请举出3个生活中光沿着直线传播的应用例子

请举出3个生活中光沿着直线传播的应用例子,第1张

利用光的直线传播规律的举例:

1、针孔照相机。

2、射击瞄准。

3、木工判断木板是否刨平。

光的传播规律:

光在同种均匀介质中沿直线传播。小孔成像、日食和月食还有影子的形成都证明了这一事实。

撇开光的波动本性,以光的直线传播为基础,研究光在介质中的传播及物体成像规律的学科,称为几何光学。在几何光学中,以一条有箭头的几何线代表光的传播方向,叫做光线。

几何光学把物体看作无数物点的组合(在近似情况下,也可用物点表示物体),由物点发出的光束,看作是无数几何光线的集合,光线的方向代表光能的传递方向。

几何光学中光的传播规律有三:

1、光的直线传播规律已如上述。大地测量也是以此为依据的。

2、光的独立传播规律。两束光在传播过程中相遇时互不干扰,仍按各自途径继续传播,当两束光会聚同一点时,在该点上的光能量是简单相加的。

3、光的反射和折射定律。

光传播途中遇到两种不同介质的分界面时,一部分反射,一部分折射。

反射光线遵循反射定律,折射光线遵循折射定律。

一、光的干涉

1干涉作用

波长相同、相差恒定、传播方向相近的两束或两束以上的光在同一介质中相遇时,在交叠区相互作用产生相长增强或相消删除的现象称为光的干涉作用。产生干涉作用的波称为相干波。并不是任意两束光相遇都可发生干涉作用。能发生干涉的两束光必须符合以下条件:两束光的频率相同、振动方向相同、位相相同或位相差恒定。

振动方向一致、振幅和频率相同的两束相干波(光波1与光波2)相遇,光波1的波峰、波谷与光波2的波峰、波谷同方向重叠,两束光发生干涉,其结果是产生的干涉波具有双倍的振幅,该过程称相长增强,光亮度因而加强(图1-3-11(a)。

当这两束光波振动相位完全相反时,即光束1的波峰与光束2的波谷反向重叠,由于电磁场相互抵消,光波1与光波2干涉的结果是光亮度减为零,该过程称为相消删除(图1-3-11(b)。

图1-3-11 光的干涉

2干涉色

当两单色光源相干波发生干涉时,将产生一系列明暗条纹,称为干涉条纹;而复色光(即白光)发生干涉时,则产生由紫到红一系列的彩色条纹。由干涉作用形成的颜色,称为干涉色。干涉色的具体颜色受两束相干光的光程差制约,如果以白光作光源,当光程差在0~550nm范围内时,将依次出现暗灰、灰白、黄橙、紫红诸多干涉色,称为第一级序干涉色,其干涉色的特点是只有暗灰、灰白色而无蓝、绿色;当光程差在550~1100nm范围内时,将依次出现蓝、绿、黄橙、紫红色干涉色,称为第二级序干涉色,其特点是颜色鲜艳,干涉色条带间界线较清楚;当光程差约为1100~1650nm左右时,将出现第三级序干涉色,其干涉顺序与第二级序一致,但其干涉色色调比第二级序浅,干涉色条带间的界线已不十分清楚;当光程差大于1650nm后将出现第四级序以至更高级序的干涉色。干涉色级序越高,其颜色越浅,干涉条带之间的界线也越模糊不清。

3薄膜干涉

在日常生活中,经常可以见到白色薄膜上的彩色条纹和玻璃窗上有了油膜时而出现的彩色条纹,这都是由光的薄膜干涉而引起的。如图1-3-12所示,在薄膜干涉中,从低层反射的光与薄层顶部反射的光相叠加、干涉而成色。对于干涉起决定作用的将是这两束光的光程差。当光程差是光波半波长的偶数倍时,两束光相长增强,当光程差是半波长的奇数倍时,两束光相互消删。当两束光为单色光时,干涉作用仅出现明暗相间的带;当两束光为复色光时,出现彩色。干涉色的颜色取决于薄膜的厚度、薄膜的折射率和入射光的性质。薄膜干涉往往是薄膜呈弧形表面,使平行入射的光线产生不同的入射角,造成不同的波程差,从而来满足不同波长的光产生干涉。

