古今中外的数学家中有哪些人是特别爱好音乐,在音乐方面很有天赋的,我需要一些这方面的素材.

古今中外的数学家中有哪些人是特别爱好音乐,在音乐方面很有天赋的,我需要一些这方面的素材.,第1张

爱因斯坦与音乐

李醒民

音乐是爱因斯坦的最大爱好,音乐伴随他度过了70余个春秋。他是一位出色的小提琴家,也能熟练地弹奏钢琴。 他外出时总是带着心爱的小提琴,并且常常想起钢琴的琴键。他曾不经意地考虑过做一个职业小提琴手,并数次说过,如果他在科学上不成功,他会成为一个音乐家。他几乎没有一天不拉小提琴,而且常有钢琴伴奏,演奏奏鸣曲和协奏曲。他喜欢室内音乐,同杰出的音乐家一道演奏三重奏和四重奏。他的音乐朋友和合作者很多,有时演奏完全是不拘形式的。与音调、音色已预先调好的、结构复杂的钢琴相比,只有四根弦的小提琴的两个相邻音阶之间没有清楚的界限,其音响、振动、音质在很大程度上由演奏者自己把握,因而特别适合于表达个人内心的隐秘世界。爱因斯坦具有不必事先准备而即席演奏的才能,演奏时而明快流畅,时而委婉悠扬,时而雄浑庄严,极其富于变化。此时,他就像忘情的孩子,完全神游于音乐的王国,沉迷在丰富的幻想和惬意的思维之中,忘却了人间的世界,对一切实在的东西都毫无感觉,“飘飘乎如遗世独立,羽化而登仙”。他不愿同职业艺术家一起公演比赛,这既出自他作为业余爱好者的谦逊,也怕给职业音乐家造成难堪。但是,他却经常为慈善事业义演。爱因斯坦也即兴弹钢琴,一有外人进屋,他就立即中断弹奏。音乐此时成为他劳动之后的轻松和消遣,或是新工作开始之前的酝酿和激励。凯择尔这样评论说:

爱因斯坦的最大爱好是音乐,尤其的古典音乐。在这里,感受之深,寓意之远,是同美好的形式交织在一起的,这种统一在爱因斯坦看来,就意味着人间最大的幸福。在大事小事中时时感受到人类要生存的这种意志已经通过音乐上升到一种绝对的力量,这种力量反过来又吸收了各种感受,并把它融化为高超的美的现实。从巴赫到贝多芬和莫扎特这个音乐流派,对爱因斯坦来说,鲜明地展示出音乐的本质。但这并不是说,他对其他音乐家和其他流派就持武断和轻视态度。他爱古老的意大利音乐,也爱德国浪漫主义音乐,但是在他看来,音乐成就的顶峰还是这三个灿烂的明星。有一次,在回答别人问及巴赫时,他曾简短地说道:“关于巴赫的生平和工作:谛听它,演奏它,敬它,爱它——而不要发什么议论!”

至于对爱因斯坦小提琴演奏水平的评论,行家认为:他是一个真正的音乐家;尽管他没有时间去练习,但无论如何演奏得十分好。一位不知道他是物理学家的音乐评论家写道:“爱因斯坦的演奏是出色的,但他不值得享有世界声誉,因为有许多其他同样好的小提琴手。”

爱因斯坦只是热爱、聆听和演奏音乐,不大关心讨论音乐。不过,他有时也对作曲家及其作品加以评论,这些评论总是简洁的和有理解力的。他的品味是十分古典的,不大喜欢19世纪的浪漫派。他偏爱17世纪和18世纪作曲家的风格:纯正、雅致和均衡。他喜欢莫扎特、巴赫、维瓦第,可能还有海顿、舒伯特,以及意大利和英国的一些老作曲家。他对贝多芬的兴趣差一些,即便喜欢也是早期的贝多芬,而不是后期的“风暴和欲望”。

爱因斯坦为莫扎特的带有神意的、古希腊式的质朴和美的旋律所倾倒。他认为莫扎特的作品达到了炉火纯青的地步,过去是、将来也永远是优雅、温馨而流畅的,是宇宙本身的内在之美和生活中的永恒之美。莫扎特的音乐是如此纯粹简单,以致它似乎永远存在于宇宙之中,等待着莫扎特去发现。莫扎特是他的理想、他的迷恋对象,也是他的思想的主宰者。即便如此,爱因斯坦还是坚持他的判断的独立性。有一次,他在钢琴上演奏莫扎特的一段曲调。在出了错误后,他突然停下来对女儿玛戈特说:“莫扎特在这里写下了这样的废话。”

爱因斯坦很难说出,究竟是巴赫还是莫扎特更吸引他。他一直是巴赫的崇敬者,他觉得对巴赫的音乐只有洗耳恭听的义务,而没有说三道四的权利。巴赫曲调的清澈透亮、优雅和谐每每使他的心灵充满幸福感,扶摇直上的巴赫音乐使他联想起耸入云霄的哥特式教堂和数学结构的严密逻辑。不过,巴赫作品的新教自我欣赏却使他着实有点扫兴。

爱因斯坦对贝多芬的态度是复杂的。他理解贝多芬作品的宏伟,其室内乐的晶莹剔透使他着迷,但是他不喜欢其交响乐的激烈冲突;在他看来这是作者好动和好斗的个性表现,其中个人的内容压倒了存在的客观和谐。他觉得贝多芬过于激烈,过于世俗,个性过强,音乐戏剧性过浓,C小调在激情上过载,从而显得有些支离破碎。他不大赞同有人说贝多芬是伟大的作曲家,因为与莫扎特相比,贝多芬是创作他的音乐,是个人创造性的表达,而莫扎特的音乐是发现宇宙固有的和谐,是大自然韵律的普遍表达。他曾成功地说服了他的朋友厄任费斯脱不再偏爱贝多芬,而把时间花在巴赫乐曲上。他对浪漫主义作曲家颇有微词:他们像糖块一样,过甜了。他认为,由于浪漫主义的影响,就作曲家和画家而言,杰出的艺术家显著地减少了。

爱因斯坦一向认为韩德尔的音乐很好,甚至达到完美无缺的地步,尤其是其形式的完备令人钦佩。但他在其中找不到作者对大自然的本质的深刻理解,因而觉得有些浅薄。同时,他也不大满意韩德尔作品中表现出来的狂热激情。爱因斯坦很喜欢和亲近舒伯特,因为这位作者表达感情的能力很强,在旋律创作方面很有功力,并继承了他所珍爱的古典结构。遗憾的是,舒伯特几部篇幅较大是作品在结构上却有一定的缺陷,这使他感到困惑不解。舒曼篇幅较小的作品对他颇有吸引力,因为它们新奇、精巧、悦耳,感情充沛,很有独到之处。但是,他在舒曼的作品中感觉不到概括的思维的伟大,又觉得其形式显得平庸,所以无法充分欣赏。

爱因斯坦认为门德尔松很有天才,但似乎缺乏深度,因而其作品往往流于俚俗。他觉得勃拉姆斯的几首歌曲和几部室内作品很有价值,其音乐结构同样也很有价值。但是,由于其大部分作品似乎都缺乏一种内在的说服力,使他不明白写这种音乐有何必要。在他看来,对位法的复杂性并不给人以质朴、纯洁、坦诚的感觉,而这些则是他首先看重的。同在科学中一样,他深信纯洁和质朴是如实反映实在的保证。

