情感分析器的概念

情感分析器的概念,第1张

这是计算机世界的一个尚未开发的前沿:将各种人类情感转化成实实在在的数据。

起源

虽然之前也有一些相关工作,但目前公认的情感分析比较系统的研究工作开始于(Pang et al, 2002)基于监督学习(supervised learning)方法对**评论文本进行情感倾向性分类和(Turney,2002)基于无监督学习(unsupervised learning)对文本情感情感倾向性分类的研究。Pang et al, 2002)基于文本的N元语法(ngram)和词类(POS)等特征分别使用朴素贝叶斯(Naive Bayes),最大熵(Maximum Entropy)和支持向量机(Support Vector Machine,SVM)将文本情感倾向性分为正向和负向两类,将文本的情感进行二元划分的做法也一直沿用至今。同时他们在实验中使用**评论数据集目前已成为广泛使用的情感分析的测试集。(Turney ,2002)基于点互信息(Pointwise Mutual Information,PMI)计算文本中抽取的关键词和种子词(excellent,poor)的相似度来对文本的情感倾向性进行判别(SO-PMI算法)。在此之后的大部分都是基于(Pang et al, 2002)的研究。而相对来说,(Turney et al,2002)提出的无监督学习的方法虽然在实现上更加简单,但是由于单词之间的情感相似度难以准确的计算和种子词的难以确定,继续在无监督学习方向的研究并不是很多的,但是利用SO-PMI算法计算文本情感倾向性的思想却被很多研究者所继承了

百度文心一言是一款基于人工智能技术的短文本情感分析产品,它能够针对输入的短文本,分析出其中蕴含的情感,并给出相应的情感标签和分值。文心一言可以帮助用户更好地理解和处理短文本信息,并为企业提供情感分析类的数据支持,促进决策的准确性和效率。

一、更加准确的情感分析。文心一言不仅能够高度自适应,精准分析自然语言,还能够识别语境,抓住写作的情感、倾向以及沟通目的。采用更先进的算法和技术,让情感识别更为准确可信,提升应用的实用价值。

二、更丰富的应用场景

我期望文心一言能够应用于更广泛的场景,包括但不限于社交媒体、舆情监测、新闻报道、广告营销、客户服务等领域。例如,可以结合社交媒体的实时数据,实现更全面的舆情监测和反馈。还可以为广告商提供更精准的广告投放策略,提高广告投放的效果和ROI。期望文心一言可以通过与其他工具和产品的结合,为更多行业解决情感分析及管理问题。

三、更完善的应用支持

百度文心不停完善产品本身和其应用生态,进一步提高用户体验和应用效果。具体来说,文心一言需要提供更加丰富、灵活的情感分析API,同时为开发者提供更完善的文档和技术支持。

此外,还需要不断完善产品的用户界面和易用性,方便非技术人员使用。根据用户反馈,及时更新算法、修复漏洞,优化集成流程,达到更好的用户体验。

在不断变化的市场环境下,情感分析类技术正在逐渐成为企业决策的重要组成部分。文心一言作为其中的佼佼者之一,必将不懈努力,积极应对市场变化,以先进的技术为基础,为用户和企业提供更加优质的情感分析服务

目前人工智能的研究发展已经达到了较高的水平,同时它的研究内容也在逐步扩展和延伸。对人的情感和认知的研究是人工智能的高级阶段,它的研究将会大大促进拟人控制理论、情感机器人、人性化的商品设计和市场开发等方面的进展,为最终营造一个人与人、人与机器和谐的社会环境做出贡献。心理学家认为,人工智能下一个重大突破性的发展可能来自与其说赋予机器更多的逻辑智能,倒不如说赋予计算机更多的情感智能。对人的情感和认知的研究是在人工智能理论框架下的一个质的进步。因为从广度上讲它扩展并包容了感情智能,从深度上讲感情智能在人类智能思维与反应中体现了一种更高层次的智能。对人的情感和认知的研究必将为计算机的未来应用展现一种全新的方向。在这个领域的研究中主要包括情感计算(Affective Computing)、人工心理(Artificail Psychology)和感性工学(Kansei Engineering)等。

人工心理理论是由中国北京科技大学教授、中国人工智能学会人工心理与人工情感专业委员会主任王志良教授提出的。他指出,人工心理就是利用信息科学的手段,对人的心理活动(着重是人的情感、意志、性格、创造)的更全面再一次人工机器(计算机、模型算法等)模拟,其目的在于从心理学广义层次上研究人工情感、情绪与认知、动机与情绪的人工机器实现的问题。