图1-3-12 光的薄膜干涉

a、b为入射光,a′为薄膜底层的反射光,

b′为薄膜顶层的反射光,a′、b ′两束反射光相叠加发生干涉

4劈尖干涉

实际中,薄膜并不一定表现为均一平面,当薄膜不均匀时,即薄膜的厚度发生变化时,将出现劈尖干涉或楔模干涉。劈尖往往具有一个平面,平行光线以相同的入射角入射,劈尖的作用造成不同的波程差,从而来满足不同波长的光产生干涉。

晕彩是宝石中最常见的干涉现象,可以由于解理或裂隙的存在而产生,如晕彩石英。当光通过石英裂隙中的空气薄层时发生干涉,从薄层底部反射的光与薄层顶部反射的光相叠加,使本来无色的石英呈现五颜六色的干涉色。

二、光的衍射

光波在遇到障碍物时,偏离直线方向传播的现象称为光的绕射,也称为光的衍射。如图1-3-13(a)所示,自光源发出的光线穿过宽度可以调节的狭缝后,在屏幕上会出现光斑。在光源、狭缝和屏幕位置相对固定的情况下,光斑的大小由狭缝的宽度所决定。如果缩小狭缝的宽度,光斑也会随之变小;但当狭缝的宽度缩小到一定程度时,如约10-4m时,若狭缝的宽度再继续缩小,光斑不但不会缩小,反而会增大。这时光斑的全部亮度也发生变化,由原来亮度均匀分布的亮斑变成了一系列明暗相间的条纹(光源为单色光源)或彩色条纹(光源为白色光源),条纹的边界也失去了明显的界线。这就是光的衍射现象。衍射产生的原因是,光在没有障碍传播时,光是以平面波的形式向前推进传播的,当光在遇到障碍物时(见图1-3-13(b),其波场中的能量分布会发生变化,在障碍物边缘产生的子波的相位关系被打破,它们不再是平面波的一部分,不再沿平行方向传播,而是改变其传播方向,同时,一系列子波发生干涉便产生了干涉条纹。因此衍射产生的颜色效应包括了干涉。

图1-3-13 光的衍射(a)与干涉(b)

衍射是有条件的,只有当障碍物的大小与光波波长十分相近,或略大于光波波长时,衍射才能发生。单色光发生衍射时,衍射结果产生明暗相间的条纹;当复色光发生衍射时,产生的将是五颜六色的彩色条纹,衍射效应产生的是纯正的光谱色。

光的衍射在宝石学中主要的应用有两个方面。其一,利用光的衍射原理而设计的衍射光栅,是宝石用分光镜的主要构件之一。从广义上讲,所谓光栅,就是具有周期性的空间结构或光学性能的衍射屏,利用衍射光栅制作宝石用分光镜可以将复色光即白光分解成线性的衍射光谱,且光谱颜色鲜艳。其二,利用光的衍射原理,可解释宝石中的一些特殊光学效应,如变彩效应。

光栅的类型很多,有透视光栅、反射光栅、平面光栅、一维光栅、二维光栅、三维光栅等。三维光栅解释了欧泊的变彩。

三、光的散射

散射是指由传播介质的不均匀性引起的光线向四面八方射去的现象。当光线通过均匀、透明的物质(如清水、玻璃)时,在侧面是难以看到光线的。但是,当介质不均匀时,如清水中有了悬浮微粒时,便可在侧面看到光的轨迹(见图1-3-14),即看到侧光。此时介质的不均匀性是一种微观尺度上的不均匀,是以波长为单位来度量的。当介质均匀性遭到破坏,且不均匀的尺度达到波长数量级时,这些不均匀介质小块之间在光学性质上(如折射率)将有较大差别。在光波的作用下,它们将成为强度差别较大的次波源,这时除了按几何光学规律直线传播的光外,在其他方向或多或少也有光线存在,这就是散射光。由此可见,尺度与波长可比拟的不均匀性引起的散射,也可以看作是一种衍射作用。如果介质中不均匀团块的尺度大于波长的数量级时,散射又可看成是在这些团块上的反射和折射。如图1-3-15所示,图中(a)为一十分细小的微粒,使光波发生散射,而(b)为一较大物体,使光波发生反射,边缘部分发生衍射。

