谁知道关于数学的浪漫点的故事?说几个。

谁知道关于数学的浪漫点的故事?说几个。,第1张

 塞凯赖什夫妇的故事

  1933 年,匈牙利数学家乔治·塞凯赖什(George Szekeres)还只有 22 岁。那时,他常常和朋友们在匈牙利的首都布达佩斯讨论数学。这群人里面还有同样生于匈牙利的数学怪才——保罗·埃尔德什(Paul Erds)大神。不过当时,埃尔德什只有 20 岁。

  在一次数学聚会上,一位叫做爱丝特·克莱恩(Esther Klein)的美女同学提出了这么一个结论:在平面上随便画五个点(其中任意三点不共线),那么一定有四个点,它们构成一个凸四边形。塞凯赖什和埃尔德什等人想了好一会儿,没想到该怎么证明。于是,美女同学得意地宣布了她的证明:这五个点的凸包(覆盖整个点集的最小凸多边形)只可能是五边形、四边形和三角形。前两种情况都已经不用再讨论了,而对于第三种情况,把三角形内的两个点连成一条直线,则三角形的三个顶点中一定有两个顶点在这条直线的同一侧,这四个点便构成了一个凸四边形。

  平面上五个点的位置有三种情况

  众人大呼精彩。之后,埃尔德什和塞凯赖什仍然对这个问题念念不忘,于是尝试对其进行推广。最终,他们于 1935 年发表论文,成功地证明了一个更强的结论:对于任意一个正整数 n ≥ 3,总存在一个正整数 m,使得只要平面上的点有 m 个(并且任意三点不共线),那么一定能从中找到一个凸 n 边形。埃尔德什把这个问题命名为了“幸福结局问题”(Happy Ending problem),因为这个问题让乔治·塞凯赖什和美女同学爱丝特·克莱恩之间迸出了火花,两人越走越近,最终在 1937 年 6 月 13 日结了婚。

  对于一个给定的 n ,不妨把最少需要的点数记作 f(n)。求出 f(n) 的准确值是一个不小的挑战。由于平面上任意不共线三点都能确定一个三角形,因此 f(3) = 3 。爱丝特·克莱恩的结论则可以简单地表示为 f(4) = 5 。利用一些稍显复杂的方法,我们可以证明 f(5) 等于 9 。2006 年,利用计算机的帮助,人们终于证明了 f(6) = 17。对于更大的 n,f(n) 的值分别是多少? f(n) 有没有一个准确的表达式呢?这是数学中悬而未解的难题之一。几十年过去了,幸福结局问题依旧活跃在数学界中。

  不管怎样,最后的结局真的很幸福。结婚后的近 70 年里,他们先后到过上海和阿德莱德,最终在悉尼定居,期间从未分开过。 2005 年 8 月 28 日,乔治和爱丝特相继离开人世,相差不到一个小时。

  伽罗瓦的故事

  伽罗瓦(évariste Galois),19 世纪最伟大的法国数学家之一,唯一被我称为“天才数学家”的人。他 16 岁时就参加了巴黎综合理工学院的入学考试,结果面试时因为解题步骤跳跃太大,搞得考官们不知所云,最后没能通过考试。

  在数学历史上,伽罗瓦毫无疑问是最富传奇色彩与浪漫色彩的数学家,没有“之一”。18 岁时,伽罗瓦漂亮地解决了当时数学界的顶级难题:为什么五次及五次以上的多项式方程没有一般的解。他把这一研究成果提交给了法国科学院,由大数学家柯西 (Augustin-Louis Cauchy)负责审稿;然而,柯西建议他回去仔细润色一下(此前一直认为柯西把论文弄丢了或者私藏起来,最近的法国科学院档案研究才让柯西平反昭雪)。后来伽罗瓦又把论文交给了科学院秘书傅立叶(Joseph Fourier),但没过几天傅立叶就去世了,于是论文被搞丢了。1831年伽罗瓦第三次投稿,当时的审稿人是泊松,他认为伽罗瓦的论文很难理解,于是拒绝发表。

 

 

因为一些极端的政治行动,伽罗瓦被捕入狱。即使在监狱里,他也不断地发展自己的数学理论。他在狱中结识了一名医生的女儿,并很快坠入爱河;但好景不长,两人的感情很快破裂。出狱后的第二个月,伽罗瓦决定替自己心爱的女孩与女孩的一个政敌进行决斗,不幸中枪,第二天便在医院里死亡。伽罗瓦死前的最后一句话是对他的哥哥艾尔弗雷德(Alfred)说的:“不要哭,我需要足够的勇气在 20 岁死去。”