日本从上世纪九十年代就开始了感性工学(Kansei Engineering)的研究。所谓感性工学就是将感性与工程结合起来的技术,是在感性科学的基础上,通过分析人类的感性,把人的感性需要加入到商品设计、制造中去,它是一门从工程学的角度实现能给人类带来喜悦和满足的商品制造的技术科学[4]。日本已经形成举国研究感性工学的高潮。

欧盟国家也在积极地对情感信息处理技术(表情识别、情感信息测量、可穿戴计算等)进行研究。欧洲许多大学成立了情感与智能关系的研究小组。其中比较著名的有:日内瓦大学 Klaus Soberer领导的情绪研究实验室。布鲁塞尔自由大学的D Canamero领导的情绪机器人研究小组以及英国伯明翰大学的A Sloman领导的 Cognition and Affect Project。在市场应用方面,德国Mehrdad Jaladi-Soli等人在2001年提出了基于EMBASSI系统的多模型购物助手。EMBASSI是由德国教育及研究部(BMBF)资助并由20多个大学和公司共同参与的,以考虑消费者心理和环境需求为研究目标的网络型电子商务系统。

我国对人工情感和认知的理论和技术的研究始于20世纪90年代,大部分研究工作是针对人工情感单元理论与技术的实现。哈尔滨工业大学研究多功能感知机,主要包括表情识别、人脸识别、人脸检测与跟踪、手语识别、手语会成、表情合成、唇读等内容,并与海尔公司合作研究服务机器人。清华大学进行了基于人工情感的机器人控制体系结构的研究。北京交通大学进行多功能感知机和情感计算的融合研究。中国科学院自动比研究所主要研究基于生物特征的身份验证。

当前国际人工智能领域对人工情感合认知领域的研究日趋活跃。美国人工智能协会(AAAI)在1998,1999和2004年连续组织召开专业的学术会议对人工情感和认知进行研讨,国内的研究者也开展了许多的研究工作和学术活动。2003年12月在北京召开了第一届中国情感计算及智能交互学术大会。2005年10月在北京召开的第一届情感计算和智能交互国际学术会议,集合了世界一流的情感计算、人工情绪和人工心理研究的著名专家学者。这说明我国的人工情感和人工心理的研究在逐步展开并向国际水平看齐。

对情感计算的研究大致可以分为情感识别、情感建模和情感反应三大部分,这其中情感识别无疑是最基础,也是最重要的部分。

综上所述,对人的情感和认知的研究,包括对情感识别的研究,无论在理论上还是实践中都已经受到了研究者广泛的关注,对这一问题的研究具有重要的理论和应用价值。对这一问题的研究将最终推动人工智能的进一步发展,实现人机和谐的目标。

很多人并不了解情感分析师到底是个怎样的职业,包括,某些自称是情感分析师的人。感情,是人类思维中最复杂的领域。因为感情没有标准,也难分对与错,只有爱与不爱。所以,很多只做对事的人,也有可能被所爱之人厌烦离弃;而有些常做错事的人,也照样有可能让人爱得难分难舍。

正是基于感情的复杂性,是不可能三言两语说得清的。所以,我的分析流程与绝大多数的情感分析师不同。对于首次咨询,我要求咨询者必须提供五千字以上的情况综述。综述包括个人成长经历、求学经历、工作经历、恋爱经历、家庭背景、直系亲属关系、婚恋对象情况、完整的感情发展过程、双方的原话对话记录、以及两性生活等各方面的信息。

有人可能觉得,这简直是查户口嘛。这么说还真没错,我所想要了解的信息,可能比户籍警所要了解的还细致。也为此婉拒过不少懒得写、或者写不了情况综述的咨询者。原因有三:

一、我个人认为,若一个遭遇感情难题的人,连写五千字的耐心都没有,那么,我很难相信TA在感情问题的对待上,有足够的意志和决心;又或是连写五千字的能力都没有的人,那么,我很难相信TA在相互交流的过程中,有足够的感悟力和理解力。