爱因斯坦赞赏华格纳的创作能力,但认为其作品结构有缺陷,这是颓废的标志。华格纳的风格也使他不可名状地感到咄咄逼人,甚至听起来有厌恶之感。这也许在于,他从中看到的是由作曲家天才和个性调整好了的宇宙,而不是超个人的宇宙,尽管作曲家以巨大的激情和虔诚表达宇宙的和谐,但他还是从中找不到摆脱了自我的存在的客观真理。爱因斯坦在斯特劳斯那里也没有找到这种客观真理。他认为斯特劳斯虽然天资过人,但缺乏意境美,只对表面效果感兴趣,只揭示了存在的外部韵律。爱因斯坦说,他并非对所有的现代音乐都不喜爱。纤巧多彩的德布西的音乐使他入迷,犹如他对某个数学上优美而无重大价值的课题入迷一样。但是德布西音乐在结构上有缺陷,且缺少他所向往的非尘世的东西,故而无法激起他的强烈热情。他对布洛克很是尊敬。他说:“我对现代音乐所知甚微,但有一点我确信不疑:真正的艺术应该产生于创造力丰富的艺术家心中的一股不可遏制的激情。在恩斯特•布洛克的音乐中我能够感受到这股激情,这在后来的音乐家中是少有的。”爱因斯坦太擅长于从结构上领会音乐了:如果他不能凭本能和直觉抓住一部作品的内在统一的结构,他就不会喜欢它。他看待音乐就像看待他的科学一样,注重追求一种自然的、简单的美。

爱因斯坦曾经说过:“音乐确实融化在我的血液中。”信哉斯言!音乐的确不知不觉进入了他的内心世界,自然而然地塑造了他的个性和人格,美化了他的精神风景线。爱因斯坦拿起小提琴或坐在钢琴旁,常有一种即兴创作的欲望。他说:

这种即兴创作对我来说就像工作那样必要。不论前者或后者都可以使人超脱周围的人们而获得独立。在现代社会里,没有这种独立性是没法过活的。

爱因斯坦之所以喜爱莫扎特,不仅因为莫扎特的音乐优美轻快,而且也因为它具有超越时间、地点和环境的惊人的独立性——这正是为爱因斯坦而预先创造的音乐。除莫扎特外,爱因斯坦还迷恋几出歌剧,因为它们表现了一个社会主题——自由。爱因斯坦个性和情感世界中的超脱、孤独、幽默、戏谑、讥讽也是莫扎特式的。这不仅使他在纷乱的世界中获得了心灵的自由和人格的独立,也使他面对丑陋和恶行减轻了伤感和痛苦(但绝不是逆来顺受),音乐从而构成他生活中的有效的缓冲剂和安全阀。这就像演奏莫扎特的奏鸣曲一样,因为莫扎特同样把对人世间的悲惨的印象变为生气勃勃的轻松曲调。

关于音乐与科学研究的关系,爱因斯坦认为二者是相辅相成、相得益彰的。“音乐并不影响研究工作,它们两者都是从同一渴望之泉摄取营养,而他们给人类带来的慰藉也是互为补充的。”他在另一处这样写道:

音乐和物理学领域的研究工作在起源上是不同的,可是被共同的目标联系着,这就是对表达未知的东西的企求。它们的反映是不同的,可是它们互相补充着。至于艺术上和科学上的创造,那么在这里我完全同意叔本华的意见,认为摆脱日常生活的单调乏味,和在这个充满着由我们创造的形象的世界中寻找避难所的愿望,才是它们的最强有力的动机。这个世界可以由音乐的音符组成,也可以由数学公式组成。我们试图创造合理的世界图像,使我们在那里就好像在家里一样,并且可以获得我们在日常生活中不能达到的安定。

音乐和科学就这样在追求目标和探索动机上沟通起来:科学揭示外部物质世界的未知与和谐,音乐揭示内部精神世界的未知与和谐,二者在达到和谐之巅时殊途同归。此外,在追求和探索过程中的科学不仅仅是理智的,也是深沉的感情的,这无疑会与音乐在某种程度上发生共鸣,从而激发起发明的灵感。诚如莱布尼兹所说:音乐是上帝给世界安排的普遍和谐的仿制品。任何东西都不像音乐中的和声那样使感情欢快,而对于理性来说音乐是自然界的和谐,对自然界来说音乐只不过是一种小小的模拟。尤其是,音乐创作的思维方式和方法与科学创造是触类旁通的,在创造的时刻,二者之间的屏障往往就消失了。爱因斯坦对音乐的理解是与他对科学的把握完全类似的:

在音乐中,我不寻找逻辑,我在整体上完全是直觉的,而不知道音乐理论。如果我不能直觉地把握一个作品的内在统一(建筑结构),那么我从来也不会喜欢它。

这种从整体上直觉地把握的思维方式和方法,既是莫扎特和巴赫的创作魔杖,也是彭加勒和爱因斯坦等科学大师的发明绝技。爱因斯坦从小就通过音乐不知不觉地训练了心灵深处的创造艺术,并把这种艺术与科学的洞察和灵感、宇宙宗教感情熔为一体,从而铸就了他勾画自然宏伟蓝图的精神气质和深厚功力。

音乐和科学——尤其是浸润在数学中的科学(这是爱因斯坦的科学)——在爱因斯坦身上是珠联璧合、相映成趣的。他经常在演奏乐曲时思考难以捉摸的科学问题。据他妹妹玛雅回忆,他有时在演奏中会突然停下来激动地宣布:“我得到了它!”仿佛有神灵启示一样,答案会不期而遇地在优美的旋律中降临。据他的小儿子汉斯说:“无论何时他在工作中走入穷途末路或陷入困难之境,他都会在音乐中获得庇护,通常困难会迎刃而解。”确实,音乐在爱因斯坦的创造中所起是作用,要比人们通常想像的大得多。他从他所珍爱的音乐家的作品中仿佛听到了毕达哥拉斯怎样制订数的和谐,伽利略怎样斟酌大自然的音符,开普勒怎样谱写天体运动的乐章,牛顿怎样确定万有引力的旋律,法拉第怎样推敲电磁场的序曲,麦克斯韦怎样捕捉电动力学的神韵,……爱因斯坦本人的不变性原理(相对论)和统计涨落思想(量子论),何尝不是在“嘈嘈切切错杂弹,大珠小珠落玉盘”的乐曲声中灵感从天而降,观念从脑海中喷涌而出的呢?

(原载北京:《方法》1998年第4期,第26页。此次按台北三民书局1988年出版的《爱因斯坦》第493—501页重排)

早期的数学家或者自身家庭富足,或者依附于对研究有兴趣的富豪权贵,研究数学更多是出于爱好。而在现代逐渐形成了数学家这个职业。他们的工作包括,在各级学校教授数学课程,指导研究生,在具体的领域进行研究,发表论文和报告。

阿基米德

数学研究工作,不仅是了解及整理已知的结果,还包含着创造新的数学成果与理论。许多人误解数学是一个已经被研究完的领域,事实上,数学上还有许多未知的领域和待解决的问题,也一直有大量新的数学成果发表。这些数学成果有些是新的数学知识,有些是是新的应用方式。 所以心算家、珠算家不能算是数学家,数学家也不见得能够快速的做出各种计算。从事与数学相关的工作,比如教学和科普,而不从事数学研究的人,可以被称为广义的“数学工作者”。

一般认为,历史上可考的最早的数学家是古希腊的泰勒斯。

发表论文

发表论文的主要目的是方便研究者之间的交流,并让同行评价自己的研究成果,后来也成为判断研究成果原创性和所有权(主要是时间先后)的依据。早期的学术交流只能在口头进行。后来学者们也开始通过信件,手稿来代替口头交流。印刷术和出版业的兴起使得学术著作得以更广泛的流传。最早付印的算术学著作于1478年意大利的特来维索出版。欧几里德的《几何原本》最早在1482年出版。[1]

