不是不准。根据查询夸克软件官网得知,夸克软件手机了全网百分之九十的题目,通过只能匹配引擎进行题目答案搜索,准确率可达到百分之九十,不是不准。夸克是夸克浏览器的升级。夸克是阿里旗下的智能搜索APP,搭载极速AI引擎。
经典的物理理论认为物质由基本粒子组成,它们之间仅以几种不同的方式相互作用。在20世纪70年代,物理学家开发了一套描述这些粒子和相互作用的方程。这些方程共同形成了一个简明的理论,现在被称为粒子物理学的标准模型。
标准模型缺失了一些令人费解的部分(明显缺失的是构成暗物质的假定粒子,那些表达引力的粒子,以及对中微子质量的解释),但它给出了几乎所有其他观察到的现象的极其精确的图像。
然而,标准模型仍然缺乏连贯的可视化。大多数尝试都过于简单,或者忽略了重要的相互联系,或者混乱不堪。
考虑最常见的可视化,它显示了一个粒子周期表:
这种方法并不能洞察粒子之间的关系。带力粒子(即传递电磁力的光子),W和Z玻色子传递弱力,而传递强力的胶子与物质粒子——夸克、电子及其同类——处于相同的地位。此外,像“颜色”这样的关键属性被省略了。
2013年影片《粒子热》(Particle Fever)的另一个表述是:
尽管这种可视化恰当地强调了希格斯玻色子的中心地位,希格斯玻色子被放在光子和胶子旁边,尽管在现实中希格斯玻色子并不影响这些粒子。而圆的象限是有误导性的——例如,这意味着光子只与它接触的粒子偶联,但事实并非如此。
伊利诺伊州费米国家加速器实验室的粒子物理学家克里斯·奎格数十年来一直在思考如何对标准模型进行可视化,希望更强大的可视化表示能够帮助人们熟悉已知的自然粒子并促使他们思考关于这些粒子如何适合更大,更完整的理论框架。奎格的直观表示方式展示了标准模型的更多基本顺序和结构。他称其方案为“双单形”。
让我们从头开始构建双单形。
夸克在底部
物质粒子主要有两种,轻子和夸克。(请注意,对于自然界的每一种物质粒子,都存在一种反物质粒子,它具有相同的质量,但在其他方面都是相反的。正如其他标准模型可视化所做的那样,我们省略了反物质,这会形成一个独立的、反向的双单形。)
让我们从夸克开始,特别是组成原子核中的质子和中子的两种类型的夸克。这两种夸克是上夸克,电荷为单位的2/3;下夸克,电荷为- 1/3。
上下夸克可以是“左旋的”或“右旋的”,这取决于它们相对于运动方向是顺时针旋转还是逆时针旋转。
弱变化
通过一种称为弱力的相互作用,左旋的上下夸克可以相互转换。当夸克交换一种叫做W玻色子的粒子时,就会发生这种变化。W玻色子是弱力的载体之一,带有正负1的电荷。这些弱相互作用用橙色线表示:
奇怪的是,自然界中没有右手的W玻色子。这意味着右旋的上下夸克不能发射或吸收W玻色子,所以它们不会相互转换。
夸克还具有一种叫做颜色的电荷。一个夸克可以有红色、绿色或蓝色电荷。夸克的颜色使它对强力敏感。
这种强力将不同颜色的夸克结合在一起形成复合粒子,如质子和中子,它们是“无色的”,没有净色电荷。
夸克通过吸收或释放胶子来从一种颜色转换为另一种颜色,胶子是强力的载体。这些相互作用形成了三角形的边。因为胶子本身具有色电荷,它们不断地相互作用,就像与夸克相互作用一样。胶子之间的相互作用填充了这个三角形。
现在我们来看轻子,另一种物质粒子。轻子有两种:电子和中微子,前者的电荷为 1,后者为电中性。
与左旋上夸克和左旋下夸克一样,左旋电子和中微子可以通过微弱的相互作用相互转化。然而,在自然界中还没有见过右旋中微子。
单形框架
把我们目前所做的放在一起,我们得到左手性的粒子在左边,右手性的粒子在右边。它们构成了奎格双单形的基本框架。
三代夸克
现在,一个复杂的问题是:由于未知的原因,每种类型的物质粒子存在三种逐渐加重但在其他方面相同的版本。例如,除了上夸克和下夸克之外,还有粲夸克和奇夸克,还有更重的顶夸克和底夸克。轻子也是如此:除了电子和电子中微子,还有μ介子和μ中微子,还有τ子和τ中微子(请注意,中微子的质量虽小但未知)。它们构成了奎格双单形的基本框架。
所有这些粒子都生活在双单形的角落里。值得注意的是,在不同代中,左旋夸克之间会发生少量的弱相互作用,例如,一个上夸克偶尔会吐出W+玻色子,变成一个奇夸克。不同代的轻子偶尔也会以这种方式相互作用。
力和电荷
粒子之间还有什么其他的相互作用方式?我们已经提到过,许多物质粒子都是带电的——事实上,除了中微子,所有的粒子都是带电的。带电的意思是这些粒子对电磁力很敏感。它们通过交换光子相互作用,光子是电磁力的载体。我们用波浪线来表示电磁相互作用,这些波浪线将带电粒子彼此连接起来。请注意,这些相互作用不会使粒子相互转化,在这种情况下,粒子只能感受到推或拉。
弱力比我们之前说的要复杂一点。除了W+和W -玻色子,还有一种弱力的中性载流子,叫做Z_0玻色子。粒子可以吸收或释放Z_0玻色子而不改变其性质。与电磁相互作用一样,这些“弱中性相互作用”只会导致能量和动量的损失或增加。弱中性相互作用在这里用橙色波浪线表示。
弱中性相互作用与电磁相互作用相似,这并非巧合。弱力和电磁力都来自于一个单一的力,在宇宙的最初时刻存在,称为电弱相互作用。
随着宇宙冷却,一个被称为电弱对称破缺的事件将这些力一分为二。这一事件的标志是一个贯穿整个空间的场的突然出现,这个场被称为希格斯场,它与一种叫做希格斯玻色子的粒子有关——这是我们谜题的最后一块。
进入希格斯
希格斯玻色子是标准模型的关键,也是为什么双单形排列有意义的关键。当希格斯场在早期宇宙中出现时,它将左旋和右旋的粒子结合在一起,同时赋予这些粒子我们称之为质量的性质。(请注意,中微子是有质量的,但它的起源仍然是神秘的,因为它源自某种机制,而不是希格斯玻色子。)
当一个粒子(如电子)在空间中移动时,它会不断地与希格斯玻色子——希格斯场的激发态——相互作用。当一个左旋电子与一个希格斯玻色子碰撞时,电子可能会从它身上反弹到一个新的方向,变成右旋电子,然后再与另一个希格斯粒子碰撞,再次变成左旋电子,以此类推。这些相互作用降低了电子的速度,这就是我们所说的“质量”。
一般来说,粒子与希格斯玻色子相互作用越多,它的质量就越大。此外,与希格斯玻色子频繁的相互作用使这些大质量粒子成为左旋和右旋的量子混合物。
这样,我们就有了粒子物理学的标准模型。
质子和中子的质量和自旋从何而来?令人惊讶的是,我们并不知道答案。质子和中子具有内部结构——夸克,但夸克是如何组成质子的?根据量子力学,质子不是由三个夸克简单组合在一起,而是一锅“粒子汤”。现在,科学家需要用电子去撞击质子,从而窥探这锅汤里面到底是什么。
据科学家估计,可观测的宇宙中存在大约1053千克的普通物质,其中绝大部分是质子和中子,总数大约有1080个。原子就是这两种粒子与电子组成的。但是质子和中子的质量是从何而来的呢?