  仿佛是预感到了自己的死亡,在决斗的前一夜,伽罗瓦通宵达旦奋笔疾书写下了自己所有的数学思想,并把它们和三篇论文手稿一同交给 了他的好友谢瓦利埃(Chevalier)。在信的末尾,伽罗瓦留下遗嘱,希望谢瓦利埃能把论文手稿交给当时德国的两位大数学家雅可比(Carl Gustav Jacob Jacobi)和高斯(Carl Friedrich Gauss),让他们就这些数学定理公开发表意见,以便让更多的人意识到这个数学理论的重要性。

  谢瓦利埃遵照伽罗瓦的遗愿,将论文手稿寄给了雅可比和高斯,不过都没有收到回音。直到 1843 年,数学家刘维尔(Joseph Liouville)才肯定了伽罗瓦的研究成果,并把它们发表在了他自己主办的《纯数学与应用数学杂志》(Journal de Mathématiques Pures et Appliquées)上。人们把伽罗瓦的整套数学思想总结为了“伽罗瓦理论”。伽罗瓦用群论的方法对代数方程的解的结构做出了独到的分析,多项式方程的 根、尺规作图的不可能性等一系列代数方程求解问题都可以用伽罗瓦理论得到一个简洁而完美的解答。伽罗瓦理论对今后代数学的发展起到了决定性的作用。

  笛卡尔的故事

  笛卡尔(René Descartes),17 世纪著名的法国哲学家,曾经提出“我思故我在”的哲学观点,有着“现代哲学之父”的称号。笛卡尔对数学的贡献也是功不可没,中学时大家学到的平面直角坐标系就被称为“笛卡尔坐标系”。

  传闻,笛卡尔曾流落到瑞典,邂逅美丽的瑞典公主克里斯蒂娜(Christina)。笛卡尔发现克里斯蒂娜公主聪明伶俐,便做起了 公主的数学老师, 于是两人完全沉浸在了数学的世界中。国王知道了这件事后,认为笛卡尔配不上自己的女儿,不但强行拆散他们,还没收了之后笛卡尔写给公主的所有信件。后来,笛卡尔染上黑死病,在临死前给公主寄去了最后一封信,信中只有一行字:r=a(1-sinθ)。

  自然,国王和大臣们都看不懂这是什么意思,只好交还给公主。公主在纸上建立了极坐标系,用笔在上面描下方程的点,终于解开了这行字的秘密——这就是美丽的心形线。看来,数学家也有自己的浪漫方式啊。

  a=1时的心形线

  事实上,笛卡尔和克里斯蒂娜的确有过交情。不过,笛卡尔是 1649 年 10 月 4 日应克里斯蒂娜邀请才来到的瑞典,并且当时克里斯蒂娜已经成为了瑞典女王。并且,笛卡尔与克里斯蒂娜谈论的主要是哲学问题。有资料记载,由于克里斯蒂娜女王时间安排很紧,笛卡尔只能在早晨五点与她探讨哲学。天气寒冷加上过度操劳让笛卡尔不幸患上肺炎,这才是笛卡尔真正的死因。

  心形线的故事究竟几分是真几分是假,还是留给大家自己判断吧。

1、《三毛流浪记全集》于1935年诞生于中国杰出漫画家张乐平之笔,其中作为一个身世凄凉,饥寒交迫,受尽欺辱、贫穷得只剩下三根头发的漫画儿童形象。

三毛在旧社会环境的导致下,不仅被奴役、欺负、凌辱、残踏的悲惨遭遇体现的非常深刻,更是直接揭露了生活的冷酷、残忍、丑恶以及诈欺和不平,但是它却能够培养着千千万万孩子们的天真同情心!

2、《格林童话》主要是由发过语言学家雅可布·格林和威廉·格林兄弟收集、整理、加工完成的德国民间文学。

里面有着200多个故事,被推荐的理由就是虽然大部分的故事都来自于民间的口头传说,但是格林兄弟以其丰富的想象、优美的语言给孩子们讲述了一个个神奇而又浪漫的童话故事,满足了孩童时代充满好奇心天真想法。

3、《胡桃夹子》作为德国作家霍夫曼创作的童话,主要讲述着玛莉的善良和胡桃夹子的勇敢忠诚最终战胜了邪恶,破除了魔咒,应胡桃夹子的邀请,玛莉跟着他畅游了美丽的梦幻的“小娃娃王国”,该书作为世界儿童文学名著,在19世纪的欧洲影响非常大。

4、《海底两万里》是由法国作家儒勒·凡尔纳创作的长篇小说,主要就是讲述了博物学家阿龙纳斯、仆人康塞尔和鱼叉手尼德·兰一起随鹦鹉螺号潜艇船长尼摩周游海底的故事,作为儿童读物,在众多孩童的童年时期都对海洋充满了向往的科幻小说。

