数学小报可以写关于数学的故事,数学名言和数学公式。
1、关于数学的名言
罗素说:“数学是符号加逻辑”。
毕达哥拉斯说:“数支配着宇宙”。
哈尔莫斯说:“数学是一种别具匠心的艺术”。
2、趣味数学小故事
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
3、小学数学公式大全
加法交换律:两数相加交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
乘法交换律:两数相乘,交换因数的位置,积不变。
乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
4、数学做题方法
当我们遇到不会的数学题时,一个特别好用的方法就是画图,这个方法适用于选择题,因为不需要计算过程,可以直接选正确答案。数学中有一些题目可能用公式计算比较麻烦,或者是有些同学不会按部就班做,可是画完图往往就能立见答案,还节省做题时间,效率很高。
做数学题还可以用试值法去做,也比较适合选择题,当不知道这道题目该怎么做时,可以把每个选项都代入进去,利用试值法求解,如果正确答案在前面,做题速度就会很快,如果答案在后面,就需要把每个值都代入试一遍。
5、数学学习方法
在课前,预习的环节是必不可少的。先将本科知识结构梳理一遍,看不懂没关系,但一定要知道老师这节课要讲些什么。
在平时练习考试的时候将掌握不好的知识点记录下来,并查阅资料及时复习。如果遇到从前所学的知识点就翻阅课本和资料,并及时向他人请教。在理解之后可以找一些衍生或变型题目来巩固。
数学手抄报模板大全
导语:在数学学习中,很多学生没有掌握学习方法及技巧,下面由我为您整理出的数学手抄报模板大全内容,一起来看看吧。
小学生数学小报资料1:
学习数学的技巧:
一、巧做笔记
很多思维细腻的学生喜欢做笔记,把老师上课的内容全记下,实际上这对于数学而言是不科学的。数学笔记力求做到“全而不齐”,即整个课堂的思路及重要的知识点可以笔录下来,其他内容主要跟老师思路来理解,尤其是一些例题,在没有理解的情况下一味地抄是不可取的。
二、会做小结
在教学中,学生经常问到的是:“老师我平常都懂了,可是为什么一到考试就不会呢?”在每个周末或者每学完一个章节后,不妨在笔记本上单独腾出一栏来做小结,小结内容包括:知识点的关联、重要公式、经典例题,涉及的`数学思想方法。目的是打通每一章节知识点的关联,了解知识的来龙去脉,理清思路。
三、读透课本
现在很多学校用学案,实际上我们不能脱离课本,要读透课本。()笔者曾经访谈过一些高考状元,曾经有一位状元没有做过一本完整的习题册,他的方法仅仅是把课本中练习题全部做完,读透里面的知识点与数学思想方法,而不是盲目的题海战术。
四、其他小技巧
将每本书重要公式和技巧以及老师上课补充的重要定理公式记录在课本第1~2页的空白处。对于类似高考这样的大型考试,有众多的练习及课本需要重新复习,我们只有在平时就把重点记录在空白页,最后关键时刻只需翻回第1~2页就可以快速复习每本书重点知识,效果显著。
小学生数学小报资料2:今天是星期天,做完作业,经过我的允许,孩子就开始玩电脑游戏了。他现在喜欢上开心网,看着自己种出来的菜园,鲜艳漂亮;自己养的鱼肥肥的,动物们一个个活蹦乱跳,心里别提有多高兴了。哈,菜地熟了,他开心地去收菜,是一片灵芝,可是再种什么,他就踌躇了。看见我在隔壁,他就过来问我:“我再种什么呀?”我笑着说:“自己去算一下吧,不要半夜里收就行。”于是,他掰着手指算,现在是中午12点,种灵芝吧,60个小时,不行,要半夜12点收的;种冬虫夏草吧,64小时,也不行,要凌晨4点收的。
哈哈,有了,种雪莲吧,56个小时,正好晚上8点收,他是不能收的,不过我可以帮他收。他问我怎么样,我夸他“时间”学得真不错,他很开心。说:“其实玩游戏也能用上数学知识,还譬如养动物吧,一点要在早上6点到12点之间养,这样就不用担心自己的动物在半夜里生而影响自己睡觉了。哈哈,是不是很好玩啊!我们一起努力吧,把数学学得更好!”看着孩子开心的笑脸,我不禁想到,其实生活中到处都有数学,就得看我们如何让他们在不经意间接触数学,学习数学。
小学生数学小报资料3:奥苏贝尔认为,有意义学习的条件具备以下几点:
1学生有意义学习的心向,即表现出新的内容与已有知识之间建立联系的倾向
2学习内容对学生具有潜在意义,即能够与学生已有的知识结构联系起来。这种联系不能是一种牵强附会的或逐字逐句的,而是应该是实质性的联系
在奥苏贝尔看来,学生的学习,如果要有价值,应该尽可能地有意义。这些学习技巧实际上就是更好地使数学学习有意义。
有人说:“70%的人呼吁数学滚出高考,实际上他们不知道高考就是要剔除这70%的人。”我们需要明白的是数学并不是用来“买菜”的,而是其中的思维方法终身受益,与其逃避高考不如全力以赴来一场有准备的仗。把握方法、直面高考,就能使我们在残酷竞争中处于不败之地,赢一场漂亮的仗!