答案其实并不简单。质子和中子由 夸克 和起着黏结作用的 胶子 组成。胶子是无质量的,而质子和中子(统称为核子)内部 所有夸克质量的总和不到核子总质量的2% 。那么其余的质量是哪来的呢?
质量不是核子身上的唯一谜团。它们的自旋同样令人困惑——核子中夸克的自旋不足以解释整个核子的自旋。科学家现在认为, 核子的自旋、质量和其他性质都源自它们内部夸克和胶子之间的复杂相互作用,但他们不清楚其中的确切机制。 而科学家通过理论也只能了解这么多,因为夸克和胶子之间的相互作用由一种名为 量子色动力学 (QCD)的理论主宰,这种理论的计算极端困难。
为了更进一步地回答这些问题,我们需要新的实验数据。因此, 电子离子对撞机 (EIC)的构想应运而生。其他的原子“粉碎机”,例如欧洲核子研究中心的大型强子对撞机或美国的相对论重离子对撞机(RHIC),撞击的是质子和离子这样的复合粒子,而EIC与它们不同,是用电子撞击质子和中子。电子没有内部结构,可以充当显微镜,让科学家看到那些复合粒子里面的情况。
EIC是美国核科学界当前优先级最高的项目之一,它有两个候选地址,一个是位于长岛的布鲁克海文国家实验室,另一个是位于弗吉尼亚州纽波特纽斯市的托马斯·杰斐逊国家加速器装置(杰斐逊实验室)。如果获得批准,EIC可在2030年左右开始采集数据。
这台对撞机能够解答一个关键问题:单个夸克和胶子的自旋和质量是怎样与它们集体运动的能量组合在一起,创造出质子和中子的自旋及质量的?EIC还可以回答许多其他问题,比如夸克和胶子是聚集在一起还是分散在核子内部?它们的移动速度有多快?核子在原子核中结合在一起时,这些相互作用扮演了怎样的角色?EIC上的测量结果将会提供大量新信息,帮助我们认识物质的基本成分是如何相互作用,并最终形成可见宇宙的。在发现夸克50年后,我们终于只差一步就能解开它身上的谜题了。
难以计算的色动力学
科学家很清楚物体是怎样由原子构造而成的,也知道物体的性质是如何由其内部原子的特性决定的。那么,为什么我们不明白夸克和胶子是怎样组成核子的呢?首先,核子的大小,只有原子的百万分之一,所以没有一个简单的方法可用来研究它们。此外,核子的性质源自夸克和胶子的集体行为。事实上,它们是“涌现”(emergent)出来的现象,即许多复杂粒子通过相互作用呈现出的整体效果,这些相互作用过于复杂,我们暂时还无法完全理解。
描述这些相互作用的理论是量子色动力学(QCD),它是在20世纪60年代末至70年代初发展起来的。QCD是“标准模型”的一部分,就像带电粒子之间的电磁力由光子携带一样,QCD告诉我们, 把核子束缚在一起的强相互作用力是由胶子携带的 。强相互作用力涉及的“荷”被称为“色荷”(因此其理论叫做“色动力学”)。夸克携带色荷,并通过交换胶子与其他夸克相互作用。但与电磁学中本身不带电荷的光子不同,胶子本身携带色荷。因此,胶子能通过交换更多的胶子与其他胶子发生相互作用。胶子的这个独特性质意义重大, 相互作用的反馈循环 就是导致QCD理论经常因为过于复杂而无法计算的原因。
QCD还有一点与我们熟知的其他理论不同:当夸克相互接近时,强相互作用力反而会变弱。(在电磁学中,情况相反。)当核子内部夸克之间的距离足够小时,夸克承受的力非常小,以至于它们好像是自由的。物理学家戴维·格罗斯(David Gross)、戴维·波利策(David Politzer)和弗兰克·维尔切克(Frank Wilczek)因为发现QCD理论的这一奇怪结论而赢得了2004年的诺贝尔物理学奖。而当夸克之间的距离变大时,它们之间的作用力迅速增大,强大到把夸克最终“禁闭”在核子内部——这就是你永远不会在质子或中子外面找到一个夸克或胶子的原因。
为了在量子层面上进一步理解强相互作用力,我们需要更多信息。比如说,我们能掌握原子世界,不仅是因为我们理解了原子间的相互作用,除此之外,对这些基本零件中涌现出的现象,我们也有了相当的认识。原子和电磁学是分子生物学的基础,但我们不可能仅根据这些知识建立起分子生物学。关键的突破在于研究人员发现了DNA的双螺旋结构。要在夸克-胶子的认识上取得进展,我们需要做的就是观察原子核的内部。
窥视核子内部的实验
20世纪初,物理学家发现了利用X射线衍射“看见”原子的方法。用一束X射线照射样品,然后研究它们穿过材料时产生的干涉图案,科学家就可以看到原子组成的晶格结构。这种技术能成功的原因在于,X射线的波长与原子直径接近,让我们有能力探测纳米级别的原子尺度。用同样的方法,物理学家在50年前的电子质子碰撞实验中首次“看到”了夸克,这个碰撞过程被称为 深度非弹性散射 (DIS)。
在这种方法中,电子从质子(或着中子、原子核)上反弹回来并与质子交换一个 虚光子 。虚光子不完全是真实的——根据支配粒子相互作用的量子力学,它们会凭空出现,然后又立即消失。通过仔细测量电子反弹时的能量和角度,我们可以获得它击中的那个物体的信息。
DIS实验中,虚光子的波长是飞米量级(10-15米),相当于质子直径的尺度。碰撞过程的能量越高,交换的虚光子波长就越短,而 波长越短,这个“探针”就越细,定位越精确 。如果波长足够短,电子实质上是从质子里面的一个夸克或胶子上反弹回来(而不是从整个质子上反弹),从而可以一窥质子的内部结构。
第一个DIS实验是在斯坦福直线加速器中心(现已更名为SLAC国家加速器实验室)进行的,该实验在1968年提供了首个证实夸克存在的证据,实验主导者因此获得了1990年的诺贝尔物理学奖。类似的实验发现,自由质子和中子内部的夸克与原子核中质子、中子内部的夸克,在性质上有很大的差异。此外,还有实验发现, 质子和中子的自旋并不是来自构成它们的夸克的自旋。 这一事实让科学家大感意外,因为最初是在质子上发现的,所以被称为“ 质子自旋危机 ”。