二、之所以先看写的,而不是去听说的,是因为,如果听,只能听一遍,我还未必记得住;而看文字,可以看几遍、甚至十几遍。这个世界上,在脑袋上画几个圈就能想出绝妙主意的人,就只有动画片里的一休。开国大将粟裕是我军百战百胜的战神,在指挥淮海战役时曾七天七夜未合眼。他在干什么?——看战报、看地图。从某种意义上讲,战争,就是两方指挥官的心理博弈,只有掌握详细和精准的战场信息,准确的分析出对战方的真实意图,自己才能做出最正确的应对。不仅是战场如此,无论在商场、职场、还是情场,概莫如此。

有足够的信息量支撑,才叫分析、推理;没有信息量支撑,那不叫分析,而是猜测、臆想。

三、感情里的很多细节需要换位思考,是要以当事人的性别、性格、思维、行事方式去思考问题。感情中的问题,其实不是事的问题,而是人的问题。只有先了解人,才有资格讨论事。

可能不少人看过我在知乎上的答复,对于公开咨询的,我并不会追问详情,答复都是从大众角度给出的。而私密分析不同,需要从感情双方的个体角度,分析具体到个人的性格、思维以及心理,而不是泛泛的男性心理、女性心理。

我常说一句话:没有任何一种方法可以解决百家问题,哪怕,是相同的问题。因为每段感情里,双方的性格对位都是不同的。什么是性格对位呢?打个俗气的比方。比如,诸葛亮的空城计,就只能由他用在司马懿身上。因为诸葛亮知道司马懿多疑,而司马懿知道诸葛亮多谋,如此,空城计才能有效。倘若是司马懿对着张飞用空城计会是什么结果?——城必破。因为以张飞鲁莽的性格,他才不管你城中有多少兵,先攻了再说。这,就是性格对位。

感情中亦是如此,在别种性格的人那里是解决问题的好方法,但未必到我们这里同样有效。

有些人以为情感分析师是份很轻松的工作,只要凭经验就能张口即来为咨询者提供建议。我不知道别人轻不轻松,我只知道自己的工作没那么轻松。经常会收到咨询者上万字的情况综述,还有少则几千、多则几万条微信、QQ等对话记录。单只是完整的看一遍,有的就需要花四五个小时,再加上思考分析的时间,往往合计是个小时以上。

读到这里,估计有不少人会感叹:你的情感分析,为何如此麻烦。

是的,很麻烦。连我本人都觉得麻烦。但真正的情感分析,原本就是个很费脑力的工作。

如果我们对自己过去所经历的事都没有一个清晰的认知,那么,我们有何资本谈掌控未来?如果我们不能转变原有的那种使自己陷入问题之中的思维,那么,我们凭什么能获得与之前不一样的结果?

我也不愿意给自己找麻烦,但深知,作为情感分析师,就需要对自己的分析负责,因为,给咨询者的每一个建议,都有可能改变其一生的感情生活轨迹。更有甚者,是生与死。

一定会有人觉得这是危言耸听。我说一个真实的事件:有一个刚入行不久的心理咨询师,在某论坛讲述自己遇到的心理咨询个案,一个女孩为情所伤,向他寻求帮助,在咨询的过程中女孩就有透露自己想要轻生的念头。这位年轻的咨询师天天安慰她,但数日之后,女孩还是选择了离开这个世界。事后还有警察登门做调查,因为女孩最后几个通话记录里有他的电话号码。然后他给警察看了与该女孩QQ里的咨询对话记录。自然,他并没有嫌疑。但他还是为此感到痛心与难过。

有人留言安慰这个年轻的咨询师:“你好心帮她,已经很尽力了,她一心求死,这不是你的责任。”

看这位咨询师的叙述,能从其行文中感觉出他是个很善良的人,所以他才会为女孩的离世深感痛心。这样一位好心人,我自然不会发言增加他的自责心理。但今天在自己的文章中,我想说是:单有好心是不行的。正是因为这位年轻咨询师的好心,断送了女孩最后的求生机会。

该女孩在结束生命之前,还肯找心理咨询师寻求心理疏导,说明她去意不绝,说明她也想摆脱这种轻生的想法。这求生与求死,就在一念之间。当一个咨询师,连咨询者的真实心理都摸不清,单只是积极安慰有何用?若是说不到当事人的心里,那么说再多正确的话、再多有理的话,也统统都是废话!一个咨询师若不能懂得咨询者的心理,那么,早早劝其求助资深咨询师,便是对咨询者最大的负责。

