡核苷酸,应用范围不广。

3编码确定结构的同步合成

编码确定结构的同步合成法在同步合成时,引入另一个容易合成且在合成后可以通过微量分析测定结构的分子,以该分子作为密码来确定与其同时合成的目标分子的结构。

Mikolaiev 等在1993年报道了Selectide编码合成方法,即在一个树脂上合成一个非肽类化合物或其它不可测序的化合物时,在其上合成一个作为编码用的多肽。

该法常用含多功能团的化合物如Lys等作为目标分子与编码分子的连接点,每一个氨基酸代表目标分子中的一个组成部分,在混合-分离合成法中,每安装一个构建模块,就向目标分子的编码臂上偶联一个代表该构建模块的氨基酸,合成并测定活性后,活性分子结构可以通过测定同一树脂珠上多肽的序列而给出。

药物的开发是一个耗时耗费的过程,据报道,一种新药从开始研制到上市,需8~10年的时间,研究费用高达2~5亿美元。药物的研制历程之所以这样长,很重要的原因是先导化合物的发现与优化速度缓慢。组合化学能够大大加快化合物库的合成及筛选速度,从而大大加快了新药的研制速度。

应用

1新材料的开发

十年来,已报道许多以组合化学方法开发的新材料,如抗磁材料、磷光材料、介电材料、铁电材料、半导体、催化剂、沸石和聚合物及复合材料等。

2催化剂筛选

催化剂传统的筛选法是试凑法,工作量大,效率不高。

科学家们用各种方法设计和建立了催化剂库,对催化剂进行快速筛选,已取得不少成果。

美国Purdue大学开发一种自动制备并检测沸石分子筛的系统,每个式样板有8~19个反应室(150-300微升),每次可同时试验六块板,产品用离心方法回收,最后形成的组合库用X-射线散射技术检测或用电子显微镜筛选,仅消耗很少试剂就取得很多数据。

由于催化反应是放热反应,有活性的催化剂可红外成相。Steven JTaylor和James PMorken利用红外热谱仪对载有3000多个潜在催化剂库的聚合物珠进行筛选,找出两个活性有机化合物作为亲核酰化的有效催化剂。

Wilhelm FMaier 和助手组装了由37种氧化物组成的催化剂库,测定其在100℃对己烯-1氢化的催化活性,红外成相表明有四个点比衬底热,即表明这四个点有活性。活性与非活性点温差非常小,不到07℃,但像01℃的温差也能可靠地检测。

加州大学Selim MSenkan教授发展了一基于激光的方法,以快速筛选环己烯脱氢成苯的固相催化剂库,筛选出由80%铂、10%钯和10%铟组成的三元混合物,比库中其他成员生成的苯多。66个成员库使用全自动装置制备,制备和筛选只需两天半时间。

3新药物的合成与筛选

迄今为止,组合化学最多的应用是新药物的设计、合成和筛选方面。RFService在Science撰文,认为组合化学方法创制的新药将冲击21世纪的药物市场。美国及欧洲已涌现一批组合化学公司,杜邦制药公司的研究者将组合化学(随机设计,合理筛选)与合理药物设计(合理设计,随机筛选)两种不同的方法联用设计合成了新奇的胶原酶抑制剂,能够抑制引起癌转移和关节炎的胶原酶(Coll-agenases),这些工作有利于获得更加有效的抑制癌细胞转移和治疗关节炎的新药。

Beatrice Ruhland 以组合化学法,把同手性氨基酸衍生的胺键合到Tenta GelS树脂上,并与非手性烯酮和芳香醛或α,β-不饱和醛发生环加成反应合成了一些3-氨基-2-氮杂环丁酮--制备α-酰胺基-β-内酰胺,包括许多重要的抗生素的前体。发现该反应有很高的cis选择性,二种非对映体cis β-内酰胺比率为1:1到3:1。

1994年,Ellman小组应用多针同步合成系统二次共合成192种结构不同的1,4-苯并二氮杂卓衍生物,并测定了这些化合物对缩胆囊肽(CCK)A受体的结合作用。

Haskell-Luevano,C等1999年报道以组合化学法固态合成951个化合物,这些化合物用显色生物试验在10μM测试,显示对MC1R分型的活性。选择其中二种重新合成、纯化和鉴定,一种鉴定结构为2的,对鼠的MC1R分型EC50为425μM,为进一步研究非肽杂环兴奋剂提供新的起点。