第一个DIS对撞机(也就是电子和质子在撞击前都经过加速的机器)是德国电子同步加速器研究中心(DESY)的强子-电子环形加速器(HERA)。该对撞机从1992年一直运行到2007年。HERA实验表明,质子和中子不是像我们过去以为那样,只是三个夸克简单组合在一起。事实上,它们是一锅“粒子汤”, 内部有数量众多的夸克和胶子不断出现又消失 。HERA显著提升了我们对核子结构的认识,但无法解决“自旋危机”。而且,由于这个加速器没有原子核束流,所以也不能研究原子核中的夸克和胶子的行为。
在这种尺度下观测粒子行为是非常复杂的,主要原因是量子力学本身存在一些怪诞之处。量子力学将亚原子粒子描述为概率的迷雾:它们不会在特定的时间地点,以固定的状态存在。反之我们应该这样理解夸克:它们同时存在于无穷多个量子态中。而且,我们必须考虑量子力学中的纠缠现象。量子纠缠可能给观察原子核尺度的物理过程设置了一个根本的障碍,因为我们想要观察的夸克和胶子有一定几率与我们用来观察它们的探针处在纠缠状态——在DIS实验中,用到的探针就是虚光子。当我们的观测结果取决于我们怎么去探测时,要定义我们所说的核子结构是什么,似乎是不可能的。
幸运的是,到了20世纪70年代,QCD理论取得了足够的进展,让科学家认识到DIS实验中的探针和靶是可以分离的——这种状况被称为 因子化 。在足够高的能量下,科学家实际上可以在某些场合忽略量子纠缠效应——足以在一维条件下描述质子的结构。这意味着,他们可以通过DIS实验测量任意一个夸克为整个质子贡献了特定比例的动量(质子前进方向上的纵向动量)的概率。
最近的理论进展使我们能够进一步地描述核子的内部结构,不再局限于一维——不仅仅是夸克和胶子为整个核子贡献了多少纵向动量,还有它们在核子内部从一侧到另一侧的运动情况。
但真正的进步将随着EIC的出现而到来。
电子离子对撞机
EIC将制作一张 核子内部的三维地图 。我们希望用这台对撞机测量夸克和胶子的位置和动量,以及夸克和胶子对核子整体质量和自旋的贡献。
与以前的DIS实验相比,EIC的关键进步是它的 亮度 :比方说, 它每分钟的粒子碰撞数要比HERA多100~1000倍。 另外,EIC上的碰撞束流能量更高,足以分辨出仅有质子直径百分之几的长度,让我们可以研究质子中存在大量携带了约001%质子纵向动量的夸克和胶子的情况。EIC也能让我们能控制束流中粒子自旋的朝向,这样,我们就能研究质子的自旋是怎样从夸克和胶子的QCD相互作用中产生的。把EIC的测量纳入当代的理论框架,我们甚至能构建出用夸克和胶子描绘的真正的三维质子图像。
我们有许多问题想去 探索 。例如,质子内部的组分粒子是均匀地散布在里面,还是聚集在一起?是否有些组分比其他组分给质子贡献了更多的质量和自旋?夸克和胶子在质子与中子结合成原子核时扮演了怎样的角色?现有的实验设施刚刚开始在飞米尺度上 探索 这些难题,而EIC是第一个能带我们找到完整答案的机器。
我们对核子结构的理解存在一大疑问: 当我们用一个极细的探针在非常小的尺度下探查核子时会发生什么。 在这种情况下,会发生一些奇怪的事情。QCD理论预测,你在越高的能量下探测,发现的胶子也就越多。夸克可以辐射胶子,而那些胶子接下来会辐射出更多的胶子,导致连锁反应。奇怪的是,导致这种胶子辐射的不是测量行为,而是量子力学本身的怪诞性质。量子力学告诉我们,当你靠得更近观测时,看到的质子内部是不一样的——胶子变得更多了。
但我们知道这不可能是完整的答案,因为这意味着物质在无限增多——换句话说,如果你观测时靠得足够近,原子会拥有无穷多的胶子。包括HERA在内,之前的对撞机已经看到了一些迹象,表明 胶子存在一种“饱和”状态 。在这种状态下,质子不能容纳更多的胶子,一些胶子开始合并从而抵消了增长。但物理学家从未确定无疑地探测到饱和态,并且我们不知道它出现所需的阈值。一些计算表明,胶子饱和形成了一种新的物质状态:具有非凡特性的“ 色玻璃凝聚态 ”。例如,胶子的能量密度可能达到中子星内部能量密度的50~100倍。为了让胶子密度达到最高的可能值,EIC将用重原子核取代质子,来探测并仔细地研究这个迷人的现象。
建造EIC的两个方案
建造这个新对撞机的计划赢得了美国核科学界最近一次(2015年)长期规划会议的强力支持,也得到了美国能源部的赞同。美国能源部在2017年要求美国科学、工程与医学院(NAS)对EIC进行独立评估。在2018年7月,NAS委员会得出结论,认为EIC项目是基础、必要且及时的。
建设这台机器有两种可能的途径。一个途径是升级布鲁克海文的RHIC。这个计划叫作eRHIC,将在RHIC现有的加速器隧道里增加一条电子束流,并且让电子束流在两个不同的地方与RHIC现有的一条离子束流对撞。
另一个方案是使用杰斐逊实验室连续电子束流加速器装置(CEBAF)上的电子束流。这个计划叫作杰斐逊实验室EIC(JLEIC),CEBAF的电子束流将会被引导到隔壁一个新的对撞机隧道中。
这两个装置都能让我们对QCD理论的理解获得巨大飞跃,并最终给出核子和原子核内部的的可视化模型。两者也都能让科学家解决目前仍困扰我们的有关核子自旋、质量和其他性质的问题。并且任何一个装置都有能力碰撞所有类型的原子核,包含金、铅和铀等重核,这样我们就可以研究当核子处在更大的原子核内部时,其中的夸克和胶子的分布会有何变化。例如,我们想知道一些胶子是否开始重叠并被两个不同的质子“共享”。
飞米技术?