在我书中的序言里有一句话:作为一名情感咨询师,如果无法做到与咨询者感同身受,那便是不合适这个职业的。

情感心理咨询机构很多,选择时要注意以下几点:

1、情感分析师是否专业

看情感分析师如何帮你分析你的问题,是站在客观中立的立场帮你分析问题,不管你有什么疑问都耐心专业的解答,不是千方百计让你交钱,不交钱就怎样怎样,这样的只是为了你的钱绝对不是想给你解决问题的。

2、根据方案判断

大多数机构都是包治百病,并且并且都能快速治好,不管什么问题都能100%解决的,绝对骗子,你想身体的疾病还不能百分百治愈,何况情感问题。其实情感问题想要有个美好的结果是多种因素的,有许多是不可控,也无能为力做改变的。所以遇到什么都能解决的那就赶紧逃之夭夭吧。

3、自己保持清醒

不管是选择哪家机构,都需要情感求助者自己,时刻保持一个清醒的状态,明辨是非的能力,要不然说再多也是白搭!

豚海心理咨询咨询,是一个有温度的心理情感咨询服务平台,其愿望就是“让每一颗心每个家庭都快乐幸福”,〔豚海心理咨询〕针对不同的情感问题,细分了不同的咨询师,更能够针对性的帮助用户。

我是看到广告到店后可以领取免费心理测评,怀着试试看的心态去体验一下,没想到老师和蔼可亲、也非常专业,首先了解了我个人情况,还签了保密协定,这个非常赞,确实效果不错,老师引导我去探寻内心真实的想法去认清自己,然后给予意见和建议

⑴ 菜鸟问个问题,算法工程师一般是学什么出身的

其实有些算法是在数学的基础上,但是光弄数学是没有的,那只是纸上谈兵而已,真正地还得将其在计算机中运用的更多才行

⑵ 算法工程师学什么专业

学云计算属于电子商务专业。

⑶ 算法工程师、研发工程师、软件工程师都是什么

算法工程师是利用算法来处理事物的人,根据研究领域,主要包括软件开发和软件开发方面的知识和知识,它主要包括对软件开发的知识/视频专业进行加工的工程师,软件开发的工程师和软件开发的工程师需要有丰富的经验。

研发工程师是从事某一行业的专业人员,系统地研究和开发一些不存在的东西,并且有一定的经验,或者改进已经存在的东西以达到最广泛的工作目标的程序员,它需要强烈的好奇心,喜欢新的东西,有趣的学习。

软件工程师是从事软件专业的人的专业能力的认证,它表明他具有从事工程开发的系列的相关工程师的集体资格。

(3)算法工程师什么专业扩展阅读:

算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。

研发工程师创新意识:

思路开阔,能从市场、用户和生产工艺角度考虑产品开发。唯技术至上的人,思路狭隘,即使聪明过人,只能扮演一个处理具体问题的小角色。企业的唯一目标是赚钱,能赚钱就是好产品,不能赚钱就等于零。

对于软件工程师,不太重视学历,但并不是对学历没有要求,重点关注项目的经验和学习知识的能力,能否利用软件工程专业知识来解决问题,根据岗位不同,对软件工程师的要求也有所不同。

⑷ 算法工程师要学什么

所谓算法工程师,首先需要是一名工程师,那么就要掌握所有开发工程师都需要掌握的一些能力。有些新手对于这一点存在一些误解,认为所谓算法工程师就只需要思考和设计算法,不用在乎这些算法如何实现,而且会有人帮你来实现你想出来的算法方案。这种思想是错误的,在大多数企业的大多数职位中,算法工程师需要负责从算法设计到算法实现再到算法上线这一个全流程的工作。所以作为一个算法工程师,首先要会编程,你的编程语言一定要熟练掌握。当你熟练掌握编程语言以后,还要认真研究机器学习理论以及概率与数理统计方面的知识。慢慢进阶到架构设计以后,你才向算法工程师迈出了坚实的一步。

⑸ 算法工程师一般是学什么出身的

ACMer

⑹ 算法工程师应该学哪些

一、算法工程师简介

(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)

算法工程师目前是一个高端也是相对紧缺的职位;

算法工程师包括

音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(

@之介

感谢补充)、其他其他一切需要复杂算法的行业

专业要求:计算机、电子、通信、数学等相关专业;

学历要求:本科及其以上的学历,大多数是硕士学历及其以上;