在17世纪欧洲出现了专门的学术期刊,比如莱布尼茨关于微积分的论文就最早在1686年发表于杂志“Acta Eruditorum”,早于1687年牛顿发表他的《自然哲学的数学原理》。第一个数学的专门期刊是出现在1810年的法国杂志《纯粹与应用数学年刊》。迄今为止全世界已经有成千上万的数学期刊,其中最著名和权威的四大杂志包括美国普林斯顿大学和普林斯顿高等研究院主办的《数学年刊》(Annals of Mathematics),美国数学会的《美国数学会杂志》(Journal of American Mathematical Socieity),施普林格出版社旗下的《数学发明》(Inventiones Mathematicae),和瑞典Mittag-Leffler研究所主办的《数学学报》(Acta Mathematica)。

一般认为,越权威的杂志,发表的文章的学术价值就越高。而数学类的期刊(尤其是纯粹数学)并不非常适用于“影响因子”这个经常在其他学科的杂志间出现的指标。关于合作者之间的署名顺序,现今数学界也不区分“第一作者”,“第二作者”,“通讯作者”,而一般用拉丁文姓名的字母顺序排列作者。

史上著作与论文总量第二多的是十七世纪的数学家欧拉,他的纪录一直到二十世纪才被匈牙利数学家保罗·埃尔德什打破。

学术会议

参见:国际数学家大会

国际数学家大会(简称ICM)是国际数学界四年一度的大集会。首次会议于1897年在瑞士苏黎世举行,当时只有200人左右参加。以后,除了第一、二次世界大战期间曾停顿外,一般是四年召开一次。

纪念国际数学大会的邮票

国际数学家大会的议程安排由国际数学联盟指定的顾问委员会决定,邀请一批数学家分别在大会上作一小时的学术报告和学科组的分组会上作45分钟的学术报告,凡是出席国际数学家大会的数学家都可以申请在分组会上作10分钟的学术报告。一般分为20个左右的学科组。

每次国际数学家大会的开幕式上,由国际数学联合会***宣布该届菲尔兹奖获奖者名单,颁发金质奖章和奖金,并由他人分别在大会上报告获奖者的工作。从1983年召开的国际数学家大会开始,同时颁发奖励信息科学方面的奈望林纳奖。1998年在德国柏林举行的第23届国际数学家大会上,国际数学联盟决定设置高斯奖这一奖项。从2010年开始,设置陈省身奖。

编辑本段国外数字家

牛顿

毕达哥拉斯、欧几里德、阿基米德、高斯、莱布尼茨、希尔伯特、康托尔、克莱因、黎曼、艾米·诺特、狄利克雷、柯朗、策梅洛、笛卡儿、拉格朗日、拉普拉斯、费马、柯西、泊松、嘉当、伽罗瓦、傅立叶、格罗森迪克、庞加莱、牛顿、泰勒、罗素、安德鲁·怀尔斯、埃斯特曼、哈代、利尔特伍德、欧拉、尼古拉·伯努利、丹尼尔·伯努利、雅各布·伯努利、约翰·伯努利、爱尔特希、冯·诺依曼、阿贝尔、庞特里亚金、阿诺尔德、柯尔莫哥洛夫、闵可夫斯基、伽利略、斐波那契、拉马努金、汉密尔顿、弗列特荷姆

编辑本段华人数学家

古代

刘徽

刘徽(约公元225年—295年)、赵爽(东汉末至三国时代吴国人)、祖冲之(公元429年生)、祖暅(祖冲之之子)、沈括(公元1031~1095年)、张丘建(北魏人)、秦九韶(1208年生)、郭守敬(1231年生)、朱世杰(1249年生)、贾宪(北宋人)、杨辉(南宋时期)、王恂(1235年生)、徐光启(1562年生)、梅文鼎(1633年生)、薛凤柞、阮元(1764年生)、李善兰(1811年生)、王贞仪(1768-1797 )

近代

华罗庚

冯祖荀、姜立夫、胡明复、钱宝琮、陈建功、熊庆来、杨武之、曾炯、苏家驹、苏步青、江泽涵、曾远荣、高扬芝、赵访熊、吴大任、庄圻泰、柯召、许宝騄、华罗庚、陈省身(美籍)、卢庆骏、段学复、王湘浩、田方增、徐瑞云、林家翘、钟开莱、严志达

现代

吴文俊、冯康、王浩、张鸣镛、谷超豪、陆启铿、龚升、许以超、王元、陈景润、潘承洞、项武忠、项武义、陆家羲、吴从炘、张广厚、钟家庆、杨乐、周炜良、萧荫堂、李安民、侯振挺、王戌堂、伍鸿熙、彭实戈、王见定、田刚、丘成桐(美籍)、张伟平、罗懋康、袁亚湘、陈永川、周海中、景乃桓、蔡天新、朱熹平、汤涛、王小云

编辑本段部分数学家简介

欧拉

参见:欧拉

欧拉(Leonhard Euler 公元1707-1783年),1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。

欧拉是科学史上最多产的一位杰出的

杰出数学家 欧拉

数学家,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。数学家高斯曾说:"研究欧拉的著作永远是了解数学的最好方法"。

由于过度的工作,欧拉在二十八岁时得了眼病,并最终失明。欧拉完全失明以后,仍然凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬。1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭。那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:“我死了。”欧拉终于“停止了生命和计算”。

祖冲之

参见:祖冲之

祖冲之 像

祖冲之曾经算出月球绕地球一周为时2721223日,与现代公认的2721222日几乎没有误差。月球上许多火山口中的一个被命名为“祖冲之”。祖冲之还曾经计算出圆周率应该在31415926和31415927之间。法国巴黎的「发现宫」科学博物馆中也有祖冲之的大名与他所发现的圆周率值并列。在莫斯科国立大学礼堂廊壁上,用彩色大理石镶嵌的世界各国著名的科学家肖像中,也有中国的祖冲之和李时珍。

丘成桐

参见:丘成桐

由于他在

丘成桐 “菲尔茨奖”获得者

几何方面的杰出工作,丘成桐在1982年获得了数学界的最高奖之一菲尔兹奖。1994年,获得了瑞典皇家学员颁发的国际上著名的克雷福德奖。1997年获美国国家科学奖。丘成桐最著名的成就是证明了卡拉比猜想。以他的名字命名的“卡拉比-丘流形”现在成为物理学中弦理论中的重要概念。

陶哲轩

参见:陶哲轩

陶哲轩是澳大利亚籍华裔数学家,现任教于美国加州大学洛杉矶分校(UCLA)数学系。他是继丘成桐之后获菲尔兹奖的第二位华人。

王见定

王见定教授

从1983年到数学分支的产生,王见定教授在世界上首次提出了半解析函数理论,1988年又首次建立了共轭解析函数理论;并将这两项理论成功地应用于电场磁场流体力学,弹性力学。此两项理论受到众多专家学者的引用和发展,并由此引发双解析函数复调和函数多解析函数k阶解析函数半双解析函数半共轭解析函数以及相应的边值问题微分方程积分方程等一系列新的数学分支的产生。而且这种发展势头强劲有力,不可阻挡。

编辑本段语录

“不懂几何者免进”。“如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号”。 ----柏拉图

“几何无王者之道”! ----欧几里得

“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么”。“万物皆数”。 ----毕达哥拉斯

“虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象”。“因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情”。----欧拉

“数学的本质在於它的自由”。“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”。“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”。————康托(Cantor)

“没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明”。“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡”。“无限!再也没有其他问题如此深刻地打动过人类的心灵”。“我们必须知道, 我们必将知道”。———希尔伯特