在 21世纪,原子的大小就是限制我们技术的一个因素。在缺少重大突破的情况下,10纳米(约100倍原子直径)可能就是我们能造出的最小电子器件的大小,这表明传统计算能力不太可能维持过去50年间的进步速度。
然而,核子和其内部结构的尺度比这还要小一百万倍。控制这个微观世界的强相互作用力比当今电子器件利用的电磁力要强60倍——实际上它是宇宙中最强的力。有没有可能创造出操纵夸克和胶子的“飞米技术”?从某种程度上说,这种技术将比目前的纳米技术强一百万倍。当然,这个梦想是对遥远未来的一种猜测。但为了达到这个目的,我们首先必须对夸克和胶子的量子世界有深刻的理解。
要最大限度地理解QCD理论,我们需要更多的数据,目前世界上正在筹划的实验装置中,只有EIC能提供这样的数据。但是建造EIC并非没有挑战。该项目必须提供高亮度、高度聚焦的电子束流、质子束流和其他原子核束流,而且这些束流要能达到很宽的能量范围,从而获得每分钟比HERA对撞机多100~1000倍的对撞事例。自旋研究还要求机器提供自旋朝向高度统一的粒子束流,并且自旋的朝向是可以调节和操控的。要解决这些难题需要创新,而这些创新有望变革加速器科学,这不仅会使核物理受益,也会让医学、材料学和粒子物理学获益。
本文作者:
阿布依·德什潘德是纽约州立大学石溪分校的物理教授,布鲁克海文国家实验室未来电子离子对撞机(EIC)科学部主任。
吉田陆太郎是托马斯·杰斐逊国家加速器装置的首席科学家,他还是该实验EIC中心的主任。
本文译者:王荣是中国科学院近代物理研究所副研究员。
本文审校:陈旭荣是中国科学院近代物理研究所研究员、高能核物理研究组组长,主要从事强子物理、核子结构等领域的研究。
本书向读者讲述了20世纪以来现代物理学的伟大理论发现。相对论、量子力学、宇宙的结构、空间的颗粒、时间的本质……在这七堂简单明了的物理课里,没有繁琐的方程,只有诗意的讲述,即使没有科学背景的人也能轻松读懂。
卡洛·罗韦利,意大利理论物理学家, 圈量子引力理论的开创者之一。曾在美国、意大利工作,现在法国带领量子引力研究小组。
牛顿试图解释物体下落和行星运转的原因。他假设在万物之间存在一种相互吸引的“力量”,他称之为“引力”。那么这个力是如何牵引两个相距甚远,中间又空无一物的物体的呢?这位伟大的现代科学之父对此显得谨慎小心,未敢大胆提出假设。
牛顿想象物体是在空间中运动的,他认为空间是一个巨大的空容器,一个能装下宇宙的大盒子,也是一个硕大无朋的框架,所有物体都在其中做直线运动,直到有一个力使它们的轨道发生弯曲。至于“空间”,或者说牛顿想象的这个可以容纳世界的容器是由什么做成的,牛顿也没有给出答案。
就在爱因斯坦出生前的几年,英国的两位大物理学家—法拉第和麦克斯韦—为牛顿冰冷的世界添加了新鲜的内容:电磁场。所谓“电磁场”,是一种无处不在的真实存在,它可以传递无线电波,可以布满整个空间;它可以振动,也可以波动,就像起伏的湖面一样;它还可以将电力“四处传播”。
爱因斯坦从小就对电磁场十分着迷,这种东西可以让爸爸修建的发电厂里的发电机运转起来。很快他想到,就像电力一样,引力一定也是由一种场来传播的,一定存在一种类似于“电场”的“引力场”。他想弄明白这个“引力场”是如何运作的,以及怎样用方程对其进行描述。就在这时,他灵光一闪,想到了一个非同凡响的点子:引力场不“弥漫”于空间,因为它本身就是空间。这就是广义相对论的思想。其实,牛顿的那个承载物体运动的“空间”与“引力场”是同一个东西。
这一惊世骇俗的理论对宇宙做了惊人的简化: 空间不再是一种有别于物质的东西,而是构成世界的“物质”成分之一,一种可以波动、弯曲、变形的实体。 我们不再身处一个看不见的坚硬框架里,而更像是深陷在一个巨大的容易形变的软体动物中。太阳会使其周围的空间发生弯曲,所以地球并不是在某种神秘力量的牵引下绕着太阳旋转,而是在一个倾斜的空间中行进,就好像弹珠在漏斗中滚动一样:漏斗中心并不会产生什么神秘的“力量”,是弯曲的漏斗壁使弹珠滚动的。
无论是行星绕着太阳转,还是物体下落,都是因为空间发生了弯曲。 空间在有物质的地方会发生弯曲。就这么简单。 这个方程只有半行的长度,仅此而已。
爱因斯坦曾预言,在高空中,在离太阳更近的地方,时间会过得比较快,而在低的地方,离地球近的地方时间则过得比较慢。这一预测后来也经测量得到了证实。如果一对双胞胎,一个住在海边,一个住在山上,只要经过一段时间,住在海边的那个就会发现,住在山上的兄弟要比自己老得快一些。
然而好戏才刚刚开始。当一个大恒星燃烧完自己所有的燃料(氢)时,它就会熄灭。残留的部分因为没有燃烧产生的热量的支撑,会因为自身的重量而坍塌,导致空间强烈弯曲,最终塌陷成一个真真正正的洞。这就是著名的“ 黑洞 ”。