语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文;

必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。

算法工程师的技能树(不同方向差异较大,此处仅供参考)

1 机器学习

2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-rece/MPI

3 数据挖掘

4 扎实的数学功底

5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R

加分项:具有较为丰富的项目实践经验(不是水论文的哪种)

二、算法工程师大致分类与技术要求

(一)图像算法/计算机视觉工程师类

包括

图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师

要求

l

专业:计算机、数学、统计学相关专业;

l

技术领域:机器学习,模式识别

l

技术要求:

(1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化;

(2) 语言:精通C/C++;

(3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件医学领域:ITK,医学图像处理软件包

(4) 熟悉OpenCV/OpenGL/Caffe等常用开源库;

(5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑;

(6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先;

(7) 音/视频领域熟悉H264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速;

应用领域:

(1) 互联网:如美颜app

(2) 医学领域:如临床医学图像

(3) 汽车领域

(4) 人工智能

相关术语:

(1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程

(2) Matlab:商业数学软件;

(3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题

(4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。

(5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。

(6) CNN:(深度学习)卷积神经网络(Convolutional Neural Neork)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。

(7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。

(二)机器学习工程师

包括

机器学习工程师

要求

l

专业:计算机、数学、统计学相关专业;

l

技术领域:人工智能,机器学习

l

技术要求:

(1) 熟悉Hadoop/Hive以及Map-Rece计算模式,熟悉Spark、Shark等尤佳;

(2) 大数据挖掘;

(3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发;

应用领域:

(1)人工智能,比如各类仿真、拟人应用,如机器人

(2)医疗用于各类拟合预测

(3)金融高频交易

(4)互联网数据挖掘、关联推荐

(5)无人汽车,无人机

相关术语:

(1) Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。

(三)自然语言处理工程师

包括

自然语言处理工程师

要求

l

专业:计算机相关专业;

l

技术领域:文本数据库

l

技术要求:

(1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法;

(2) 应用NLP、机器学习等技术解决海量UGC的文本相关性;

(3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发;

(4) 人工智能,分布式处理Hadoop;

(5) 数据结构和算法;

应用领域:

口语输入、书面语输入

、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。

相关术语:

(2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的计算机中却有可能理解为结婚的“和尚“

(四)射频/通信/信号算法工程师类

包括

3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师

要求

l

专业:计算机、通信相关专业;

l

技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理

l

技术要求:

(1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备;

(2) 信号处理技术,通信算法;

(3) 熟悉同步、均衡、信道译码等算法的基本原理;

(4) 射频部分熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件;

(5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学

应用领域:

通信

VR用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)

物联网,车联网

导航,军事,卫星,雷达

相关术语:

(1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。

(2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。

(3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。有线电视就是用射频传输方式

(4) DSP:数字信号处理,也指数字信号处理芯片

(五)数据挖掘算法工程师类

包括

推荐算法工程师,数据挖掘算法工程师

要求

l

专业:计算机、通信、应用数学、金融数学、模式识别、人工智能;

l

技术领域:机器学习,数据挖掘

l

技术要求:

(1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法;

(2) 熟练使用SQL、Matlab、Python等工具优先;

(3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验均为分布式计算框架

(4) 数学基础要好,如高数,统计学,数据结构

l

加分项:数据挖掘建模大赛;

应用领域

(1) 个性化推荐

(2) 广告投放

(3) 大数据分析

相关术语

Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。

(六)搜索算法工程师

要求

l

技术领域:自然语言

l

技术要求:

(1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发

(2) hadoop、lucene

(3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验

(4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验;

(5) 精通倒排索引、全文检索、分词、排序等相关技术;

(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;

(7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ;

(8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。

(七)控制算法工程师类

包括了云台控制算法,飞控控制算法,机器人控制算法

要求

l

专业:计算机,电子信息工程,航天航空,自动化

l

技术要求:

(1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动

(2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试;

l

加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础;

应用领域

(1)医疗/工业机械设备

(2)工业机器人

(3)机器人

(4)无人机飞控、云台控制等

(八)导航算法工程师

要求

l 专业:计算机,电子信息工程,航天航空,自动化

l 技术要求(以公司职位JD为例)

公司一(1)精通惯性导航、激光导航、雷达导航等工作原理;

(2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法;

(3)具备导航方案设计和实现的工程经验;

(4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具;

公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历;

(2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合;

应用领域

无人机、机器人等。

⑺ 想成为一名人工智能算法工程师,大学读什么专业

就业前景还是蛮大的!!!这是未来的潮流

⑻ 想做算法工程师考研考哪个专业

模式识别一类!