5、《乌丢丢的奇遇》作为金波的值得品味和赞许的特色是具有深刻的哲学内涵童话作品,主要讲述了乌丢丢是不带拉人的小魔偶丢失的一只小脚丫,为了寻找布袋老人,结识了众多朋友的乌丢丢感受到了快乐和爱。

最终成为了珍儿的一只健康的脚,作为一篇优美的童话,它的故事也是一首婉约温情的抒情诗,是非常值得必看的书籍。

      数学与艺术之间是紧密相连的,我刚开始接触数学这门学科的时候,并没有发现他的魅力所在,仅仅从定义出发,数学是研究数量、结构、变化、空间以及信息等概念的一门学科。然而在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学必不可少的基本工具。

      很多凄美的爱情故事都是情感艺术上的一次完美的升华,笛卡尔的心形线是我听过的最感动的爱情故事。 在斯特哥尔摩的街头,五十二岁的笛卡尔邂逅了十八岁的瑞典公主克里斯汀。那时候生活落魄的笛卡尔没有什么财产,过着乞讨般的生活,所有的家当只有身上穿着的破破烂烂的衣服和随身所带的几本数学书籍。天性清高的数学家从不为了五斗米折腰,专心致志的沉浸在自己的数学世界里,身边过往的人群,喧嚣的车马队伍都无法对他造成干扰。突然有一天,一张年轻秀丽的脸庞,楚楚动人的灵动的双眼出现在他的面前问道:“你在干什么呢?”美丽的公主蹲下身子拿起地上笛卡尔的数学书和草稿纸,和他交谈起来,他们相谈甚欢,像是多年未见的好友一般,言谈中,笛卡尔发现公主的思维敏捷,对数学也有着浓厚的兴趣,这对笛卡尔来说,像是冬天里的阳光暖暖的洒进了冰封已久的心里。几天后,笛卡尔被意外的聘请成为小公主的数学老师,笛卡尔欣然往之。在笛卡尔的悉心教导下,小公主的数学突飞猛进,他们之间也渐渐变得亲秘起来。他们每天形影不离的,在瑞典这个浪漫的国度里面,一段纯粹、美好的爱情悄然发芽。

      然而好景不长,他们之间的事情传到了国王的耳朵里,国王决定将笛卡尔处死,在狱中,笛卡尔每天都给公主写信,他的最后一份信没有写一句话,只有一个方程:r=a(1-sinθ)。后来这封信传到了公主的手里,她欣喜若狂,立刻就明白了恋人的意图,找来纸和笔,着手把图形画了出来,一颗心形图案出现在眼前,公主不禁留下了感动的泪水,每次看到这个著名的“心形线”,我脑海中就回想着这个凄美的爱情故事,其实 数学并不是枯燥而无味的,你用心去感受其中的奥妙,你一定能乐在其中。

      数学的呈现形式有很多种,除了用图像表示函数以外,我们还可以对数字进行排列组合,在数学中呈现的形式就是一个个不同的数列,然而在文学艺术上可能就是一首首脍炙人口的经典诗歌。数学入诗,使人情趣盎然。如宋人邵康所写的:“一去二三里,烟村四五家,楼台六七座,八九十之花。”生动的描写了一幅自然朴实的乡村景象,宛如一幅淡雅的山水画,尽管它有一半是用数字描绘的,诗的美却隐含在数的和谐之中。诸如此类的诗歌有很多很多,譬如“不知细叶谁裁出,二月春风似剪刀。”“两个黄鹂鸣翠柳,一行白鹭上青天。”“毕竟西湖六月中,风光不与四时同。”“三更灯火五更鸡,正是男儿读书时。”“回眸一笑百媚生,六宫粉黛无颜色。”“七八个星天外,两三点雨山前。”“十年生死两茫茫,不思量,自难忘。”等等,这些数字与诗完美的契合在一起,更能让读者产生共鸣。