整个宇宙空间可以膨胀和收缩。爱因斯坦的方程指出,空间不可能一直保持静止,它一定是在不断膨胀的。1930年,人们确确实实观测到了宇宙的膨胀。这个方程还预测,这个膨胀是由一个极小、极热的年轻宇宙的爆炸引发的:这就是我们所说的“宇宙大爆炸”。
人类再一次经历了这样的事:起初没有一个人相信这个理论,但大量证据纷纷出现在我们眼前,直至在太空中观测到了“宇宙背景辐射”,也就是原始爆炸的余热里弥漫的光。事实证明,爱因斯坦方程的预言是正确的。此外,这个理论还说,空间会像海平面一样起伏,目前人们已经在宇宙中的双星上观测到了“引力波”的这种效应,与爱因斯坦理论的预言惊人一致,精确到了千亿分之一。
总之,爱因斯坦的理论为我们描绘了一个绚丽多彩而又令人惊奇的世界,在这个世界里有发生爆炸的宇宙,有坍塌成无底深洞的空间,有在某个行星附近放慢速度的时间,还有像大海扬波一般无边无际延展的星际空间……
所有这一切都源自一个朴素的直觉,那就是,空间和引力场本是一回事。这一切也可以归结为一个简洁的方程,尽管我的读者们肯定难以了解它的奥妙,但我还是情不自禁地将它抄录于此,想让大家看看它到底有多么的简洁美妙:
就这么简单。当然了,要先学习和消化黎曼的数学才能解读和使用这个方程,要花些工夫、付出些辛苦才做得到。但这总比感悟贝多芬晚期弦乐四重奏的神秘之美要容易得多。无论是欣赏艺术,还是领悟科学,我们最终得到的将是美的享受和看待世界的全新视角。
广义相对论是由爱因斯坦凭借一己之力思考、孕育而来的,是关于引力、空间和时间简洁而又统一的观点。然而量子力学,或者说“量子理论”则正好相反,它在实验上获得了无与伦比的成功,其应用也改变了我们的日常生活。但是这个理论在诞生一百多年之后,仍然笼罩在一片神秘莫测的奇异氛围中。
量子力学正好诞生于1900年。德国物理学家马克斯·普朗克计算了一个“热匣子”内处于平衡态的电磁场。为此他用了一个巧妙的方法:假设电磁场的能量都分布在一个个的“量子”上,也就是说能量是一包一包或一块一块的。用这个方法计算出的结果与测量得到的数据完全吻合(所以应该算是正确的),但却与当时人们的认知背道而驰,因为当时人们认为能量是连续变动的,硬把它说成是由一堆“碎砖块”构成的,简直是无稽之谈。
对于普朗克来说,把能量视为一个个能量包块的集合只是计算上使用的一个特殊策略,就连他自己也不明白为什么这种方法会奏效。然而五年以后,又是爱因斯坦,终于认识到这些“能量包”是真实存在的。 爱因斯坦指出光是由成包的光粒子构成的,今天我们称之为“光子”。
爱因斯坦的这项成果被同行们当成笑柄,他们认为这个年轻才子在信口开河。后来爱因斯坦就是凭借这项研究获得了诺贝尔奖。 如果说普朗克是量子理论之父的话,那么爱因斯坦就是让这一理论茁壮成长的养育者。
1925年,量子理论的方程终于出现了,取代了整个牛顿力学。很难想象什么比这更伟大的成就了。霎时间,一切现象都找到了归宿,一切都可以被计算出来。你记得元素周期表吧?它把宇宙中可能出现的所有元素都列了出来,那么为什么偏偏是这些元素被列在表上呢?为什么元素周期表的结构是这样的呢?答案就是, 每一种元素都是量子力学最主要方程的一个解。整个化学学科都基于这一个方程。
在量子力学中,没有一样东西拥有确定的位置,除非它撞上了别的东西。 我们无法预知一个电子再次出现时会是在哪儿,只能计算它出现在这里或那里的“概率”。 这个概率问题直捣物理的核心,可原本物理学的一切问题都是被那些普遍且不可改变的铁律所控制的。这是不是很荒谬?爱因斯坦也这么认为。一方面,他提名海森堡参选诺贝尔奖,承认其探究到了世界某些最本质的东西。但另一方面,他只要一有机会就抱怨,说这实在太不合理。
一个世纪过去了,我们还停在原点。量子力学对于当代科技的整体发展有着至关重要的意义。没有量子力学就不会出现晶体管。然而这些方程仍然十分神秘,因为 它们并不描述在一个物理系统内发生了什么,而只说明一个物理系统是如何影响另外一个物理系统的。
在20世纪30年代,天文学家们对星云(恒星之间近乎白色的云团)进行精确的测量后发现, 银河系本身也只是众多星系间浩瀚星云中的一粒尘埃。 这些星系一直蔓延到我们最强大的天文望远镜也看不到的地方。
宇宙诞生的时候就像一个小球,大爆炸后一直膨胀到它现在的规模。这就是我们现在对宇宙最大程度的了解了。还有别的什么吗?宇宙爆炸之前还有什么东西存在吗?或许还有。那么还有没有与我们类似或者完全不同的宇宙呢?这我们还无从知晓。
这片均匀无边的宇宙并不像看上去那么简单。就像我在第一节课中解释过的那样,空间不是一马平川,而是弯曲的。宇宙布满了星系,所以我们想象它的纹理会像海浪一样起伏,激烈处还会产生黑洞空穴。