⑼ 想成为一名人工智能算法工程师,大学读什么专业

首先,从研究生的就业情况来看,近两年算法工程师的岗位需求量较前些年有了明显的下滑,目前大数据岗位的研发型人才需求量要相对大一些。所以,如果当前要想选择从事算法岗位,在选择空间上往往并不会很大,这一点应该做好心理准备。

在IT行业内多个领域都需要算法工程师,目前算法岗位多集中在大数据和人工智能相关领域,由于目前大数据正处在落地应用的初期,而人工智能行业也普遍存在落地难的问题,所以算法岗位的需求量受到了较大的影响。

从目前行业的发展趋势来看,算法岗位短期内出现爆发式人才需求的可能性并不大,一方面科技企业对于算法人才的储备相对比较充足(前些年招聘较多),另一方面算法研究也需要一个沉淀的过程。

从人才培养的角度来看,算法工程师往往都需要具备研究生学历,计算机专业、数学专业和统计学专业比较容易从事算法岗位(要看具体的研究方向),也有一部分经济学专业、物理专业、自动化专业的毕业生会从事算法岗位。

计算机相关专业从事算法岗位是比较常见的,其中以大数据方向、人工智能相关方向的毕业生从事算法岗位居多,实际上也有一部分计算机专业的本科生会选择算法岗位,这与自身的知识结构有较为密切的关系。

早期有不少数学相关专业的毕业生会从事算法岗位,但是目前数学专业的毕业生从事算法岗位的要求有了较为明显的提升,重点在于算法实现能力的要求(编程能力),这也导致一部分数学专业毕业生无法直接从事算法岗位。

目前,人工智能的研究和实践如火如荼,但是应该摆正心态,做好打持久战的准备,短时期内很难将该领域的技术研究透彻,并完全推广应用。一句话,此路任重而道远,但却是人类社会科技发展的必经阶段。

⑽ 算法工程师一般是学什么出身求解答

算法工程师一般都是学的数据挖掘和机器学习,而且对专业要求比较高,对能力也有一定的限制。

数据分析师一般是计算机或者数学相关专业。成为一个合格的大数据分析师应该学习和掌握以下技能:

统计分析:大数定律,抽样推测规律,秩和检验,回归分析,方差分析等;

可视化辅助工具:Excel,PPT,思维导图,Visio;

大数据处理框架:Hadoop,Kaffka,Storm,ELK,Spark;

数据库:SQLite,MySQL,MongoDB,Redis,Cassandra,HBase;

数据仓库/商业智能:SSIS数据仓库,SSAS SSRS,DW;

数据挖掘工具:Matlab,SAS,SPSS;

人工智能:机器学习相关知识;

挖掘算法:数据结构,一致性,常用算法;

编程语言:Python/R,Ruby,Java;

计算机对数据存储和保存了大量数据,包括科学家和工程师也都了丰富的研究和应用尽可能多的提取数量。然而想从大量数据中洞察出真正和有用的,更高价值的数据,都是需要人工干预的。这些人有丰富的行业经验和洞察力,而且对业务有深刻了解,并且能够使用好数据分析的工作,例如Excel,SPSS,Python/R等。这种职位一般存在于高科技公司,例如PayPal和Google,相信以后人工智能、大数据、云计算创业的很多中小型企业,对此职位的需要也会越来越多。

对以上知识进行有重点的学习,解决的方法是让各种技能达标:

初级数据分析师需要快速学习能力80分,数学知识40分,分析工具使用程度70分,编程语言30分,业务理解80分,逻辑思维80分,数据可视化能力40分,协调沟通能力80分。

高级数据分析师要达到快速学习能力80分,数学知识70分,分析工具使用程度90分,编程语言60分,业务理解90分,逻辑思维80分,数据可视化能力90分,协调沟通能力80分。

总之,成为分析师的重要点并非数学知识和编程能力,最重要提是业务理解和协调能力,所以针对不同的行业的分析师,要学习的行业知识也不尽相同,需要对症下药,实施不同学习策划和路径。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/7535812.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-06
下一篇2023-09-06

发表评论

登录后才能评论

评论列表(0条)

    保存