第一写关于数学的名言
罗素说:“数学是符号加逻辑”
毕达哥拉斯说:“数支配着宇宙”
哈尔莫斯说:“数学是一种别具匠心的艺术”
米斯拉说:“数学是人类的思考中最高的成就”
培根(英国哲学家)说:“数学是打开科学大门的钥匙”
布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”
黑格尔说:“数学是上帝描述自然的符号”
魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”
柏拉图说:“数学是一切知识中的最高形式”
考特说:“数学是人类智慧皇冠上最灿烂的明珠”
第二写关于数学的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
第三写关于数学的小故事
数学名人小故事-康托尔
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
第四,可以写关于数学的笑话
小明小学数学考试,回来后他妈问他考得怎么样小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来最后打铃了,我不管三七二十一就写了个18"
奶奶:“1+2等于几?”
孙子:“等于3。”
奶奶:“答对了,因此你会得到3块糖。”
孙子:“早知道是这样,我就说是等于5就好啦!”
第五,可以写动物中的数学家
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0073毫米,误差极少。
丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅219小时,一年不是365天,而是400天。
数学趣味小故事:
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3++97+98+99+100=
老师心里正想,这下子小朋友一定要算到下课了吧!
正要借口出去时,却被高斯叫住了!!
原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:1+2+3+4++96+97+98+99+100
100+99+98+97+96++4+3+2+1=101+101+101++101+101+101+101共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
数学是非常有趣的,是值得我们深入探究的,做做一份数学手抄报是学习数学知识不错的方法。下面是我为大家收集的的数学手抄报,希望对你有帮助!
好看的数学手抄报
数学手抄报资料:阐述数学的概念
结构
许多如数、函数、集合等数学对象都有着内含的结构。这些对象的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间。并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。
空间
空间的研究源自于欧式几何。三角学则结合了空间及数,且包含有非常著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究。结合了结构与空间。李群被用来研究空间、结构及变化。
基础
为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家罗素把康托的`工作誉为“这个时代所能夸耀的最巨大的工作”。
逻辑
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
符号
也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜。
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前。数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
数学手抄报内容:高等数学学习技巧
一、课前预习
跟高中时代一样,做好课前预习很重要。大学里的讲师们可能讲课的速度比较快,此时预习就显得格外重要。
二、认真听课,做好笔记
老调重弹,上课一定要认真听课,不要贪玩,贪睡。同时,该做笔记的,一定要记一下。
三、课后复习
前面说了,讲师们讲得可能比较快,此时,下课后就要自觉去复习了。遇到不懂的,可以跟同学讨论一下。如果实在有些难理解的,可以上网找找资料,还可以再去其他班级蹭蹭课,多听一遍,总该会了。
四、多做题
考试想要高数得高分一定离不开题海战术,做题,多多益善。如果没耐力也一定要将课后题和章节测试AB好好练习。
五、举一反三
学高等数学,一定不能太死板。要学会举一反三,同样的考核目的,可以有不同的考核形式。在学习的过程中,一定要多用心,多去思考。
六、用心是关键
工科生和理科生其实学高等数学并不复杂,就跟学其他理工科目一样,关键是要用心。大学里不应该太放纵自己,而是要学会更多的技能。
数学手抄报是一种很好的培养数学趣味的方式。下面是由整理的数学手抄报内容,欢迎阅读。更多相关数学手抄报文章,请关注手抄报栏目。
数学手抄报内容(一) 数学手抄报内容(二) 数学手抄报内容(三) 数学手抄报内容(四)十二岁的数学家,喜欢相对论