4新农药的合成和筛选

1962年,美国女作家蕾切尔·卡逊撰写《寂静的春天》一书,提出农药杀害野生动物、危害儿童健康、污染表土的问题,引起各国的关注。随后,一批高毒、高残留农药被禁用,并促使农药的研究和生产向提高原药固有的活性及其使用效率和效果,降低农药用量,提高农药对人、畜和作物的安全性,改善与环境的相容性,减少对非靶标生物和生态环境的负面影响的方向发展。

十年来,组合化学法结合高通量的筛选,大大加快农药研究开发的速度,如艾格福公司每年可合成5万个新化合物;诺华公司的筛选能力是每年10万个新化合物;捷利康公司1995~1997年,化合物的筛选能力从每年1万个提高到10万个,1998年为12万个,2000年为20万个。

John JParlow 利用分子反应活性的互补性/分子识别技术(CMR/R)平行合成具有除草活性的取代杂环酰胺化合物,生物试验结果表明化合物3有一定的除草活性。(反应式6-46 动画)

他们把3(结构式3)分成两部分。先对A部分的杂环进行改造,改变环上的原子和取代基,得到56个化合物,但生物试验表明它们的活性不如3大;接着对B部分进行改造,以不同的取代基取代苯环C或D的不同部位,得到68个化合物,生物试验表明化合物4(结构式4)的生物活性是3的4倍。

展望

21世纪是绿色化学的世纪。绿色化学要求将原子重新巧妙组合,实现零排放的原子经济反应,生产环境友好产品。所以,组合化学是实现绿色化学的必经之路。

正如中国军事医学研究所胡文祥所长在《广义组合化学》一文所指出的:任何成功的事情或事物都是巧妙的合理的组合。1234567七个音符可以组合成最美妙的音乐旋律,赤、橙、黄、绿、青、蓝、紫七色光可以组合成美丽的画卷和五彩缤纷的世界;喜、怒、哀、乐、悲、恐、惊七种感情可以组合成斑斓的人生。我们相信元素周期表上109种元素的巧妙组合,将为绿色化学、为美化地球环境谱写不朽的篇章。组合化学从一诞生起,便显示出强大的生命力,十余年来,在有机(包括药物)领域得到了蓬勃发展。21世纪的化学将更多地向生命、材料领域渗透,对于这个领域内的合成化学家来说,组合化学提供了一条新的化学合成思路。虽然还面临着诸如缺乏系统有效的平行检测手段等困难,但随着电脑技术和自动化水平的提高及新型检测仪器的研制,这些困难将逐步被解决。

作者:吉民 定价:¥ 3500 元

出版社:化学工业出版社 出版日期:2004年06月

ISBN:7-5025-5500-5 开本:16 开

类别:有机化学化工 页数:304 页

简介

本书从组合化学的角度出发,详细分析了合成策略,以此为基础着重介绍了固相组合和液相组合的合成方法、组合化学的筛选及低聚物的合成等内容。同时强调了组合化学在高通量筛选和新药发现中的作用,并且对组合化学的进展做了展望。