图1-3-14 光的散射示意图

一束电光通过稀释的牛奶后成为粉红色,而散射光是浅蓝色

散射的强度和颜色多与不均匀微粒的大小和光的波长有关,就可见光(400~700nm)而言:①比可见光的波长小的微粒引起的散射:当微粒的大小在300~1nm左右时,其对可见光的散射强度与波长成反比,这类散射统称为瑞利散射。即波长短的蓝光比波长长的红光的散射要强得多,一般来说可以产生很好的蓝色—紫色的散射,其他波长的光被部分吸收而削弱。月光石的蓝色多属于此类散射。②接近或大于可见光波长的微粒引起的散射:其散射强度与波长关系不大,大多数情况下呈白色散光,这类散射统称为米氏散射。如不透明的白色石英。只有当散射微粒大小在λ~2λ之间时,散射光才可能呈各种颜色,主要是红色和绿色,这种情况宝石中比较少见,只有极少数的具**、米**乳光的月光石可能具有此结构。有时把散射微粒大于700nm的散射也称为白色米氏散射,这种散射可使宝石产生明亮的乳光,如月光石、芙蓉石、刚玉、尖晶石和蛋白石等。

图1-3-15 介质尺度与光的散射、衍射和反射的关系

(a)细小微粒,光波在此发生散射;

(b)较大微粒,光波在此发生反射,边缘部分发生衍射

四、光的色散

当白色复合光通过具棱镜性质的材料时,棱镜将复合光分解而形成不同波长光谱的现象称为色散,它是由于光在同一介质中的传播速度随波长而异所造成的。白光是一种复色光,它由红、橙、黄、绿、青、蓝、紫等不同的单色光复合而成。当白光通过具有棱镜性质的材料时,由于不同波长的光在其中的传播速度不同,其折射率也会不同,因此当光线通过射入和射出棱镜材料经过两次折射后,就会把原来的白色光分解而形成不同波长的彩色光谱。如图1-3-16所示,其中红色光的波长最长,偏离入射光方向最小,而紫色光波长最短,其偏离入射光方向最大。色散形成的光谱,按各色光的偏离入射光的程度,由红色到紫色依次排列。

图1-3-16 光的色散

色散的强弱可以用色散值来表示。通常把材料对红光6867nm和紫光4308nm两束单色光的折射率差值规定为材料的色散值。色散值越大色散越强,反之越弱,这两种波长的光分别为太阳光光谱中的G线和B线。根据色散值的大小,可将色散划分成不同的等级:极低(0010以下)、低(0010~0019)、中高(0020~0029)、高(0030~0059)、极高(0060以上)。

色散在宝石中有两种意义。其一可以作为宝石肉眼鉴定的特征之一,特别是在对无色或颜色较浅的宝石鉴定中起着较重要的作用。在一堆无色透明的宝石,如水晶、黄玉、绿柱石、玻璃、钻石中,有经验的宝石工作者可以根据钻石的高色散值(0044)将钻石挑选出来,还可以根据不同的色散值,将钻石与锆石区分开来。其二,高色散值使宝石增添了无穷的魅力。无色的钻石之所以能成为宝石之王,很重要的原因之一便在于它的高色散值。当自然光照射到角度合适的钻石刻面时,会分解出光谱色,在钻石表面显示出一种五颜六色的火彩。

彩色宝石的色散往往被自身颜色所覆盖,而表现得不十分明显,但是高色散值同样为彩色宝石增添光彩,如绿色的翠榴石,由于具有很高的色散值(0057),看上去比绿色玻璃还艳丽得多。

具有高色散的宝石有:锰铝榴石0027,人造钇铝榴石0028,锆石0039,钻石0044,榍石0051,翠榴石0057,合成立方氧化锆0060,人造钛酸锶019,合成金红石033。

影响宝石火彩的因素还有体色、净度和切工比例等。

光的干涉现象 :

它是指因两束光波相遇而引起光的强度重新分布的现象。

条件:

两束光波相遇产生干涉现象的必要条件是:

①频率相同;

②光矢量(即电场强度矢量E)的振动方向相同;