“数学是无穷的科学”。————赫尔曼外尔

“问题是数学的心脏”。————PR哈尔莫斯

“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深”。“数学,科学的女皇;数论,数学的女皇”。“有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现”。“如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现”。————高斯

“在奥林匹斯山上统治著的上帝,乃是永恒的数”。 ----雅可比

“上帝创造了整数,所有其余的数都是人造的” 。----克隆内克

“上帝是一位算术家” ----雅克比

“一个没有几分诗人气的数学家永远成不了一个完全的数学家”。“我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。 我只是为真理的进展竭尽所能。 是我还是别的什么人, 对我来说无关紧要, 重要的是它更接近于真理”。----魏尔斯特拉斯

“纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造”。----怀德海

“这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道”。----AN怀德海

“给我五个系数,我将画出一头大象;给我六个系数,大象将会摇动尾巴”。“如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展”。“人死了, 但事业永存 ”。 ----柯西

“数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果”。----A埃博

“用心智的全部力量, 来选择我们应遵循的道路”。“异常抽象的问题, 必须讨论得异常清楚”。“我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何”。“数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙”。----笛卡儿

“我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现”。“我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上”。“没有大胆的猜测,就做不出伟大的发现”。----牛顿

“虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物”。“不发生作用的东西是不会存在的”。“考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标”。————莱布尼茨

“读读欧拉, 读读欧拉, 他是我们大家的老师”。“天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚”。----拉普拉斯

“如果我继承可观的财产, 我在数学上可能没有多少价值了”。“我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意 ”。“一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理 ”。----拉格朗日

“看在上帝的份上, 千万别放下工作!这是你最好的药物”。“前进吧, 前进将使你产生信念”。----达朗贝尔

“我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来”。 ----蒙日

“精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习”。“直接向大师们而不是他们的学生学习”。 ----阿贝尔

“到底是大师的著作, 不同凡响”!----伽罗瓦

“挑选好一个确定得研究对象, 锲而不舍。 你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西”。 ---克莱因

“思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究”。“人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。 假使我们的精神, 我们的警惕松懈片刻, 我们将失去先辈为我们赢得的成果 ”。“如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状 ”。----庞加莱

“一个人如果做了出色的数学工作, 并想引起数学界的注意, 这实在是容易不过的事情, 不论这个人是如何位卑而且默默无闻, 他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了”。----莫德尔

“数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的, 然后他再着手去制造一个证明”。 ----哈代

“科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的”。“诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。” “我们欣赏数学,我们需要数学”。“一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围”。----陈省身

“聪明在于勤奋,天才在于积累”。“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决”。————华罗庚

“整数的简单构成,若干世纪以来一直是使数学获得新生的源泉”。----伯克霍夫

“事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣”。————刘徽

“几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的”。“也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多 ”。————西尔维斯特

“迟序之数,非出神怪,有形可检,有数可推”。----祖冲之

“纯数学是魔术家真正的魔杖”。----诺瓦列斯

“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍”。 ————雷巴柯夫

“生命只为两件事,发展数学与教授数学” ----普尔森

“扔进冰水, 由他们自己学会游泳, 或者淹死。 很多学生一直要到掌握了其他人做过的, 与他们问题有关的一切,才肯试着靠自己去工作, 结果是只有极少数人养成了独立工作的习惯”。 ----ET贝尔

“一个国家的科学水平可以用它消耗的数学来度量”。 ----拉奥

“数学——科学不可动摇的基石,促进人类事业进步的丰富源泉”。 ----巴罗

“不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险”。 ----贺拉斯。兰姆

“数学家实际上是一个着迷者,不迷就没有数学”。 ----诺瓦利斯

“数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的”。----史密斯

“宇宙的伟大建筑是现在开始以纯数学家的面目出现了”。----京斯

编辑本段研究成果

中国古代算术的许多研究成果里面包含了一些后来西方数学的思想方法,近代也有一些数学研究成果是以华人数学家命名的。[2]

数学家李善兰在级数求和方面的研究成果,被命名为“李善兰恒等式”。数学家华罗庚关于完整三角和的研究成果被称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被成为“华—王方法”。数学家苏步青在仿射微分几何学方面的研究成果被命名为“苏氏锥面”。数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被称为“熊氏无穷级”。数学家陈省身关于示性类的研究成果被称为“陈示性类”。数学家周炜良在代数几何学方面的研究成果被称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。数学家吴文俊在拓扑学中的重要成就被命名为“吴氏公式”,其关于几何定理机器证明的方法被称为“吴氏方法”。数学家王浩关于数理逻辑的一个命题被称为“王氏悖论”。数学家柯召关于卡特兰问题的研究成果被称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”。数学家陈景润在哥德巴赫猜想研究中提出的命题被称为“陈氏定理”。数学家杨乐和张广厚在函数论方面的研究成果被称为“杨—张定理”。数学家陆启铿关于常曲率流形的研究成果被称为“陆氏猜想”。数学家夏道行在泛函积分和不变测度论方面的研究成果被称为“夏氏不等式”。数学家姜伯驹关于尼尔森数计算的研究成果被称为“姜氏空间”;另外还有以他命名的“姜氏子群”。数学家侯振挺关于马尔可夫过程的研究成果被称为“侯氏定理”。周海中关于梅森素数分布的研究成果被称为“周氏猜测”。数学家王戌堂关于点集拓扑学的研究成果被称为“王氏定理”。数学家袁亚湘在非线性规划方面的研究成果被称为“袁氏引理”。数学家景乃桓在对称函数方面的研究成果被称为“景氏算子”。数学家陈永川在组合数学方面的研究成果被称为“陈氏方法”。

编辑本段爱情故事

笛卡尔的故事

笛卡尔(René Descartes),17 世纪著名的法国哲学家,曾经提出“我思故我在”的哲学观点,有着“现代哲学之父”的称号。笛卡尔对数学的贡献也是功不可没,中学时大家学到的平面直角坐标系就被称为“笛卡尔坐标系”。

传闻,笛卡尔曾流落到瑞典,邂逅美丽的瑞典公主克里斯蒂娜(Christina)。笛卡尔发现克里斯蒂娜公主聪明伶俐,便做起了 公主的数学老师, 于是两人完全沉浸在了数学的世界中。国王知道了这件事后,认为笛卡尔配不上自己的女儿,不但强行拆散他们,还没收了之后笛卡尔写给公主的所有信件。后来,笛卡尔染上黑死病,在临死前给公主寄去了最后一封信,信中只有一行字:r=a(1-sinθ)。

自然,国王和大臣们都看不懂这是什么意思,只好交还给公主。公主在纸上建立了极坐标系,用笔在上面描下方程的点,终于解开了这行字的秘密——这就是美丽的心形线。看来,数学家也有自己的浪漫方式啊。

事实上,笛卡尔和克里斯蒂娜的确有过交情。不过,笛卡尔是 1649 年 10 月 4 日应克里斯蒂娜邀请才来到的瑞典,并且当时克里斯蒂娜已经成为了瑞典女王。并且,笛卡尔与克里斯蒂娜谈论的主要是哲学问题。有资料记载,由于克里斯蒂娜女王时间安排很紧,笛卡尔只能在早晨五点与她探讨哲学。天气寒冷加上过度操劳让笛卡尔不幸患上肺炎,这才是笛卡尔真正的死因。

伽罗华

伽罗华(Évariste Galois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础;所有这些进展都源自他尚在校就读时欲证明五次多项式方程根数解(Solution by Radicals)的不可能性(其实当时已为阿贝尔(Abel)所证明,只不过伽罗华并不知道),和描述任意多项式方程可解性的一般条件的打算。虽然他己经发表了一些论文,但当他于1829年将论文送交法兰西科学院时,第一次所交论文却被柯西(Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与埃科尔综合技术学院(école Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文亦为泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学界两个最具浪漫主义色彩的人物之一。

