欧拉公式怎么得到的?

欧拉公式怎么得到的?,第1张

欧拉对数学的贡献真是无穷无尽。记得有一个求圆周率π的无穷级数公式,我以前也介绍过它是怎么推导的(收敛还是相当快的),就是下面这个公式:

我从某些书上又看到另外的类似公式,比如:

大多数书只是给出这个公式(2),但却没有给出推导过程。我今天就来给您讲一讲它是怎么得到的。并且同时也把公式(1)也一并讲了。两个公式本来就是一并求得的。

sinx的幂级数展开式为:

从而有

另外,sinx/x还可以写成无穷乘积(这里不加证明):

到此处,我们先停顿一下。我说过,以前我们讲过上面的公式(1),很多书上也给出了得到它的 方法,基本上就是把上面的(3)式与(4)式进行比较,可以明显看出左右两端x^2项的系数各是什么,从而两者相等,得到公式(1)。其实,不光 x^2项的系数两端相等, x^4项的系数两端也是相等的。但是,你看得出来上面(4)式中 x^4项的系数是什么吗?肯定是任意两个因数中的x^2项的乘积,然后求和,但是,它是不是很复杂?似乎根本看不出能产生像公式(2)那么简洁的形式?好的,我们继续。

把(3)式与(4)式分别取对数(仍然收敛,但收敛性就不在这里证明了,本篇内容主要关注形式和方法),得

(注意,上面(6)式中, 因为取了对数,“积”就变为“和”了。)

我们还知道,ln(1-x)的幂级数展开式为:

所以,对(5)式应用(7)式(注意,把下式中下画线部分当成一个整体代替(7)式中的x),得

同样,对(6)式应用(7)式,得

我们比较(8)式与(9)式两端x^2的系数,它们相等,就可以得到我们以前讲过的欧拉公式(1):

这个没有什么稀奇的,但我们还可以比较两式的x^4项,这个以前很少有人涉及。具体来说,(8)式中,x^4项有两部分,如下:

(9)式中,x^4项为:

(10)式与 (11)式相等,得到

两边同时乘以“-2(π^4)”,得到

这就是前面的(2)式。

我们还可以让(8)(9)两式对应的其他同类项的系数相等,从而得到其他很多很多有关 π的无穷级数公式。仅以x^6项的系数相等为例,我们便得到

经计算,得到又一有关 π的无穷级数公式:

挖掘 π的无穷级数表示、无穷乘积表示,是一件很有趣的事情。有兴趣的数学爱好者可在我公众号历史消息中搜索“圆周率”,即可找到这方面的文章。

1.数论

欧拉的一系列成奠定作为数学中一个独立分支的数论的基础。欧拉的著作有很大一部分同数的可除性理论有关。欧拉在数论中最重要的发现是二次反律。

2.代数

欧拉《代数学入门》一书,是16世纪中期开始发展的代数学的一个系统总结。

3.无穷级数

欧拉的《微分学原理》(Introductio calculi differentialis,1755)是有限差演算的第一部论著,他第一个引进差分算子。欧拉在大量地应用幂级数时,还引进了新的极其重要的傅里叶三角级数类。1777年,为了把一个给定函数展成在(0,“180”)区间上的余弦级数,欧拉又推出了傅里叶系数公式。欧拉还把函数展开式引入无穷乘积以及求初等分式的和,这些成果在后来的解析函数一般理论中占有重要的地位。他对级数的和这一概念提出了新的更广泛的定义。他还提出了两种求和法。这些丰富的思想,对19世纪末,20世纪初发散级数理论中的两个主题,即渐近级数理论和可和性的概念产生了深远影响。

4.函数概念

18世纪中叶,分析学领域有许多新的发现,其中不少是欧拉自已的工作。它们系统地概括在欧拉的《无穷分析引论》、《微分学原理》和《积分学原理》组成的分析学三部曲中。这三部书是分析学发展的里程碑四式的著作。