③在相遇处两束光的相位差恒定。 

为了实现相干光的干涉,还应注意:两相干光至相遇点的光程差不能太大,以不超过波列长度(即相干长度)为限;两相干光的振幅不能相差太大,以保证干涉条纹明显可辨。

扩展资料

光干涉实验

在多次争吵后,牛顿让科学界接受了这样的观点:光是由微粒组成的,而不是一种波。但牛顿也不是永远正确的。1830年,英国医生、物理学家托马斯·杨用实验来验证这一观点。他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞。

让光线透过,并用一面镜子反射透过的光线。然后他用一个厚约三十分之一英寸的纸片把这束光从中间分成两束。结果看到了相交的光线和阴影。这说明两束光线可以像波一样相互干涉。这个实验为一个世纪后量子学说的创立起到了至关重要的作用。

-干涉

反射光和透射光分别是折射光线和入射光线的光线相遇干涉。光程差:l=n1s1-n2s2=c(s1/v1-s2/v2),其中,c为真空中的光速,v为光在介质中的传播速度。光程相等的时候相长和相。

相位差是两个作周期变化的物理量的相之间的差值。光程差顾名思义,即为两束光光程之差。相位差是考虑一个周期内两束光的差,相位差是通过光程差算出来的,光程差可能等于很多个周期长,但是相位差只考虑在相对应的一个周期里,两束光的差。

光的干涉现象的发现

在历史上对于由光的微粒说到光的波动说的演进起了不可磨灭的作用。1801年,T杨提出了干涉原理并首先做出了双狭缝干涉实验,同时还对薄膜形成的彩色作了解释。1811年,DFJ阿喇戈首先研究了偏振光的干涉现象。现代,光的干涉已经广泛地用于精密计量、天文观测、光弹性应力分析、光学精密加工中的自动控制等许多领域。

1相干光的条件:两束光在相遇区域:振动方向相同。

2振动频率相同。

3相位相同或相位差保持恒定。

4光的相干指的是两个光的波动(光波)在传播过程中保持着相同的的相位差,具有相同的频率,或者有完全一致的波形。

5这样的两束光可以在传播过程中产生稳定的干涉,也就是相长干涉、相消干涉。

6但在现实中完美的相干光能是不存在的,通常用相干性来描述光的相干性能,包含时间相干性和空间相干性。

7从激光器出来的激光通常有很好的相干性。

8这种激光在分束后合并可以产生稳定的相干条纹。

9相干在物理学上还有更加普遍的意义,它代表两个波,或者波集,具有的相关性。

10获得相干光源的三种方法:波阵面分割法:将同一光源上同一点或极小区域(可视为点光源)发出的一束光分成两束,让它们经过不同的传播路径后,再使它们相遇,这时,这一对由同一光束分出来的光的频率和振动方向相同,在相遇点的相位差也是恒定的,因而是相干光。

11如,杨氏双缝干涉实验。

12振幅分割法:一束光线经过介质薄膜的反射和折射,形成的两束光线产生干涉的方法。

13如薄膜干涉。

14采用激光光源:激光光源的频率,位相,振动方向,传播方向都相同。

光的特征

光同时具备以下四个重要特征:

1、在几何光学中,光以直线传播。笔直的“光柱”和太阳“光线”都说明了这一点。

2、在波动光学中,光以波的形式传播。光就像水面上的水波一样,不同波长的光呈现不同的颜色。

3、光速极快。在真空中为299792458≈3×108m/s,在空气中的速度要慢些。在折射率更大的介质中,譬如在水中或玻璃中,传播速度还要慢些。

4、在量子光学中,光的能量是量子化的,构成光的量子(基本微粒),我们称其为“光量子”,简称光子,因此能引起胶片感光乳剂等物质的化学变化。

光的传播规律

光在同种均匀介质中沿直线传播。小孔成像、日食和月食还有影子的形成都证明了这一事实。

撇开光的波动本性,以光的直线传播为基础,研究光在介质中的传播及物体成像规律的学科,称为几何光学。在几何光学中,以一条有箭头的几何线代表光的传播方向,叫做光线[1] 。几何光学把物体看作无数物点的组合(在近似情况下,也可用物点表示物体),由物点发出的光束,看作是无数几何光线的集合,光线的方向代表光能的传递方向。几何光学中光的传播规律有三:

(1)光的直线传播规律已如上述。大地测量也是以此为依据的。

(2)光的独立传播规律。两束光在传播过程中相遇时互不干扰,仍按各自途径继续传播,当两束光会聚同一点时,在该点上的光能量是简单相加的。

(3)光的反射和折射定律。光传播途中遇到两种不同介质的分界面时,一部分反射,一部分折射。反射光线遵循反射定律,折射光线遵循折射定律。

光的散射、反射与吸收

散射

根据科学家的测定,蓝色光和紫色光的波长比较短,相当于“小波浪”;橙色光和红色光的波长比较长,相当于“大波浪”。当遇到空气中障碍物的时候,蓝色光和紫色光因为翻不过去那些障碍,便被散射得到处都是,布满整个天空,就是这样被散射成了蓝色。这是130年前诺贝尔奖获得者瑞利发现的。当太阳落山时的傍晚,天空不显现蓝色而显现红色,正在下落的太阳变成暗红色,也是一样的道理。原来在傍晚温度下降,湿度增加,颗粒物浓度升高,光遇到的更多的微粒,使得阳光中的紫色和蓝色的部分看不见了,仅留下一点点颗粒物吸收的橙红色光线经再次辐射而形成的光线,因而出现红色或暗红色。

反射

太阳光在照射地球过程中,一部分辐射被大气层反射,一部分被陆地、水面等反射,还有一部分被冰雪反射。为什么地球赤道如此炎热,而南北两极如此寒冷?从太阳照射间距离和角度分析,其吸收的热能不可能相差如此之大。主要是地磁场的作用引起的,由于两极地磁场磁力线非常密集,说明其磁场比较大,磁力线是直线的,光进入磁场中沿磁力线传播,难以交叉碰撞,反射非常强烈,产生热非常少。加上两极人类活动少,排放的固体颗粒物少,空气中其他气体分子少,光辐射气体、固体或液体进行散射也少,因此,其温度非常低,最终出现寒极。

光的干涉现象:它是指因两束光波相遇而引起光的强度重新分布的现象。

两束光波相遇产生干涉现象的必要条件是:

①频率相同;

②光矢量(即电场强度矢量E)的振动方向相同;

③在相遇处两束光的相位差恒定。 

两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象,证实了光具有波动性。

干涉现象通常表现为光场强度在空间作相当稳定的明暗相间条纹分布;有时则表现为,当干涉装置的某一参量随时间改变时,在某一固定点处接收到的光强按一定规律作强弱交替的变化。

扩展资料:

由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。

同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。

于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。

——光的干涉

不能,首先要知道,光是一种电磁波,频率相同的光称谓相干光,发出相干光的光源叫相干光源,其次,人之所以能看见东西,是因为有光进入眼睛在视网膜上成像,你的问题是在空中的光是否能被看见,这就要看光是否能进入眼睛,如果光线是能进入眼睛的,那就能看见。你所说的同一种光应该是相干光,但是相干光只能发生干涉,即波峰与波峰(或波谷与波谷)处加强,波峰与波谷处减弱,并不会折射或反射,因此要看见光你必须在光线所在的直线上。这就是为什么宇宙中的照片大多是漆黑的背景,因为宇宙中几乎没有可以用来反射广的物体。而你提到的这种技术称为全息摄影技术,全息摄影是指一种记录被摄物体反射波的振幅和位相等全部信息的新型摄影技术。普通摄影是记录物体面上的光强分布,它不能记录物体反射光的位相信息,因而失去了立体感。全息摄影采用激光作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以全息摄影不仅记录了物体上的反光强度,也记录了位相信息。人眼直接去看这种感光的底片,只能看到像指纹一样的干涉条纹,但如果用激光去照射它,人眼透过底片就能看到原来被拍摄物体完全相同的三维立体像。一张全息摄影即使只剩下一小部分,依然可以重现全部景物。全息摄影可应用于工业上进行无损探伤,超声全息,全息显微镜,全息摄影存储器,全息**和电视等许多方面。

全息摄影(Holography)