      当数学与诗歌结合的同时,在爱情故事里有没有体现呢?在二十年来的浅薄的阅读中,我脑海里闪过了司马相如和卓文君。司马相如曾用一曲《凤求凰》赢得了美人的青睐,两人婚后不久,司马相如奔赴长安做了官,五年不归。文君十分想念,有一天,她突然收到了相公寄来的信,她欣喜若狂,不料拆开一看,只写道“一二三四五六七八九十百千万”十三个数字。聪明的卓文君立即明白了丈夫的意思:一行数字中唯独少了一个“亿”,岂不是表示夫君对自己“无意”的暗示?她心凉如水,怀着十分悲痛的心情,回了一封《怨郎诗》:一别之后,二地相悬。只道是三四月,又谁知五六年。七弦琴无心弹,八行书无可传,九连环从中折断,十里长亭望眼欲穿。百思想,千系念,万般无奈把郎怨。意思是:万语千言说不尽,百无聊赖十倚栏。重九登高看孤雁,八月仲秋月圆人不圆。七月半烧香秉烛问苍天,六月伏天人人摇扇我心寒。五月石榴红胜火偏遇阵阵冷雨浇花端。四月枇杷未黄我欲对镜心愈乱。急匆匆,三月桃花随水转,飘零零,二月风筝线儿断。噫,郎呀郎,巴不得,下一世,你为女来我做男。司马相如看完妻子的信,不禁惊叹妻子之才华横溢。遥想昔日夫妻恩爱之情,羞愧万分,从此不再提遗妻纳妾之事。这首诗也便成了卓文君一生的数字诗的代表作。司马相如和卓文君的爱情故事可以说是千古佳谈,他们之间这首经典的数字传情的诗也感动了无数的后人,私以为,这可以说是数字诗歌的爱情故事的典范了。古今中外还有很多的问题,是以诗歌的形式叙述的,是诗人和数学家的和谐统一,形成了诗歌海洋中别具风格的浪花,也是数学天空中耀眼的星光,把数字灵活的运用到文学中,又焕发出了新的生命,这也让我对数学产生了别样的情感。

      如果说把数字进行排列组合是文学中的一种表达的方式,那么在日常生活中,几何学也同样有着广泛的应用。在艺术的创作过程中,无论创作者是有意识的还是无意识的,数学关系都是客观存在的。在中国的传统建筑中,空间几何被灵活的运用。传统的三合院、四合院,以及雕梁画栋,飞檐峭壁看起来总是那么和谐,那么舒服,符合了人性化的审美观,具有特别的亲和力。再诸如其他的陶瓷、青铜、园林以及服饰等等艺术,都能隐隐看见“数学关系”的印记。即使是我们出土的最早的那些没有纹理的瓶瓶罐罐,也绝对是一种美感、质朴的表达。艺术的可贵之处,在于被人巧妙地运用中,使得这种和谐的关系恰到的好。

      我们曾经在解析几何中经常会运用到的整体法、隔离法等等,也能被运用到日常两个人之间的表达。前段时间我看到了杨绛先生给钱钟书写的一封信,信里只写了一个字“怂”,如果我们仅仅是从这个字的整体去看,其实也发现不了什么,那如果我们把这个整体拆开,就能明白杨绛先生是想问钱钟书“你的心上有几个人”,是不是就变得有趣了多了呢。钱钟书也只回了一个字“您”,意思是说“我的心上只有你一个”。小时候我会抱怨学那么多数学理论知识有什么用呢,我又不用函数去买菜,随着见识的渐渐增长,接触了不同的领域之后,才知道数学是一切知识的基础,有时候我们在思考一个事情,处理什么问题时,会不经意间使用一些以前学习到了数学思维,只是当时的我们并没有注意到罢了。三毛说过:“读书多了,容颜自然改变,许多时候,自己可能以为许多看过的书籍都成了过眼云烟,不复记忆,其实他们仍是潜在的。在气质里,在谈吐上,在胸襟的无涯,当然也可能显露在生活和文字里。”在这里,我也想说:“ 数学学久了,我们的思维方式自然会改变,我们的逻辑性也会增强,曾经我们以为已经忘掉的数学公式,其实他的一些推导方法已经融进了我们的血液里,偶尔会在我们生命的长河里激起一片浪花 。”

      当然数学除了运用到诗歌、建筑、陶瓷等等,在绘画、音乐中也有很多体现,在这里我就不一一叙述了。

      数学和艺术之间可以说是相辅相成的,数学有助于艺术的创造,也可以用来鉴别艺术作品,甚至可以作为一种桥梁,连接不同的艺术表达形式。反之,艺术可以给数学研究提供新的课题,拓展数学的领域,有助于数学的理解和传统,更重要的是可以改变我们的气质,陶冶情操。当把数学融进了艺术之中,再赋予我们的情感,无论这份情感是欢喜或悲怆,都会是一个值得流传的故事。现在我们常说的工匠精神,就是几十年如一日的坚持自己的初心,把自己的工作当成一种艺术虔诚的去对待,不知不觉中我们便会成为这个行业的引领者。把工作当成一门艺术,把艺术活成了生活,我们乐在其中,投入的是我们的真情实感,足以谱写成一首首动人的诗篇。每个人的生命都是有限的,然而艺术传承却是无限的,如果可以,我也想成为其中的一份子,在人类进化的过程中,留下自己生命独特的印记。                                                                                                                ——文/紫青  2021/1/9

写在后面的话:其中参考了很多的资料文献,就不一一列举了,说明性的文章不像小说般天马行空,一些必要的参考和引用还是不能少的。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3573978.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-16
下一篇2023-08-16

发表评论

登录后才能评论

评论列表(0条)

    保存