5.初等函数

《无穷分析引论》第一卷共18章,主要研究初等函数论。其中,第八章研究圆函数,第一次阐述了三角函数的解析理论,并且给出了棣莫佛(de Moivre)公式的一个推导。欧拉在《无穷分析引论》中研究了指数函数和对数函数,他给出著名的表达式(这里i表示趋向无穷大的数;1777年后,欧拉用i表示 ),但仅考虑了正自变量的对数函数。1751年,欧拉发表了完备的复数理论。

6.单复变函数

通过对初等函数的研究,达朗贝尔和欧拉在1747-1751年间先后得到了(用现代数语表达的)复数域关于代数运算和超越运算封闭的结论。他们两人还在分析函数的一般理论方面取得了最初的进展。

7.微积分学

欧拉的《微分学原理》和《积分学原理》二书对当时的微积分方法作了最详尽、最有系统的解说,他以其众多的发现丰富可无穷小分析的这两个分支。

8.微分方程

《积分原理》还展示了欧拉在常微分方程和偏方程理论方面的众多发现。他和其他数学家在解决力学、物理问题的过程中创立了微分方程这门学科。

在常微分方程方面,欧拉在1743年发表的论文中,用代换 给出了任意阶常系数线性齐次方程的古典解法,最早引人了“通解”和“特解”的名词。1753年,他又发表了常系数非齐次线性方程的解法,其方法是将方程的阶数逐次降低。

欧拉在18世纪30年代就开始了对偏微分程的研究。他在这方面最重要的工作,是关于二阶线性方程的。

9.变分法

1734年,他推广了最速降线问题。然后,着手寻找关于这种问题的更一般方法。1744年,欧拉的《寻求具有某种极大或极小性质的曲线的方法》一书出版。这是变分学史上的里程碑,它标志着变分法作为一个新的数学分析的诞生。

10.几何学

坐标几何方面,欧拉的主要贡献是第一次在相应的变换里应用欧拉角,彻底地研究了二次曲面的一般方程。

微分几何方面,欧拉于1736年首先引进了平面曲线的内在坐标概念,即以曲线弧长这一几何量作为曲线上点的坐标,从而开始了曲线的内在几何研究。1760年,欧拉在《关于曲面上曲线的研究》中建立了曲面的理论。这本著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的里程碑。

欧拉对拓扑学的研究也是具有第一流的水平。1735年,欧拉用简化(或理想化)的表示法解决了著名的歌尼斯堡七桥游戏问题得到了具有拓扑意义的河-桥图的判断法则,即现今网络论中的欧拉定理

欧拉公式是指以欧拉命名的诸多公式其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式此外还包括其他一些欧拉公式,比如分式公式等等诚心为你解答,给个好评吧亲,

答:

一、定义

欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等。

二、简介

在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。

(1)分式里的欧拉公式

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

 当r=0,1时式子的值为0 当r=2时值为1

 当r=3时值为a+b+c

(2)复变函数论里的欧拉公式

  e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

 e^ix=cosx+isinx的证明:

 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……

 cos x=1-x^2/2!+x^4/4!-x^6/6!……

  sin x=x-x^3/3!+x^5/5!-x^7/7!……

 在e^x的展开式中把x换成±ix

 (±i)^2=-1, (±i)^3=∓i, (±i)^4=1 ……

 e^±ix=1±ix/1!-x^2/2!∓x^3/3!+x^4/4!……

 =(1-x^2/2!+……)±i(x-x^3/3!……)

  所以e^±ix=cosx±isinx

 将公式里的x换成-x,得到:

 e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:

 e^iπ+1=0这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

(3)三角形中的欧拉公式

  设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr

(4)拓扑学里的欧拉公式

  V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

 如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

 X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。

在多面体中的运用:

  简单多面体的顶点数V、面数F及棱数E间有关系

  V+F-E=2

 这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

(5)初等数论里的欧拉公式

  欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。欧拉证明了下面这个式子:

如果n的标准素因子分解式是p1^a1p2^a2……pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有:

φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

 利用容斥原理可以证明它。

(6)物理学中的欧拉公式

  众所周知,生活中处处存在着摩擦力,欧拉测算出了摩擦力与绳索缠绕在桩上圈数之间的关系。现将欧拉这个颇有价值的公式列在这里:

 F=fe^ka

 其中,f表示我们施加的力,F表示与其对抗的力,e为自然对数的底,k表示绳与桩之间的摩擦系数,a表示缠绕转角,即绳索缠绕形成的弧长与弧半径之比。

 此外还有很多著名定理都以欧拉的名字命名。

欧拉定理

对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n)

证明:

首先证明下面这个命题:

对于集合Zn={x1,x2,,xφ(n)},其中xi(i=1,2,…φ(n))是φ(n)个n的素数,且两两互素,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {ax1(mod n),ax2(mod n),,axφ(n)(mod n)}

则S = Zn

1) 由于a,n互质,xi也与n互质,则axi也一定于p互质,因此

任意xi,axi(mod n) 必然是Zn的一个元素

2) 对于Zn中两个元素xi和xj,如果xi ≠ xj

则axi(mod n) ≠ axi(mod n),这个由a、p互质和消去律可以得出。

所以,很明显,S=Zn

既然这样,那么

(ax1 × ax2××axφ(n))(mod n)

= (ax1(mod n) × ax2(mod n) × × axφ(n)(mod n))(mod n)

= (x1 × x2 × × xφ(n))(mod n)

考虑上面等式左边和右边

左边等于(a(x1 × x2 × × xφ(n))) (mod n)

右边等于x1 × x2 × × xφ(n))(mod n)

而x1 × x2 × × xφ(n)(mod n)和n互质

根据消去律,可以从等式两边约去,就得到:

a^φ(n) ≡ 1 (mod n)

推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)

费马定理:

a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)

证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。

同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p)

[编辑本段]欧拉公式

简单多面体的顶点数V、面数F及棱数E间有关系

V+F-E=2

这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

[编辑本段]认识欧拉

欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。

欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。

欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,∑,f (x)等等,至今沿用。

欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式

[编辑本段]欧拉定理的意义

(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律

(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。

定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。

(4)提出多面体分类方法:

在欧拉公式中, f (p)=V+F-E 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。

除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。

(5)利用欧拉定理可解决一些实际问题

如:为什么正多面体只有5种? 足球与C60的关系?否有棱数为7的正多面体?等

[编辑本段]欧拉定理的证明

方法1:(利用几何画板)

逐步减少多面体的棱数,分析V+F-E

先以简单的四面体ABCD为例分析证法。

去掉一个面,使它变为平面图形,四面体顶点数E、棱数V与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1

(1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。

(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。

以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和

设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和∑α

一方面,在原图中利用各面求内角总和。

设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:

∑α = [(n1-2)·180度+(n2-2)·180度+…+(nF-2) ·180度]

= (n1+n2+…+nF -2F) ·180度

=(2E-2F) ·180度 = (E-F) ·360度 (1)

另一方面,在拉开图中利用顶点求内角总和。

设剪去的一个面为n边形,其内角和为(n-2)·180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。

所以,多面体各面的内角总和:

∑α = (V-n)·360度+(n-2)·180度+(n-2)·180度

=(V-2)·360度(2)

由(1)(2)得: (E-F) ·360度=(V-2)·360度

所以 V+F-E=2

方法3 用拓朴学方法证明欧拉公式

图尝试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。

欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边),角(或顶)的个数,那末

F-E+V=2。

证明 如图(图是立方体,但证明是一般的,是“拓朴”的):

(1)把多面体(图中①)看成表面是薄橡皮的中空立体。

(2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。

(3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。

(4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。

(5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。

(6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。

(7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。

(8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。

即F′-E′+V′=1

成立,于是欧拉公式:

F-E+V=2

得证。

[编辑本段]欧拉定理的运用方法

(1)分式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

(2)复数

由e^iθ=cosθ+isinθ,得到:

sinθ=(e^iθ-e^-iθ)/2i

cosθ=(e^iθ+e^-iθ)/2

(3)三角形

设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:

d^2=R^2-2Rr

(4)多面体

设v为顶点数,e为棱数,f是面数,则

v-e+f=2-2p

p为欧拉示性数,例如

p=0 的多面体叫第零类多面体

p=1 的多面体叫第一类多面体

(5) 多边形

设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:

V+Ar-B=1

(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)

(6) 欧拉定理

在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-point-center、垂心Orthocenter共线。

其实欧拉公式是有很多的,上面仅是几个常用的。

[编辑本段]使用欧拉定理计算足球五边形和六边形数

问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?

答:足球是多面体,满足欧拉公式F-E+V=2,其中F,E,V分别表示面,棱,顶点的个数

设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么

面数F=x+y

棱数E=(5x+6y)/2(每条棱由一块黑皮子和一块白皮子共用)

顶点数V=(5x+6y)/3(每个顶点由三块皮子共用)

由欧拉公式,x+y-(5x+6y)/2+(5x+6y)/3=2,

解得x=12。所以,共有12块黑皮子

所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的

对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。

所以白皮子所有边的一半是与黑皮子缝合在一起的

那么白皮子就应该一共有60×2=120条边,120÷6=20

所以共有20块白皮子

(或者,每一个六边形的六条边都与其它的三个六边形的三条边和三个五边形的三条边连接;每一个五边形的五条边都与其它的五个六边形的五条边连接

所以,五边形的个数x=3y/5。

之前求得x=12,所以y=20)

经济学中的“欧拉定理”

在西方经济学里,产量和生产要素L、K的关系表述为Q=Q(L,K),如果具体的函数形式是一次齐次的,那么就有:Q=L(ðQ/ðL)+K(ðQ/ðK),换句话说,产品分配净尽取决于Q能否表示为一个一次齐次函数形式。

因为ðQ/ðL=MPL=w/P被视为劳动对产量的贡献,ðQ/ðK=MPK=r/P被视为资本对产量的贡献,因此,此式被解释为“产品分配净尽定理”,也就是所有产品都被所有的要素恰好分配完而没有剩余。因为形式上符合数学欧拉定理,所以称为欧拉定理。

同余理论中的"欧拉定理"

设a,m∈N,(a,m)=1,则a^(f(m))≡1(mod m)

(注:f(m)指模m的简系个数)

[编辑本段]欧拉公式

在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。

1、复变函数论里的欧拉公式:

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

将公式里的x换成-x,得到:

e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2

这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:

e^i∏+1=0

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

2、拓扑学里的欧拉公式:

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的拓扑不变量,是拓扑学研究的范围。

3、初等数论里的欧拉公式:

欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。

欧拉证明了下面这个式子:

如果n的标准素因子分解式是p1^a1p2^a2……pmam,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有

φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

利用容斥原理可以证明它。

定理:正整数a与n互质,则a^φ(n)除以n余1

证明:设集合{A1,A2,,Am}为模n的一个缩系(若整数A1,A2,,Am模n分别对应0,1,2,,n-1中所有m个与n互素的自然数,则称集合{A1,A2,,Am}为模n的一个缩系)

则{a A1,a A2,,a Am}也是模n的一个缩系(如果a Ax与a Ay (x不等于y)除以n余数相同,则a(Ax-Ay)是n的倍数,这显然不可能)

即A1A2A3……Am≡aA1aA2……aAm(mod n) (这里m=φ(n))

两边约去A1A2A3……Am即得1≡a^φ(n)(mod n)

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3206110.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-13
下一篇2023-08-13

发表评论

登录后才能评论

评论列表(0条)

    保存