80年代初,法国全息摄影展在世界各地展览,人们欣赏到了神奇莫测的全息摄影。墙头上,看来明明伸出了一只水龙头,举手前去拧一下,结果是抓了个空;一只镜框,里面没有什么图像,可是当一束光射过来,框里就出现一位美丽的姑娘,她缓慢地摘下眼镜,正向人微笑致意;一只玻璃罩,里面空无一物,可是,在光的照耀下,罩里马上现出维纳斯像;在镜框上,玻璃罩内,图像还在不断地变换。

历史

凡是见过法国肖维岩洞(Chauvet Cave)中的那些史前绘画的人,无不为那细微的明暗变化、运用自如的透视法和优雅流畅的线条所折服。这些原始人用赭石绘制于32000年前的犀牛、狮子和熊,虽经岁月侵蚀,却依然能够给人带来极大的视觉撼动。但是,并不是所有人都像让-马林·肖维和他的两位朋友那么运气:当他们在1994年12月18日于偶然之中发现了这个岩洞的时候,所有的岩洞都为他们敞开大门,所有的绘画都无条件展现在他们简陋的探照灯下。然而,当这一发现被公之于众,并作为当年最伟大的考古和艺术发现之一被法国政府斥巨资加以研究保护之后,肖维岩洞的大门却对公众关闭了。连从事相关研究的专家,在入洞考察之前,都不但要经过繁琐的审批过程,还要披挂齐全,做足保护功夫,并且保证不能接触洞壁。普通人就更无缘一睹真容,只能望着杂志上平板的凭空摹想了。

不过,居住在古老的葡萄酒之乡波尔多城郊小镇上的伊夫·根特(Yves Gentet)及其兄弟菲力普·根特(Philippe Gentet)却可能用他们的全息照片将这一切变为历史。

一个世纪以前,当电报的发明人塞缪尔·摩尔斯第一次见到使用银版照相术拍摄下来的照片时,曾惊讶地认为,如此逼真的图像决不应当被称作大自然的复制品,它们就是自然本身的一部分。在如今见多识广的人们眼中,摩尔斯的反应未免有些大惊小怪。在这个数码相机能充分展现其魅力的时代中,没人会像当初圣彼得堡中初见照片的人们那样,害怕照片中的人会对自己眨眼睛,看出自己的想法。但是,当南巴黎大学的化学物理学家和胶片感光专家杰奎琳·贝洛妮(Jacqueline Belloni)在一次学术会议上将伊夫·根特制作的一幅蝴蝶的全息照片展示给大家时,一位恰巧同时也是蝴蝶标本收集爱好者的物理学家却非常费解地问她,到底为什么要在作学术报告时候展示这种鳞翅类昆虫的标本盒子。那位物理学家无论如何都不肯相信这只不过是一幅全息照片。

其实,那位物理学家的惊疑也在情理之中,尽管全息摄影术对大多数人而言早就不是一个新鲜概念。其实,早在1947年,匈牙利物理学家、诺贝尔物理学奖获得者丹尼斯·嘉柏(Dennis Gabor)就发明了全息摄影术,当时,这曾被称为“我们这个时代最伟大的发明之一”。

无论是全息摄影,还是最早的银版照相术,它们的奥秘都在对光的记录。所有的光都拥有三种属性,它们分别是光的明暗强弱、光的颜色以及光的方向。早期的银版照相和黑白照片只能记录下光的明暗变化,而彩色照片在此之外,还能通过记录光的波长变化,反应出它的颜色。全息摄影是惟一能同时捕捉到光的三种属性的一种摄影术,通过激光技术,它能记录下光射到物体上再折射出来的方向,逼真地再现物体在三维空间中的真实景象。

然而,一直到根特兄弟的作品问世之前,所谓的真实再现一直都不过是理论上的。或许是因为好的全息图像罕见而且难于生成,或许因为全息摄影的科学原理过于深奥,在全息摄影发明了半个世纪之后,它却仍然是一项充满了神秘色彩的技术。