目录

第1章组合合成策略7

混合裂分法7

树脂珠技术9

茶叶袋法10

平行合成法10

使用树脂珠的反应器械14

多中心合成法15

空间定位平行合成法15

混合试剂合成法16

参考文献16

第2章组合合成方法——固相组合合成18

载体19

树脂珠19

多针22

圆片24

薄片25

结合分子28

酸不稳定结合分子31

碱不稳定结合分子34

安全制动结合分子37

氨基甲酸酯结合分子38

硅结合分子/无痕迹结合分子40

光不稳定结合分子41

烯丙基官能团化结合分子42

多处可裂(多官能团)结合分子42

多中心结构库模板43

方酸44

经BaylisHillmann反应得到的模板45

2溴乙酰基)吡咯作为模板51

用烯酮作为模板54

反应类型59

亲电和亲核取代反应60

取代反应63

杂环合成63

环加成反应66

缩合反应67

酰胺形成及相关反应69

及相关反应69

麦克尔加成69

烯烃形成69

氧化反应69

还原反应69

参考文献70

第3章组合合成方法——液相组合合成76

与固相组合合成相比较77

混合物的合成78

已用于液相组合化学的反应80

酰化反应80

胺的磺化80

脲、硫脲和氨基甲酸酯的制备81

烷化和加成反应81

还原胺化81

胺的芳基化81

经缩合反应形成碳碳键81

钯催化的碳碳键的形成81

氢化和还原81

多组分反应81

环化反应82

其他反应82

反应顺序83

纯化85

固相束缚试剂85

固相萃取86

液相萃取88

氟的合成89

在可溶性聚合物载体上的合成91

6树枝状载体93

高聚物试剂的使用94

参考文献95

第4章组合化学库的筛选97

混合物库97

在珠筛选法97

解缠绕法98

编码105

多处可裂的结合分子115

含单独化合物的库115

参考文献116

第5章组合化合物库的鉴定118

红外光谱法(IR)118

傅里叶红外显微镜学118

衰减全反射光谱127

其他的红外光谱方法129

核磁共振法130

在珠分析法130

高分辨质子魔角旋转核磁共振133

3质谱138

组合化合物分析138

样品分析与纯化的高通量系统154

参考文献160

第6章组合合成的低聚物165

61类肽165

亚单体法165

单体合成法167

3拟肽物167

彻底烷基化多肽168

类肽169

低聚氨基甲酸酯169

磺酰肽和插烯磺酰氨肽170

聚N酰胺172

寡脲174

线性寡脲174

低聚环脲和环硫脲174

硫脲175

脲类肽175

含杂环低聚物175

聚甲基吡咯和咪唑175

含噻唑环和唑环的多肽176

寡聚四氢呋喃176

聚异唑啉177

寡聚噻吩177

含吡咯啉酮的低聚物177

其他合成低聚物178

反假肽178

插烯多肽179

氮杂化物和氮杂多肽179

多肽180

四取代氨基酸的多肽180

聚羟基化合物181

多肽核酸181

肽键在一个位置上的修饰182

硫代酰胺假肽182

酰胺键被还原的多肽182

羟基酰胺键的多肽183

羟乙胺肽键电子等排体184

参考文献184

第7章自动组合合成188

单个化合物的平行合成189

实验室制备效率189

实验室自动化设备190

分散型自动化系统191

中心控制和功能型多组分系统192

中心自动的样品导向多组分系统192

高通量纯化和分析193

自动纯化193

微反应系统简介194

参考文献195

第8章组合生物合成196

克隆生物合成功能基因簇196

遗传工程及新药研究197

1靶向基因失活197

单基因表达198

基因簇的表达202

合成起始单位变异203

酶亚基的重组装203

组合生物合成的应用212

寡糖类抗生素生物合成基因的运用212

其他来源基因的运用——地球上的新化合物212

对酶变换其底物特异性212

参考文献213

第9章用作化学传感器的分子接受器215

超分子识别部位215

大环肽类217

组合接受器库218

环肽作为化学传感器的超分子识别部位219

参考文献222

第10章高通量筛选与新药发现224

高通量药物筛选224

对高通量筛选的要求225

高通量药物筛选的组成226

化合物资源226

微反应系统227

筛选模型227

高灵敏度检测系统229

自动化操作系统230

数据采集传输处理系统231

高通量筛选的特点231

高通量药物筛选的过程232

高通量筛选系统简介233

虚拟筛选234

参考文献236

第11章催化反应的高通量实验238

1HTE技术用于催化反应238

库设计和试验策略240

合成方法242

测试方法243

多路径反应器244

参考文献246

第12章计算机辅助化合物库设计247

化合物库设计理论248

相似性原则249

分子描述250

二维指纹250

三点药效团251

其他描述251

分子相似性方法252

亲和力指纹252

特征树253

碎片的自动化结构重合254

描述有效性研究254

和3D描述的对比254

随机设计和合理化设计的比较255

三点药效团和2D指纹比较256

局部相似——相似性半径256

化合物选择技巧257

设计组合化合物库258

参考文献262

第13章组合化学进展264

丝氨酸及半胱氨酸蛋白酶抑制剂265

真菌I型蛋白香叶基转移酶(GGTase1)抑制剂267

KDR受体酪氨酸激酶抑制剂268

自动形成靶向化合物库设计270

优先GPCR配体272

拮抗剂274

胺的合成277

多样性导向合成280

Katritsky苯并三唑固相合成法283

多组分缩合285

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/8982244.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-02
下一篇2023-10-02

发表评论

登录后才能评论

评论列表(0条)

    保存