雅各布·巴内特(Jacob Barnett)喜欢坐在起居室的一角,在一块白板和落地窗前涂涂画画,那些涂画并不是一个12岁男孩的幻想,而是围绕现代物理学中许多难题的演算。记者、著名物理学教授蜂拥而至,人们沉浸在发现天才的狂喜中,但雅各布从不理会这些用复杂眼神盯着他的陌生人——爸妈会应付他们,他只需考虑是去玩会儿电子游戏,还是继续玩眼前的方程。
雅各布刚出生时,父母就隐隐觉得他与众不同。他一直不说话,甚至不看人,直到两岁时被查出患有阿斯伯格综合症(自闭症的一种温和的表现形式)。患有这种病的人会讷于表达自己的情感。一开始,父母担心他在学校会跟不上,结果恰恰相反,3岁时他就可以拼出5000块拼图,或者翻出全国公路路线图,背诵出每一条高速公路的名字。如果手边有一张纸,他会用各种几何图形和方程填补它的空白。有一天,父母发现他坐在门廊边,一两个星期后他们得知,雅各布已经自学了所有高中的微积分、物理和几何课程。
一次智商测试后,父母被告知:雅各布的IQ为170,比爱因斯坦更高。而高智商带来的副作用是,他很难入睡:“一闭上眼睛,我就能看到很多数字在头顶上打转。它们让我保持清醒,很吓人。”母亲知道,高智商并不来自于遗传:“我们全家的数学都很烂。”就连雅各布也发现了这一点:“每次我试图在饭桌上讨论数学,全家人就会一脸呆滞地望来望去。”
惊慌的母亲给普林斯顿大学的高级研究所写了封电子邮件,录制了一段儿子阐释物理学的视频。著名天体物理学家司科特·特里梅安(Scott Tremaine)敏锐地发现了这个男孩,他回复了一封邮件,写道:“我对他在物理学方面的兴趣以及他迄今为止所掌握的物理学知识留下了深刻的印象。他目前所进行的研究已经涉及了天体物理学与理论物理学中多个最为棘手的问题,任何能够解决这些问题的人都会获得诺贝尔奖。”
8岁时,他高中毕业,进入了印第安纳大学天体物理学系。和他一起上课的人几乎都比他大10岁以上。“但我们还是得经常向他走去,向他请教。”他的同学说。而教授则说:“他的问题永远领先我的课堂内容两步,教室里的每个人,都只有瞠目结舌看着他的份。”
12岁时,他开始攻读博士。印第安纳大学为他提供了一个研究员的职位,现在,他的研究主要集中在相对论和宇宙大爆炸学说上。印第安纳大学雄心勃勃地表示,已经为他的研究找来了一些项目基金,希望能够有所突破。爱因斯坦提出相对论时26岁,两倍于如今的雅各布。
他常常面无表情,摄影师让他笑一下,他挤出来的笑容既羞怯又不自然。他的妈妈在旁边看着,眼泪突然开始在眼眶里打转:“我的天哪!他两岁时,我最担心的是他也许永远都不会属于我们这个世界,现在我最担心的,是他永远失去了说‘我爱你’的能力。”
数学名言
1、埋头苦干是第一,发白才知智叟。呆勤能补拙是良训,一分辛苦一分才。--华罗庚
2、可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。--麦克斯韦
3、观察可能导致发现。观察将揭示某种规律模式或定律。--波利亚
4、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。--A L 柯西
5、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。--C G 达尔文
6、多数的数学创造是直觉的结果,对事实多少有点儿直接的知觉或快速是理解,而与任何冗长的或形式的推理过程无关。--卢斯卡
7、聪明出于勤奋,天才在于积累。--华罗庚
8、纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。--怀德海
9、自然这一巨举是用数学符号写成的。--伽里略
10、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。--G D 伯克霍夫
11、这是一个可靠的规律,当数学或哲学着作的作者以模糊深奥的话写作时,他是在胡说八道。--A N 怀德海
12、宇宙的伟大建筑是现在开始以纯数学家的面目出现了。--J H 京斯
13、一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。--库默
14、一个没有几分诗人气的数学家永远成不了一个完全的数学家。--维尔斯特拉斯
15、想象比知识更重要。--爱因斯坦
我精心推荐
数学小报文字内容如下:
1、数学是科学的女王,而数论是数学的女王。——高斯。
2、一个国家的科学水平能够用它消耗的数学来度量——拉奥。
3、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。——史密斯。
4、读读欧拉,读读欧拉,他是咱们大家的老师。——拉普拉斯。
5、有时候,你一开始未能得到一个最简单,最美妙的证明,但正是这样的证明才能深入到高等算术真理的奇妙联系中去。这是咱们继续研究的动力,并且最能使咱们有所发现。——高斯。
6、一门科学,只有当它成功地运用数学时,才能到达真正完善的地步。
7、我决心放下那个仅仅是抽象的几何。这就是说,不再去思考那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何——笛卡儿。
8、一个没有几分诗人才能的数学家决不会成为一个完全的数学家——魏尔斯特拉斯。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)