Galois小传:

1832年5月30日清晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点,这个可怜的年轻人离开了人世,数学史上最年轻、最富有创造性的头脑停止了思考。后来的一些著名数学家们说,他的死使数学的发展被推迟了几十年,他就是伽罗华。

天才的童年

1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗瓦街的第54号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特•伽罗瓦生于此,卒年20岁,1811~1832年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗瓦表示敬意,于1909年6月设置的。

伽罗瓦的双亲都受过良好的教育。在父母的熏陶下,伽罗瓦童年时代就表现出有才能、认真、热心等良好的品格。其父尼古拉•加布里埃尔•伽罗瓦参与政界活动属自由党人,是拿破仑的积极支持者。主持过供少年就学的学校,任该校校长。又担任拉赖因堡15年常任市长,深受市民的拥戴。伽罗瓦曾向同监的难友勒斯拜——法国著名的政治家、化学家和医生说过:“父亲是他的一切”。可见父亲的政治态度和当时法国的革命热潮对伽罗瓦的成长和处事有较大的影响。

伽罗瓦的母亲玛利亚•阿代累达•伽罗瓦曾积极参与儿子的启蒙教育。作为古代文化的热烈爱好者,她把从拉丁和希腊文学中汲取来的英勇典范介绍给她儿子。1848年发表在《皮托雷斯克画报》上有关伽罗瓦的传记中,特别谈到“伽罗瓦的第一位教师是他的母亲,一个聪明兼有好教养的妇女,当他还在童稚时,她一直给他上课”。这就为伽罗瓦在中学阶段的学习和以后攀登数学高峰打下了坚实的基础。

1823年l0月伽罗瓦年满12岁时,离开了双亲,考入有名的路易•勒•格兰皇家中学。从他的老师们保存的有关他在中学生活的回忆录和笔记中,记载着伽罗瓦是位具有“杰出的才干”,“举止不凡”,但又“为人乖僻、古怪、过分多嘴”性格的人。我们认为这种性格说明他有个性,而且早已显露出强烈的求知欲的标志。

伽罗瓦在路易•勒•格兰皇家中学领奖学金,完全靠公费生活。在第四、第三和第二年级时他都是优等生,在希腊语作文总比赛中也获得好评,并且在1826年l0月转到修辞班学习。

但是第二学季一开始(伽罗瓦这时刚满15岁),由于教师们认为他的体格不够强壮,校长认为他的判断力还有待“成熟”,他不得不回到二年级。重修二年级,使伽罗瓦有机会毫无阻碍地被批准去上初级数学的补充课程。自此他把大部分时间和主要精力用来研究、探讨数学课本以外的高等数学。

伽罗华经常到图书馆阅读数学专著,特别对一些数学大师,如勒让德的《几何原理》和拉格朗日的《代数方程的解法》、《解析函数论》、《微积分学教程》进行了认真分析和研究,但他并未失去对其他科目的兴趣。

因此,当1827年伽罗瓦回到修辞班时,他的全面发展甚至比他的数学的天分在同学之中更加出人头地了。但是他对其它科目的教科书的内容以及教师所采用的教学法之潦草马虎感到愤怒。所以有的教师认为他被数学的鬼魅迷住了心窍,有的教师用七个字“平静会使他激怒”来形容他的行为。

这时伽罗瓦已经熟悉欧拉、高斯、雅可比的著作,这更提高了他的信心,他认为他能够做到的,不会比这些大数学家们少。到了学年末,他不再去听任何专业课了,而在独立地准备参加取得升入综合技术学校资格的竞赛考试。结果尽管考试失败,但1828年10月,他仍然从中学初级数学班跳到里夏尔的数学专业班。

路易•勒•格兰中学的数学专业班教师里夏尔,在科学史上,他作为一个很有才华的教师使人追念。里夏尔不仅讲课风格优雅,而且善于发掘天才。他遗留下的笔记中记载着:“伽罗瓦只宜在数学的尖端领域中工作”,“他大大地超过了全体同学”。

里夏尔帮助伽罗瓦于1828年在法国第一个专业数学杂志《纯粹与应用数学年报》三月号上,发表了他的第一篇论文—《周期连分数一个定理的证明》,并说服伽罗瓦向科学院递送备忘录。1829年,伽罗瓦在他中学学年快要结束时,把他研究的初步结果的论文提交给法国科学院。

1829年,中学学年结束后,伽罗瓦刚满18岁,他在报考巴黎综合技术学校时,由于在口试中主考的教授比内和勒费布雷•德•富尔西对伽罗瓦阐述的见解不理解,居然嘲笑他。伽罗瓦在提及这次考试时,曾写道,他不得不听“主考人的狂笑声”。据说“由于被狂笑声所激怒”,他把黑板擦布扔到主考人头上,或是因为他拒绝回答有关关于对数这样的过于简单的问题,所以再次遭到落选,伽罗瓦仍然是一个非正式的预备生。

1829年7月2日,正当伽罗瓦准备入学考试时,他的父亲由于受不了天主教牧师的攻击、诽谤而自杀了。这给了伽罗华很大的触动,他的思想开始倾向于共和主义。其后不久,伽罗华听从里夏尔的劝告决定进师范大学,这使他有可能继续深造,同时生活费用也有了着落。1829年10月25日伽罗华被作为预备生录取入学。

进入师范大学后的一年对伽罗瓦来说是最顺利的一年,1828年他的科学研究获得了初步成果。伽罗瓦写了几篇大文章,并提出自己的全部著作来应征科学院的数学特奖。但在这里,他又一次遭到了新挫折:伽罗瓦的手稿原来交给科学院常任秘书傅立叶,傅立叶收到手稿后不久就去世了。因而文章也被遗失了。这些著作的某些抄本落到数学杂志《费律萨克男爵通报》的杂志社手里,并在1830年的4月号和6月号上把它刊载了出来。

在师范大学学习的第一年,伽罗瓦结认了奥古斯特•舍瓦利叶,舍瓦利叶直到伽罗瓦临终前一直是他的唯一亲近的朋友。1830年7月,伽罗瓦将满19岁。他在师范大学的第一年功课行将结束。他这时写成的数学著作,已经使人有可能对他思想的独创性和敏锐性作出评价。

数学世界的顽强斗士

19世纪初,有一些数学问题一直困扰着当时的数学家们,而如何求解高次方程就是其中之一。

历史上人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶在他所著的《数书九章》的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候已得到了高次方程的一般解法。

在西方,直到十六世纪初的文艺复兴时期,才由意大利的数学家发现一元三次方程解的公式——卡当公式。

在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。

三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。法国数学家拉格朗日更是称这一问题是在“向人类的智慧挑战”。

1770年,拉格朗日精心分析了二次、三次、四次方程根式解的结构之后,提出了方程的预解式概念,并且还进一步看出预解式和方程的各个根在排列置换下的形式不变性有关,这时他认识到求解一般五次方程的代数方法可能不存在。此后,挪威数学家阿贝尔利用置换群的理论,给出了高于四次的一般代数方程不存在代数解的证明。

伽罗瓦通过改进数学大师拉格朗日的思想,即设法绕过拉氏预解式,但又从拉格朗日那里继承了问题转化的思想,即把预解式的构成同置换群联系起来的思想,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化或归结为置换群及其子群结构的分析。