我们看到的物体都是由原子组成的。原子由一个原子核和围绕它的电子组成,原子核由紧密聚集在一起的质子和中子构成。质子和中子则由更小的粒子构成,美国物理学家默里·盖尔曼为它们取名“夸克”(quark)。
我们身边的所有物体都是由电子、夸克、光子和胶子组成的,它们就是粒子物理学中所讲的“ 基本粒子 ”。这少量的基本原料,如同大型乐高玩具中的小积木,靠它们建造出了我们身边的整个物质世界。
量子力学描述了这些粒子的性质和运动方式。 这些粒子当然并不像小石子那般真实可感,而是相应的场的“量子”,比方说光子是电磁场的“量子”。就跟在法拉第和麦克斯韦的电磁场中一样,它们是这些变化的基底场中的元激发,是极小的移动的波包。它们的消失和重现遵循量子力学的奇特定律: 存在的每样东西都是不稳定的,永远都在从一种相互作用跃迁到另一种相互作用。
即使我们观察的是空间中一块没有原子的区域,还是可以探测到粒子的微小涌动。 彻底的虚空是不存在的,就像最平静的海面,我们凑近看还是会发现细微的波动和振荡。 构成世界的各种场也会轻微地波动起伏,我们可以想象,组成世界的基本粒子在这样的波动中不断地产生、消失。
量子力学和粒子实验告诉我们, 世界是物体连续的、永不停歇的涌动,是稍纵即逝的实体不断地出现和消失,是一系列的振荡 ,就像20世纪60年代时髦的嬉皮世界,一个由事件而非物体构成的世界。
广义相对论告诉我们空间不是一个静止的盒子,而是在不断运动,像一个移动中的巨大软体动物,可以压缩和扭曲,而我们被包在里面。另一方面,量子力学告诉我们,所有这样的场都“由量子构成”,具有精细的颗粒状结构。于是物理空间当然也是“由量子构成的”。这正是圈 量子引力的核心结论:空间是不连续的,不可被无穷分割,而是由细小的颗粒,或者说“空间原子”构成的。
这些颗粒极其微小,比最小的原子核还要小几亿亿倍。圈量子引力用数学形式描述了这些“空间原子”,也给出了它们演化的方程。它们被称为圈或环,因为它们环环相扣,形成了一个相互关联的网络,从而编织出了空间的纹理,就像细密织成的巨大锁子甲上的小铁圈一样。
这些空间的量子在哪里?它们不存在于任何地方,也不在“空间之中”,因为它们本身就是空间。 空间就是一个个引力量子相互勾连而成的。世界又一次显得更接近关系的集合,而非物质的集合。
在空间颗粒的微小尺度下,大自然的舞步不再追随唯一的乐团指挥手中那根棒子挥出的同一节拍, 每一个物理过程都有自己的节奏,独立于邻近的其他过程。 时间的流逝发生在世界之内,从构成世界的量子事件之间的相互关系中产生,这些量子事件本身就是时间的源头。
天文学家们发现,在每一个星系的周围都存在着一团巨大的云状物。我们是通过它对星体的引力和它使光发生偏折的现象才间接发现它的。我们无法直接看到这团巨大的云,也不知道它由什么组成。科学家们提出了很多假设,却没有一个说得通。很明显有东西在那儿,但它具体是什么,我们却无从知晓。今天我们把它称为“暗物质”(dark matter),一种无法用标准模型描述的东西,不然我们也不会看不见它了。它不是原子,不是中微子,也不是光子……
我们发现,当宇宙被压缩到极限的时候,根据量子理论会产生一个反作用力,造成大爆炸,这个著名的大爆炸很可能实际上是大反弹:我们的宇宙在自身重量下坍缩到非常小,然后反弹,开始膨胀,变成现在我们周围不断扩张的宇宙。宇宙被压缩到坚果壳大小,开始回弹的那一瞬间,就真正进入了量子引力的领域:时间和空间一起消失了,世界融化成一团涌动的概率云。我们的宇宙很可能诞生自某一个状态后的反弹,经历了一个过渡时期,在此期间,时间和空间都荡然无存。
一个热的物质并不会包含热质,它发热仅仅是因为其中的原子运动速度更快。原子和原子团组成的分子处在不断运动的状态中,它们快速移动、振动、跳跃……冷空气之所以冷是因为空气中的原子,更确切地说是分子,跑得比较慢;热空气之所以热是因为空气中的分子跑得比较快。这个解释简洁而美妙,但故事还没完。
我们知道,热量总是从热的物体跑到冷的物体上。一个冷茶匙放到一杯热茶里会逐渐变热;在天寒地冻的环境里,如果穿得不够暖和,我们的身体会很快丢失热量,感到寒冷。为什么热量会从热的物体跑到冷的物体上,而不是反过来呢?
这是一个关键的问题,因为它关系到时间的本质。 在所有不发生热交换,或热交换可以忽略不计的情况下,我们看到的未来和过去是一模一样的。 举个例子,如果没有摩擦,钟摆可以永远摆动下去。但是,如果存在摩擦,钟摆微微加热了底座,损失了能量,运动速度就会减慢。这就是摩擦生热,这时我们立刻就能分辨未来(钟摆变慢的方向)和过去。我们从来没有看到过一个钟摆吸收了底座的热量,从静止突然开始摆动。
只有存在热量的时候,过去和未来才有区别。能将过去和未来区分开来的基本现象就是热量总是从热的物体跑到冷的物体上。那么,为什么热量会从热的物体跑到冷的物体上,而不是相反呢?