在一些媒体对伊夫·根特及其兄弟成就的报道中,有人将他们描述为“惟一真正实现了全息摄影的再现自然功能的人”,还有人说,他们的作品就像摩尔斯所说那样,是“大自然的一部分”。这些评论可能有些过甚其辞,因为实际上,全世界也有许多其他人在从事着全息摄影的研究,国际全息图像制造者联合会(International Hologram Manufacturers Association)就是一个聚集了全球全息摄影专家和爱好者的组织。但伊夫·根特毫无疑问是这些专家中的翘楚,在2001年冬季,这个联合会将“本年度最佳全息摄影作品”和“最新全息摄影技术”这两项最有分量的大奖颁发给了伊夫,就是最好的说明。一次在奥地利召开的全息摄影学术会议上,当根特兄弟发言并展示自己的作品时,“140多位经验丰富的全息摄影高手都充满钦佩之情地深吸了一口气”。菲力普在回忆当时的场景时不无得意,他说,“当人们涌上来观看我们制作的全息的时候,整个屋子都为之一空。”当时在场的所有专家都被那些几可乱真的迷住了,他们忍不住伸手去触摸作品中身着老挝传统舞蹈服装的小木偶衣服上的精美花纹,还有人想要拭去挂在正在吃小甜饼的小姑娘嘴边的饼干碎屑——当然,他们摸到的,同那位物理学家一样,只不过是一层薄薄的玻璃而已。

现在,伊夫的工作得到了业界承认和赞许,可是,当他在1992年因为所在的实验室倒闭而被解雇,回到家乡小镇上以一个自由职业者的身份开始自己的全息摄影技术研究时,情况却完全不同。他花了两年左右时间研究出所有必需设备,包括一台最重要的便携全息肖像照相机。但当这一切就绪之时,惟一一家生产他所需要的胶片的制造商——爱克发公司(Agfa)——却突然决定停止生产此种胶片。在发明了“牛”之后,伊夫还必须教会自己制造出“草”来。

在随后的几年中,伊夫·根特就在自己简陋的实验室中自学相关的化学原理,并反复实践。菲力普的加入给了他很大帮助。后来,他们终于发明出名为“终极”(Ultimate)的感光乳剂。同其他的感光乳剂一样,“终极”的主要成分也是感光性极好的溴化银颗粒,但“终极”中的溴化银颗粒直径只有10纳米,是普通胶片上感光颗粒的1/10到1/100。正是这些微小的颗粒使“终极”能记录下细至纤毫的每一个细节,并在同一个感光层上同时记录下红、绿、蓝三色。

伊夫找到了被他称为“30年来所有人都在寻找的感光乳剂”,但他却还有很长的路要走。他做出了复制肖维岩洞壁画的整个方案,却因为找不到政府的权威人士而求告无门。他还建议为巴黎的迪斯尼乐园建立一个来访名人的全息摄影肖像馆,谈判却一拖再拖。所有见过他作品的人,都承认那是完美的全息图像,但法国的投资者过于谨慎,他们不仅要下金蛋的鹅,还要一群这样的鹅能够工业化、大规模下出金蛋,才肯从自己的口袋里掏钱。为了寻求投资人,根特兄弟及其父亲甚至想过要移民到魁北克。

转机出现在一位美国合伙人的加入之后。他所拥有的机器能将“终极”母版上的全息图像复制到杜邦公司制造的某种聚合体材料上。尽管这些图像还达不到“终极”胶片上的图像水准,但却远比从前的聚合体材料上的全息图像好多了。伴随着这种杜邦材料上的全息图像的大规模生产,使用“终极”胶片的工业化生产也是指日可待。此外,国际全息图像制造者联合会的首肯也为根特兄弟的工作增添了分量。虽然伊夫所应用的技术目前还没有一项是受专利保护,但在不久的将来,它们有望作为专门技术(Know-How)为他带来巨大的财富。

原理

全息摄影是指一种记录被摄物体反射波的振幅和位相等全部信息的新型摄影技术。普通摄影是记录物体面上的光强分布,它不能记录物体反射光的位相信息,因而失去了立体感。全息摄影采用激光作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以全息摄影不仅记录了物体上的反光强度,也记录了位相信息。人眼直接去看这种感光的底片,只能看到像指纹一样的干涉条纹,但如果用激光去照射它,人眼透过底片就能看到原来被拍摄物体完全相同的三维立体像。一张全息摄影即使只剩下一小部分,依然可以重现全部景物。全息摄影可应用于工业上进行无损探伤,超声全息,全息显微镜,全息摄影存储器,全息**和电视等许多方面。产生全息图的原理可以追溯到300年前,也有人用较差的相干光源做过试验,但直到1960 年发明了激光器——这是最好的相干光源——全息摄影才得到较快的发展。