这个理论的大意是:每个方程对应于一个域,即含有方程全部根的域,称为这方程的伽罗华域,这个域对应一个群,即这个方程根的置换群,称为这方程的伽罗华群。伽罗华域的子域和伽罗华群的子群有一一对应关系;当且仅当一个方程的伽罗华群是可解群时,这方程是根式可解的。

1829年,伽罗华在他中学最后一年快要结束时,把关于群论初步研究结果的论文提交给法国科学院,科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人。在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会。他在一封信中写道:“今天我应当向科学院提交一份关于年轻的伽罗华的工作报告……但因病在家,我很遗憾未能出席今天的会议,希望你安排我参加下次会议,讨论已指明的议题。”然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作,这是一个非常微妙的“事故”。

1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了,以参加科学院的数学大奖评选,希望能够获奖。论文寄给当时科学院终身秘书傅立叶,但傅立叶在当年5月去世了,在他的遗物中未能发现伽罗华的手稿。就这样,伽罗华递交的两次数学论文都被遗失了。

1831年1月,伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院。这篇论文是伽罗华关于群论的重要著作,当时负责审查的数学家泊阿松为理解这篇论文绞尽脑汁。传说泊阿松将这篇论文看了四个月,最后结论居然是“完全不能理解”。尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它。

对事业必胜的信念激励着年轻的伽罗华。虽然他的论文一再被丢失,得不到应有的支持,但他并没有灰心,他坚持他的科研成果,不仅一次又一次地想办法传播出去,还进一步向更广的领域探索。

天才的陨落

伽罗华诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期,又赶上路易•腓力浦朝代初期,他是当时最先进的革命政治集团——共和派的秘密组织“人民之友”的成员,并发誓:“如果为了唤起人民需要我死,我愿意牺牲自己的生命”。

伽罗瓦敢于对政治上的动摇分子和两面派进行顽强的斗争,年轻热情的伽罗华对师范大学教育组织极为不满。由于他揭发了校长吉尼奥对法国七月革命政变的两面派行为,被吉尼奥的忠实朋友,皇家国民教育委员会顾问库申起草报告,皇家国民教育委员会1831年1月8日批准立即将伽罗瓦开除出师范大学。

之后,他进一步积极参加政治活动。1831年5月l0日,伽罗华以“企图暗杀国王”的罪名被捕。在6月15日陪审法庭上,由于共和党人的律师窦本的努力,伽罗瓦被宣告无罪当场获释。七月,被反动王朝视为危险分子的伽罗华在国庆节示威时再次被抓,被关在圣佩拉吉监狱,在这里庆祝过他的20岁生日,渡过了他生命的最后一年的大部分时间。

在监狱中伽罗华一方面与官方进行不妥协的斗争,另一面他还抓紧时间刻苦钻研数学。尽管牢房里条件很差,生活艰苦,他仍能静下心来在数学王国里思考。

伽罗瓦在圣佩拉吉监狱中写成的研究报告中写道:“把数学运算归类,学会按照难易程度,而不是按照它们的外部特征加以分类,这就是我所理解的未来数学家的任务,这就是我所要走的道路。”请注意到“把数学运算归类”这句话,道出了他的理想、他的道路。毋庸置疑,这句话系指点目前所称的群论。由于其后好几代数学家的工作,最终才实现了伽罗瓦的理想。正是他的著作,标志着旧数学史的结束和新数学史的开始。

l832年3月16日伽罗华获释后不久,年轻气盛的伽罗华为了一个舞女,卷入了一场他所谓的“爱情与荣誉”的决斗。伽罗华非常清楚对手的枪法很好,自己难以摆脱死亡的命运,所以连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。

他不时的中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。他在天亮之前那最后几个小时写出的东西,为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一片新的天地。

伽罗华对自己的成果充满自信,他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性,而是对这些定理的重要性发表意见。我希望将来有人发现,这些对于消除所有有关的混乱是有益的。”

第二天上午,在决斗场上,伽罗华被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去”。他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑就是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。

历史学家们曾争论过这场决斗是一个悲惨遭的爱情事件的结局,还是出于政治动机造成的,但无论是哪一种,一位世界上最杰出的数学家在他20岁时被杀死了,他研究数学才只有五年。

群论——跨越时代的创造

伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了十四年后,也就是1846年,才由法国数学家刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图解释它的意义。刘维尔最后将这些论文编辑发表在他的极有影响的《纯粹与应用数学杂志》上,并向数学界推荐。1870年法国数学家约当根据伽罗华的思想,写了《论置换与代数方程》一书,在这本书里伽罗华的思想得到了进一步的阐述。

伽罗华最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗华理论。正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程。正是这套理论为数学研究工作提供了新的数学工具—群论。它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始。

伽罗瓦非常彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题。这是伽罗瓦工作中的第一个“突破”,他犹如划破黑夜长空的一颗瞬间即逝的彗星,开创了置换群论的研究,确立了代数方程的可解性理论,即后来称为的“伽罗瓦理论”,从而彻底解决了一般方程的根式解难题。

作为这个理论的推论,可以得出五次以上一般代数方程根式不可解,以及用圆规、直尺(无刻度的尺)三等分任意角和作倍立方体不可能等结论。

对伽罗华来说,他所提出并为之坚持的理论是一场对权威、对时代的挑战,他的“群”完全超越了当时数学界能理解的观念。也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界。也正因如此,他才受到了冷遇。

在这里,我们后人感受到的是一种孤独与悲哀,一种来自智慧的孤独与悲哀。但是,历史的曲折并不能埋没真理的光辉。今天由伽罗华开始的群论,不仅对近代数学的各个方向,而且对物理学、化学的许多分支都产生了重大的影响。

克莱罗

Clairaut,Alexis-Claude(1713~1765)

法国数学家,物理学家。又译克莱洛。1713年5月7日生于巴黎,1765年5月17日卒于同地。9岁时,父亲就教他学习解析几何和微积分学,16岁被选入法国科学院。他在研究天体力学三体问题时,第一个给出了这个问题的近似解(1752~1754)。1705年,E哈雷曾预测哈雷彗星将在 1758年或1759年出现。克莱罗于1758年提前半年相当精确地计算了哈雷彗星到达近日点的日期,为此获彼得堡科学院的奖。克莱罗是最早研究二重曲率曲线的人之一,他还研究了曲面的平面截线。他在1734年建立了克莱罗微分方程。1739~1740年间证明了混合二阶偏导数的求导次序的可交换条件,还证明了一阶线性微分方程的积分因子的存在性问题。他在力学方面的工作还包括单摆振动等时性的证明和对运动中物体的动力学和相对运动的研究。

青年数学家伽罗瓦

1811年10月25日,伽罗瓦生在巴黎附近的一座小市镇,父亲是本市市长,母亲是当地法官的女儿,她聪明而有教养,是伽罗瓦的启蒙老师。除教授各种基本知识以外,作为古代文化的热烈爱好者,她还把古希腊的英雄主义,浪漫主义灌输到儿子的幼小心灵中,伽罗瓦从小就有强烈的好奇心和求知欲。十二岁那年,他考入当地著名的皇家中学,在老师的眼里,尽管伽罗瓦具有“杰出的才干”,但这位体格柔弱的少年却被认为“为人乖僻、古怪,过分多嘴”。他不满意内容贫乏,编排琐碎的教科书,对老师只注重形式和技巧的的讲课形式也深感失望。他不见重于师长,甚至被说成是笨蛋。他在后来的一封信中曾大为感慨地写道:“不幸的年轻人要到什么时候才能不整天听讲或死记听到的东西呢?”十五岁的伽罗瓦毅然抛开教科书,直接向数学大师的专著求教,著名数学家勒让德尔的经典著作《几何原理》,使他领悟到清晰有力的数学思维内在的美。学习拉格朗日的《论数值方程解法》和《解析函数论》,使他的思维日趋严谨。接着,他又一口气读完了欧拉与高斯的著作,这些数学大师的著作使他感到充实,感到自信:“我能够做到的,决不会比大师们少!”。