玻尔兹曼发现其中的原因惊人地简单:这完全是随机的。热量从热的物体跑到冷的物体上并非遵循什么绝对的定律,只是这种情况发生的概率比较大而已。原因在于: 从统计学的角度看,一个快速运动的热物体的原子更有可能撞上一个冷物体的原子,传递给它一部分能量;而相反过程发生的概率则很小。 在碰撞的过程中能量是守恒的,但当发生大量偶然碰撞时,能量倾向于平均分布。就这样,相互接触的物体温度会趋向于相同。热的物体和冷的物体接触后温度不降反升的情况并非完全不可能,只是概率小得可怜罢了。
将“概率”引入物理学的核心,直接用它来解释热动力学的基础,这一做法起初被认为荒谬至极,所以没人把玻尔兹曼当回事。这样的事在历史上屡见不鲜。1906年9月5日,玻尔兹曼于的里雅斯特的杜伊诺镇附近自缢而亡,他没有等到自己的理论被全世界认可的那一天。
在某种程度上,将概率引入热力学是由于我们的“无知”。我不确定某件事是否会发生,但我可以分配给它或高或低的概率。例如,我不知道马赛这里明天会下雨、天晴,还是会下雪,但我知道马赛8月下雪的概率很低。同样,对于绝大多数物体,我们都只是略知一二,并非完全了解,所以只能基于概率做出预测。
同样,当分子发生碰撞时,热量从热的物体传递到冷的物体上的概率是可以计算的,结果显示,这个概率比热量从冷的物体传递到热的物体的概率要大得多。
如果世界是一大团转瞬即逝的空间和物质的量子,一幅由空间和基本粒子组成的巨大拼图,那么我们是什么?难道我们也只是由量子和粒子构成的吗?如果是这样,那我们的个体存在感和自我意识从何而来?我们的价值、梦想、情感以及拥有的知识又是什么呢?在这个无边无际又五光十色的世界里,我们到底算什么?我根本没想过在这寥寥数页中真正回答上述问题。在现代科学的巨幅画卷中,我们不懂的东西太多,而其中懂得最少的问题之一就是我们自己。
“我们”,也就是人类,首先是观察这个世界的主体,是我试图完成的这幅实景照片的集体创作者。我们每个人都是交流网络上的节点,图像、工具、信息和知识就通过这张网传递,这本书就是一个例子。但我们也是我们所感知的这个世界不可或缺的一部分,而非置身事外的旁观者。
我们身在其中,我们的观察来自内部。我们由原子和光信号构成,同山上的青松和星系中的群星间交换的原子和光信号并无区别。 随着知识的不断增长,我们越来越了解自己在宇宙中的地位—我们只是宇宙的一部分,而且是很小的一部分。在过去的几个世纪里,这一事实日渐清晰,而在近一百年间尤为明显。
我们曾经以为自己居住的星球位于宇宙中心,但事实并非如此。我们曾经以为自己是动植物家族之外的独特物种,后来却发现我们同我们周围所有生物由共同的祖先繁衍而来,我们与蝴蝶和落叶松有着共同的祖先。我们就像独生子一样,在长大的过程中逐渐懂得,世界并非像我们小时候以为的那样,只围着我们转。我们必须接受自己只是万事万物中的一员这个事实,参照他者来认识自己。
当我们谈及宇宙大爆炸或空间的机理时,并不是在延续几十万年来,人们围坐在夜晚篝火旁讲述的天马行空的故事。我们要延续的是另外的传统:先人们注视黎明第一缕曙光的眼力,他们可以借此发现热带大草原尘埃之上一只羚羊留下的足迹,通过观察真实世界中的蛛丝马迹来发现那些我们无法直接看到却有迹可循的东西。认识到我们可能会不断犯错,因此,一旦有新的迹象出现,我们要能随时改变方向,同时我们也清楚,如果我们足够聪明,就会做出正确的判断,找到我们追寻的东西。这就是科学的本质。
编故事和追寻踪迹发现事实是两种截然不同的人类活动,把这两者混为一谈,是当代文化中科学不被理解和信任之肇始。二者之间的分别很微妙: 黎明时猎获的羚羊和前晚故事里讲的羚羊神相距并不遥远。界限是模糊的,神话与科学相互滋养。 但知识总是有价值的。捉到羚羊,我们就能填饱肚子。
因此,我们的知识反映了真实。 无论多寡,知识都反映了我们栖居的这个世界。 并不是我们与世界之间的交流使人类从自然界中脱颖而出。事实上,世间万物都在不断相互作用,彼此身上都会留下对方的印记,从这个意义上来说, 所有事物都在不断地交换信息。
没有人知道答案,这与杨密的大规模差距问题有关。要回答这个问题,你需要的不仅仅是现有的物理知识。物理学家面临的问题是,他们无法揭示出更详细的质子内部结构,上夸克,下夸克,以及将夸克凝聚在一起的结合能。
把质子对撞在一起永远不会给你更多的信息,因为把夸克分开需要很大的能量,这会产生新的粒子,而且不会给粒子提供任何新的信息,比如什么产生了夸克,夸克是如何产生分数电荷的。
要想弄清楚夸克、质子和其他物质的内部结构,唯一的办法就是找到万物理论。万物理论是从一个构成元素和创造万物的能量开始的。戈登的万物论是一种还原论,是一种涌现论。
由戈登模型导出的是具有圆柱形状的上夸克的内部能量结构。圆柱体的圆形表面是电场产生的地方。因为圆形方向代表了时空中三个方向中的两个,所以向上夸克带有+2/3的电荷。沿圆柱体的轴向分布着产生强力的能量场。
圆柱体有一个特殊的半径叫做LEEP半径或量子半径,尽管我不介意物理学家最终叫它戈登半径(LOL!)夸克的能量有一半在半径内另一半在半径外无限延伸。向上夸克添加的能量越多,量子半径就越小。
质子不包含两个上夸克和一个下夸克…(如果你是一个物理学家-擦掉脸上的假笑事情即将改变戈登模型修复你的误解这个模型得到一个质子和同意实验数据——不只是Wilczek居住的理论,就是因为它同意实验数据)所以戈登的一切理论派生的质子是由三个夸克和电子的结合一个电子和一个夸克目前被认为是下夸克。
三个上夸克沿着强力的能量场首尾相连,使上夸克圆柱体弯曲成一个和三个上夸克组成的环,形成一个环。当环轨道上有一个电子时,就有了一个质子。当两个电子与上夸克环相联系时,就会有一个中子。
现在回答你们的问题,如果你想把向上的夸克环分开,你必须把能量注入环。该能量将通过将强大的力量集中到一个更小的圆柱形部分的量子半径来增加强大的力量,而圆柱形部分创造了环形。这就是为什么当你试图拉开环(分离向上的夸克)时,强力会变得更强。
这是我给年轻的,未来的物理学家们的一个挑战…你们的老屁老师,教授和老一辈的领导们会措手不及,因为他们永远不会相信万物理论是在他们的学术殿堂之外发现的。
《三体》中的纳米飞刃在巴拿马运河如豆腐般的切割“审判日”号的情景让大家记忆犹新,事实上纳米飞刃其实无法切割如此庞大的船体,但它毫无疑问能切割人体,并且效果极佳!那么如果将这些纳米飞刃的细丝直径换成夸克大小,快速切过人体,会致人于死地吗?