激光全息摄影是一门崭新的技术,它被人们誉为20世纪的一个奇迹。它的原理于1947年由匈牙利籍的英国物理学家丹尼斯·加博尔发现,它和普通的摄影原理完全不同。直到10多年后,美国物理学家雷夫和于帕特倪克斯发明了激光后,全息摄影才得到实际应用。可以说,全息摄影是信息储存和激光技术结合的产物。

激光全息摄影包括两步:记录和再现。

1.全息记录过程是:把激光束分成两束;一束激光直接投射在感光底片上,称为参考光束;另一束激光投射在物体上,经物体反射或者透射,就携带有物体的有关信息,称为物光束物光束经过处理也投射在感光底片的同一区域上在感光底片上,物光束与参考光束发生相干叠加,形成干涉条纹,这就完成了一张全息图。

2.全息再现的方法是:用一束激光照射全息图,这束激光的频率和传输方向应该与参考光束完全一样,于是就可以再现物体的立体图像。人从不同角度看,可看到物体不同的侧面,就好像看到真实的物体一样,只是摸不到真实的物体。

全息摄影和普通摄影的区别

在普通摄影中,照相机拍摄的景物,只记录了景物的反射光的强弱,也就是反射光的振幅信息,而不能记录景物的立体信息。而全息摄影技术,能够记录景物反射光的振幅和相位。在全息影像拍摄时,记录下光波本身以及二束光相对的位相,位相是由实物与参考光线之间位置差异造成的。从全息照片上的干涉条纹上我们看不到物体的成像,必须使用具有凝聚力的激光来准确瞄准目标照射全息片,从而再现出物光的全部信息。一个叫班顿的人后来又发现了更为简便使用白光还原影像的方法,从而使这项技术逐渐走向实用阶段。

特点和优势

其显著的特点和优势有如下几点

1、 再造出来的立体影像有利于保存珍贵的艺术品资料进行收藏。

2、 拍摄时每一点都记录在全息片的任何一点上,一旦照片损坏也关系不大。

3、 全息照片的景物立体感强,形象逼真,借助激光器可以在各种展览会上进行展示,会得到非常好的效果。

全息摄影的应用

在我们的生活中,当然也常常能看到全息摄影技术的运用。比如,在一些信用卡和纸币上,就有运用了俄国物理学家尤里·丹尼苏克(Yuri Denisyuk)在20世纪60年代发明的全彩全息图像技术制作出的聚酯软胶片上的“彩虹”全息图像。但这些全息图像更多只是作为一种复杂的印刷技术来实现防伪目的,它们的感光度低,色彩也不够逼真,远不到乱真的境界。研究人员还试着使用重铬酸盐胶作为感光乳剂,用来制作全息识别设备。在一些战斗机上配备有此种设备,它们可以使驾驶员将注意力集中在敌人身上。把一些珍贵的文物用这项技术拍摄下来,展出时可以真实地立体再现文物,供参观者欣赏,而原物妥善保存,防失窃,大型全息图既可展示轿车、卫星以及各种三维广告,亦可采用脉冲全息术再现人物肖像、结婚纪念照。小型全息图可以戴在颈项上形成美丽装饰,它可再现人们喜爱的动物,多彩的花朵与蝴蝶。迅猛发展的模压彩虹全息图,既可成为生动的卡通片、贺卡、立体邮票,也可以作为防伪标识出现在商标、证件卡、银行信用卡,甚至钞票上。装饰在书籍中的全息立体照片,以及礼品包装上闪耀的全息彩虹,使人们体会到21世纪印刷技术与包装技术的新飞跃。模压全息标识,由于它的三维层次感,并随观察角度而变化的彩虹效应,以及千变万化的防伪标记,再加上与其他高科技防伪手段的紧密结合,把新世纪的防伪技术推向了新的辉煌顶点。

以上就是我的回答,希望能对你产生帮助。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3250943.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-13
下一篇2023-08-13

发表评论

登录后才能评论

评论列表(0条)

    保存