1828年,伽罗瓦17岁,这是他关键的一年,他遇到了数学教师里沙(1795-1849)。里沙不是一个普通的教书匠,他利用业余时间到巴黎大学听课,使自己的水平跟上时代的步伐,并把新的知识传授给学生们。里沙有很高的才能,好心的朋友们劝他从事著作,他却把全部精力倾注在学生身上,十九世纪法国有好几个杰出的数学家,就出自他的门下,这就是对他的最高奖赏。

伽罗瓦在里沙的帮助和鼓励下,在继承前人科学研究成果的基础上,他创立了“群”的思想。写出了第一篇数学论文,寄到法兰西科学院,负责审查这篇论文的是当时法国数学家泰斗柯西和波松。柯西是当时法国首屈一指的数学家。他一向是很干脆和公正的,但偶然的疏忽却带来了损失。第一件事是对阿贝尔没有给予足够的重视。第二件事是伽罗瓦向科学院送交论文时,未能及时作出评价,以致连手稿也给遗失了。第二年十八岁的伽罗瓦又取得了一些重要成果,再次写成论文寄交科学院。主持审查论文的是当时数学界权威人土、科学院院土——傅立叶。然而很不凑巧,傅立叶在举行例会的前几天病世了。人们在傅立叶的遗物中找不到伽罗瓦的数学论文。就这样,伽罗瓦的论文第二次被丢失了。但他并不灰心,又继续研究自己所得的新成果。第三次写成论文,即《关于用根式解方程的可解性条件》。1831年,法兰西科学院第三次审查伽罗瓦的论文,主持这次审查的是科学院院土波松。总算幸运,这一次论文没有丢失。但论文中用了“置换群”这个崭新的数学概念和方法,以致像波松那样赫赫有名的数学家一下子也未能领会,结果,最后一次得到波松草率的评语:“不可理解”而被否定了。那时科学界对形式和技巧的崇拜远远超过对创造和开拓的追求。当然也就不会承认伽罗瓦工作的价值。当时,数学新时代的曙光已出现在地平线上。像非欧几何,集合论,群论等科学思想新体系。都是在这个时**育的。只有勇敢地面向未来,坚定地追求未来的科学家,才能看到新时代的曙光。无怪乎伽罗瓦在谈到他同时代的数学家时曾痛切地说:“他们落后了一百年!”直到伽罗瓦死后十四年,人们研究了保存在他弟弟那里的数学论文,才认识到这些论文是当代重要的数学著作。伽罗瓦所引入的“群”的概念,已发展成为近世代数的一个新的分支——“群论”,而且在其他数学分支和近代物理、理论化学等科学上都是广泛应用的数学工具。这种理论,甚至对于20世纪的结构主义哲学的产生和发展,都发生了巨大影响。因此,伽罗瓦的工作的确是十九世纪数学的最突出的成就之一。

伽罗瓦不仅是一个天才的青年数学家,而且也是一位坚定的革命者,他生活在经历了资产阶级大革命后的法国,生长在压制革命摧残人才的波旁王朝复辟时期。他是个勇敢追求真理的科学家和战士。在法国历史上著名的1830年的“七月革命”中,刚考进法国巴黎师范大学的十九岁的伽罗瓦,积极参加了反对反动政权的斗争。他两次被捕入狱,他的身体由此受到了严重的摧残。但他在狱中仍坚持写了两部科学著作,准备获释后发表他是一个把科学理想和社会理想结合起来,不论在数学王国还是在现实斗争中始终面向未来的不屈斗士。他说:“妨碍我成为科学家的,恰好是我不光是个科学家。”.伽罗瓦出狱不久,反动派便设下了一个圈套,在爱情纠纷的名义下,迫使他参加“决斗”,1832年5月30日清晨,一个身强力壮的反动军官,在“决斗”的借口下,给了他致命的伤害,而伽罗瓦的手枪却是没有子弹的。在“决斗”的第二天早上,他便与世长辞了。他在临死前曾对自己的一生做了这样的总结:“永别了,我已经为公共的幸福献出了自已大部分的生命!”

对伽罗瓦死于决斗,科学史学家们常常感到遗憾。普里林在考察维苏威火山时,被突然爆发的火山灰掩埋;魏格纳考察格陵兰冰川于五十岁生日时丧身,利赫曼为揭开雷电的奥秘,被引下来的电流击毙……这些死,是为了科学,为了人类的幸福。据说马克思也曾受到过决斗的挑战,但马克思对此报以轻蔑的微笑。是的,无论是科学家还是战士,他们的使命和责任,比个人的荣誉和一时的意气和冲动更为重要。

也许伽罗瓦是太年轻了,他不被社会了解和尊重,自己也不珍惜自己的价值。他内心愤怒的激情的浪涛终于冲破了理智的堤坝,把它吞没了。不论怎么说,伽罗瓦参加决斗是犯了一个不可挽回的错误,但他那刻苦钻研、独立思考、不畏权威、勇于创新的精神却永远激励着后来者。

外国著名数学家

古希腊:泰勒斯、欧几里得,阿基米德,毕达哥拉斯,

德国:高斯、柯西、莱布尼兹、戴维·希尔伯特、歌德巴赫、克莱因、开普勒

法国:笛卡儿、拉格朗日、拉普拉斯、费马、泊松、嘉当、伽罗瓦、傅里叶

美国:Lars VAhlfors

英国:艾萨克·牛顿

瑞士:欧拉、丹尼尔·伯努利,,阿贝尔, ……

匈牙利:冯·诺依曼

挪威:伯努利

中国史

中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。

在中国古算书的序、跋中,经常出现数学史的内容。

如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。

以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。

利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。

从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究

数学家笛卡尔提出的浪漫极坐标曲线(也称为“笛卡尔曲线”或“极坐标螺旋线”)是一种由参数方程描述的曲线,其方程为:

r=a(1-cosθ)其中,r表示极径,θ表示极角,a为曲线的半长轴。

该曲线在平面直角坐标系中无法直观表示,但可以通过极坐标系下的表示方式来理解。在极坐标系下,该曲线可以看作是一个以原点为中心、半径为a的圆周上,每个角度处的极坐标距离与半长轴长度之比相等的曲线。因此,它被称为浪漫极坐标曲线,是因为它看起来像是一条螺旋形的道路,而这种形状在数学上被称为“浪漫几何”。

笛卡尔曲线在解析几何学、物理学、工程学等领域都有广泛的应用。例如,它可以被用来描述旋转体、电磁场、流体力学等问题中的物理现象。在计算机图形学中,笛卡尔曲线也被用来生成各种复杂的三维形状。

数学家笛卡尔的介绍

笛卡尔(René Descartes,1596年3月31日-1650年2月11日)是法国著名的哲学家、数学家和物理学家。他是现代哲学中唯一一位将数学作为其哲学基础的人物之一,被誉为“近代哲学之父”。

笛卡尔在数学方面的贡献包括发明了坐标系、提出了解析几何学和代数学等重要概念,他还在几何学和物理学领域做出了许多开创性的贡献。他的著名著作《第一哲学沉思》中,提出了“我思故我在”的思想,强调人类思维的重要性,对后来的哲学、心理学等领域产生了深远的影响。

除此之外,笛卡尔还对政治、教育等领域有着深刻的思考和见解,他提倡普及教育,主张用理性和科学的方法来解决社会问题。他的思想影响了欧洲文化的发展,成为了西方哲学和科学的重要基石之一。

欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。

欧几里德是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。

笛卡儿

笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学方法之一。

欧拉

欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".