夸克是什么级别,夸克大小到底是多大的尺寸
要了解夸克的话,必须从原子开始说起,否则完全无法理解夸克的尺度!最早提出原子概念的是古希腊哲学家德谟克里特,但限于当时的技术和认知,他只是蒙对了!真正的原子论要到19世纪初才被英国化学家J道尔顿提出,它是参与化学反应的最小单位,这得益于化学在科学界的发展!
此后JJThomsom(约瑟夫·汤姆逊)发现了电子,再往后伟大的英国物理学家卢瑟福在α粒子散射金箔实验时发现绝大部分α粒子都通过了金箔,只有极少数被反弹回来,而且角度很窄,这表示原子内部绝大部分都是空的,而且原子核是一个非常致密的存在,因此卢瑟福发现了原子核!
此后卢瑟福在α粒子撞击氮原子时发现了氢原子核,因此发现了质子的存在!再后来卢瑟福的学生查德威克又发现了中子的存在,到此原子的大致结构组成就已经确认了!
夸克是个什么东西,它在物质中的位置在哪里?
从原子核到质子和中子的发现,无一例外都利用了α粒子,这是一种放射性物质衰变释放出来的氦核,是两个中子和两个质子构成氦四,质量大,速度高,可达2万千米/秒,因为是原子核,所以带正电,在它的撞击下,原子核被撞裂了,所以发现了质子!
云室中观测铀衰变
但自然界的α粒子能量有限,因此在20世纪三十年代的时候发明了加速器,这是一种利用电场来加速带电粒子的设备,可以将粒子加速到极高的速度去撞击原子核,早期在散射实验时用的是云室观测撞击后产生的粒子路径,但很显然在高真空的加速器结构中,云室就不再适合观测轨迹了!
因此“气泡室”就这样被发明了出来,科学家可以观测撞击后产生新粒子的轨迹分析出新粒子的性质,粒子在加速到极高的速度,撞击原子核,分裂出质子和中子,那么再撞击质子和中子又会发生什么?但科学家发现无论怎么提高能量,质子和中子就是不分裂,那么真是不可分割的整体吗?
物理学家盖尔曼假设粒子是统一和对称的,如果质子和中子是不可分割的整体,那么在碰撞中质量能量以及电荷都不会有损失,但盖尔曼发现明显不是这样,因此他认为质子和中子由更小的三个粒子组成,经过两年的努力,盖尔曼证明了这些更小的粒子确实存在于质子和中子中,并将其命名成“k-works”,后来缩写为“kworks”,又更名为quark。
夸克有六种“味”,分别是上、下、粲、奇、底及顶夸克,奇、粲、顶及底则只能经由高能粒子的碰撞产生,上下夸克是稳定的,质子由两个上夸克+一个下夸克构成,中子则是两个下夸克,一个上夸克,将它们联系起来的纽带是胶子!
用夸克细丝切割人体,能致人于死地吗?
在日常中被刀不小心割到,那么至少也是流血受伤,这是因为锋利的刀锋将人体组织分离了!人体是一个有机结合整体,再宏观层面是肌肉纤维组织和皮肤将骨骼包裹起来,连成一个有机体,但在微观层面来看,人体组成的分子之间的作用力就是范德华力,但真正的背后却是基本粒子之间的电磁力!
当刀锋尺寸越来越小时,从理论上看它会变得更锋利,但以人类的技术极限来看,它的刀锋尺寸不可能低于1个原子的直径,再小我们就无法加工了,此时它仍然具有杀伤力,它的切割仍然会破坏原子之间结合的电磁力!
自然界有四大基本作用力,分别是引力、电磁力、强相互作用力和弱相互作用力,锋利的刀能破坏的只是电磁力,但在宏观层面,这也足够了,因为电磁力是粘合原子核和原子级别以上的物质大厦的“水泥砂浆”!
夸克细丝能破坏的是什么层次?
夸克的大小,有实验表明是10^-20级别,它比质子还要小5个数量级,比原子则要小十个数量级,质子和原子的大小差异也就是原子核和原子的大小差异!什么概念呢?
假设原子核有一个乒乓大小,那么原子的尺寸将比一个体育馆还大,所以原子内部非常空旷!这个比例也同样适用于夸克和质子的比例,因为原子核就是由质子和中子构成的,在这个比例中,当原子是一个体育馆时,那么夸克在放大镜下都难以看到。
这样比例下我们就能明白了,当这条连放大镜都看不到的细丝去切割无数个原子构成的人体时,只有1/N的机会将可能切割到原子核中的夸克产生些许反应,这个比例可能比你能想象到的连续中十次六合彩概率还要低得多!
所以一根夸克细丝切割人体,你根本感觉不到!当然用这个编制的网(比如1米×1米的网格)扫过人体甚至地球,其实也不会咋样,只要它不是那种一根挨着一根编制的密网,否真它可能就会变成比中子星密度还高的物质,拿玩意儿扫过地球,估计大家都完蛋了!
不过最后要提醒下,由于夸克禁闭的存在,我们时不可能拿到单独的夸克制造成细丝的!
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)