伽罗华(Évariste Galois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础;所有这些进展都源自他尚在校就读时欲证明五次多项式方程根数解(Solution by Radicals)的不可能性(其实当时已为阿贝尔(Abel)所证明,只不过伽罗华并不知道),和描述任意多项式方程可解性的一般条件的打算。虽然他已经发表了一些论文,但当他于1829年将论文送交法兰西科学院时,第一次所交论文却被柯西(Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与埃科尔综合技术学院(école Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文亦为泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学界两个最具浪漫主义色彩的人物之一。

彭加勒,法国数学家。1854年4月29日生于南锡,1912年7月17日卒于巴黎。

彭加勒在读中学时,已显示出很高的数学才能。1873年10月以第一名考入巴黎综合工科学校;1875年入国立高等矿业学校学习工程,后任工程师;1879年以数学论文获博士学位,旋即去卡昂大学理学院任讲师;1881年为巴黎大学教授,直到去世;他是全能的数学家,在算术、代数、几何和分析四个数学领域的研究成果都是第一流的,成功地解决了太阳、地球、月亮间相互运动的三体问题;他是现代物理的两大支柱-相对论和量子力学的思想先驱;他研究科学哲学提出的“约定论”着重分析了人类理性认识的基本法则,日益受到当代科学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,获得法国、英国、俄国、瑞典、匈牙利等国家的奖赏,被聘为三十多个国家的科学院院士。

彭加勒的研究涉及了数论、代数学、几何学、拓扑学等许多领域。彭加勒对经典物理学有深入而广泛的研究,对狭义相对论的创立有一定的贡献。他从1899年开始研究电子理论,最先认识到洛伦茨变换构成群。

希尔伯特,D(Hilbert,David,1862~1943)德国数学。

希尔伯特于1900年8月8日在巴黎第二届国际数学家大会上,提出了新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响。希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”。

熊庆来,字迪之,清代光绪十七年(公元1891年)出生于云南省弥勒县息宰村。他自幼养成勤奋好学的良好习惯,再加上非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。1913年他以优异成绩考取云南教育司主持的留学比利时公费生,但因第一次世界大战爆发,只得转赴法国,在格诺大学、巴黎大学等大学功读数学,获理科硕士学位。他用法文撰写发表了《无穷极之函数问题》等多篇论文,以其独特精辟严谨的论证获得法国数学界的交口赞誉。

华罗庚(1910-1985)

中国数学家、教育家,中国解析数论、典型群、矩阵几何学、自守函数论与多服变函数论等方面的创始人与开拓者。江苏金坛人。他的关于完整三角和的研究成果被国际数学界称为“华氏定理”。著有《对垒素数论》《数论导引》《高等数学引论》以及《优选法评话及其补充》《统筹法评话及补充》等

陈建功(1893—1971)数学家,数学教育家。早年在浙江大学数学系任教20余年,1952年后被强行调往上海执教,后曾任杭州大学副校长。研究领域涉及正交函数,三角级数,函数逼近,单叶函数与共形映照等。是我国函数论研究的开拓者之一。

丘成桐

1981年,他32岁时,获得了美国数学会的维布伦(Veblen)奖——这是世界微分几何界的最高奖项之一;1983年,他被授予菲尔兹(Fields)奖章——这是世界数学界的最高荣誉;1994年,他又荣获了克劳福(Crawford)奖。

除此之外,他还获得过美国国家科学奖章和加利福尼亚州最优秀的科学家的称号,是美国科学院院士、哈佛大学名誉博士、中国科学院外籍院士、香港中文大学名誉博士……

名人姓名:海涅

出生年代:1797-1856

名人职称:德国诗人。

名人国家:德国

相关介绍:

海涅出生在莱茵河畔杜塞尔多夫一个破落的犹太商人家庭。1795年,拿破仑的军队曾开进莱茵河流域,对德国的封建制度进行了一些民主改革。正如恩格斯所指出,拿破仑“在德国是革命的代表,是革命原理的传播者,是旧的封建社会的摧残人”。法军的这些改革,使备受歧视的犹太人的社会地位得到改善,因此海涅从童年起就接受了法国资产阶级革命思想的影响。 名人名言网欢迎您的光临

1819至1823年,海涅先后在波恩大学和柏林大学学习法律和哲学,他听过浪漫主义作家奥古斯特•威廉和唯心主义哲学家黑格尔的讲课。海涅早在20岁时就开始了文学创作,他的早期诗作:《青春的苦恼》、《抒情插曲》、《还乡集》、《北海集》等组诗,多以个人遭遇和爱情苦恼为主题,反映了封建专制下个性所受到的压抑以及找不到出路的苦恼。 名人名言网欢迎您的光临

“我跟一些人一样,在德国感到同样的痛苦,说出那些最坏的苦痛,也就说出我的痛苦。”(《每逢我在清晨》)这些诗句中所抒发的个人感受,具有一定的社会意义。这些诗作于1827年收集出版时,题名为《诗歌集》。它们表现了鲜明的浪漫主义风格,感情淳朴真挚,民歌色彩浓郁,受到广大读者欢迎,其中不少诗歌被作曲家谱上乐曲,在德国广为流传,是德国抒情诗中的上乘之作。 名人名言网欢迎您的光临

从1824年到1828年间,海涅游历了祖国的许多地方,并到英国、意大利等国旅行。由于他广泛接触社会,加深了对现实社会的理解,写了四部散文旅行札记。 名人名言网欢迎您的光临

在第一部 《哈尔茨山游记》里, 海涅以幽默活泼的笔调描绘了20年代令人窒息的德国现状,讽刺嘲笑了封建的反动统治者、陈腐的大学、庸俗的市侩、反动的民族主义者、消极的浪漫主义者;以浓郁的抒情笔调描绘了祖国壮丽的自然景色,同时又以深厚的同情,描绘了山区矿工的劳动生活。 名人名言网欢迎您的光临

在第二部《观念——勒•格朗特文集》里,海涅描绘了法国军队进入故乡的情景,刻画了拿破仑的形象,表现了作者对法国革命的向往和对德国封建统治的憎恶。 名人名言网欢迎您的光临

在第三部《从慕尼黑到热那亚的旅行》等意大利游记里,描绘了意大利的风光和社会生活,揭露了贵族天主教的反动性,同时对贵族作家脱离现实的倾向进行了批判。 名人名言网欢迎您的光临

在第四部《英国片段》里,作家描绘了富豪的贵族和资产阶级与劳动人民的尖锐对立,揭露了大资产阶级的贪婪和掠夺。 名人名言网欢迎您的光临

这四部札记的主要倾向是抨击德国的封建反动统治,期望德国能爆发一场比较彻底的资产阶级革命,这四部旅行札记的创作表明,海涅在思想上已成长为一个革命民主主义者,在艺术上,海涅已从青年时代对个人遭遇与感情的描写,转向对社会现实的探讨,走向现实主义道路。 名人名言网欢迎您的光临

海涅晚年思想上的矛盾与怀疑突出的表现在他对共产主义的信念与理解上,他思想上的矛盾是那个时代的产物,正如列宁在纪念赫尔岑时所说,“是资产阶级民主派的革命性已在消亡,而社会主义无产阶级的革命性尚未成熟这样一个具有世界历史意义的时代的产物和反映”。同时,也反映了海涅本身资产阶级世界观的局限。1856年2月27日,海涅逝世。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/443541.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-29
下一篇2023-06-29

发表评论

登录后才能评论

评论列表(0条)

    保存