;这里有些素材 你整理一下就行了
第一部分:数学小故事
1古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
2伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
3阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
第二部分:生活中的数学
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
第三部分:数学小笑话
《不是洗澡堂》
德国女数学家爱米·诺德,虽已获得博士学位,但无开课“资格”,因为她需要另写论文后,教授才会讨论是否授予她讲师资格。
当时,著名数学家希尔伯特十分欣赏爱米的才能,他到处奔走,要求批准她为哥廷根大学的第一名女讲师,但在教授会上还是出现了争论。
一位教授激动地说:“怎么能让女人当讲师呢?如果让她当讲师,以后她就要成为教授,甚至进大学评议会。难道能允许一个女人进入大学最高学术机构吗?”
另一位教授说:“当我们的战士从战场回到课堂,发现自己拜倒在女人脚下读书,会作何感想呢?”
希尔伯特站起来,坚定地批驳道:“先生们,候选人的性别绝不应成为反对她当讲师的理由。大学评议会毕竟不是洗澡堂!”
第四部分
趣味数学
1
我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来36050=18000元的收入; 扣除50间房的支出4050=2000元,每日净赚16000元。而客满时净利润只有16080-4080=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
2
《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
内容你自己看需要什么、就自己去查找
以下是方法、
很多手抄报的样子,可以做参详。而且办手抄报并不难。下面是怎样办手抄报的步骤:
怎样进行手抄报的设计与制作,大体上可以从这三个方面来阐述:
一、美化与设计的步骤;
二、报头、插图与尾花的表现;
三、编辑抄写描绘制作过程。
一、美化与设计
手抄报的美化与设计涉及的范围主要有:版面设计与报头、题花、插图、尾花和花边设计等。
1、版面设计
版面设计是出好手抄报的重要环节。
要设计好版面,须注意以下几点:
(1)明确本期手抄报的主要内容是什么,选用有一定意义的报头(即报名)。一般报头应设计在最醒目的位置;
(2)通读所编辑或撰写的文章并计算其字数,根据文章内容及篇幅的长短进行编辑(即排版)。一般重要文章放在显要位置(即头版);
(3)要注意长短文章穿插和横排竖排相结合,使版面既工整又生动活泼;
(4)排版还须注意:字的排列以横为主以竖为辅,行距要大于字距,篇与篇之间要有空隙,篇与边之间要有空隙,且与纸的四周要有3CM左右的空边。另外,报面始终要保持干净、整洁。
2、报头
报头起着开门见山的作用,必须紧密配合主题内容,形象生动地反映手抄报的主要思想。报名要取得有积极、健康、富有意义的名字。
报头一般由主题图形,报头文字和几何形体色块或花边而定,或严肃或活泼、或方形或圆形、或素雅或重彩。
报头设计应注意:
(1)构图要稳定,画面结构要紧凑,报头在设计与表现手法上力求简炼,要反映手抄报的主题,起“一目了然”之效;
(2)其字要大,字体或行或楷,或彩色或黑白;
(3)其位置有几种设计方案:一是排版设计为两个版面的,应放在右上部;二是排版设计为整版的,则可或正中或左上或右上。一般均设计在版面的上部,不宜放在其下端。
3、题头
题头(即题花)一般在文章前端或与文章题图结合在一起。设计题头要注意以题目文字为主,字略大。装饰图形须根据文章内容及版面的需要而定。文章标题字要书写得小于报题的文字,要大于正文的文字。总之,要注意主次分明。
4、插图与尾花
插图是根据内容及版面装饰的需要进行设计,好的插图既可以美化版面又可以帮助读者理解文章内容。插图及尾花占的位置不宜太大,易显得空且乱。尾花大都是出于版面美化的需要而设计的,多以花草或几何形图案为主。插图和尾花并不是所有的文章都需要的,并非多多益善,应得“画龙点睛”之效。
5、花边
花边是手抄报中不可少的。有的报头、题头设计可用花边;重要文章用花边作外框;文章之间也可用花边分隔;有的整个版面上下或左右也可用花边隔开。在花边的运用中常用的多是直线或波状线等。
二、报头画、插图与尾花的表现手法
报头画、插图与尾花的表现手法大致可分为线描画法和色块画法两种。
1、线描画法
要求形象简炼、概括,用线准确,主次分明。作画时要注意一定的步骤:
(1)一般扼要画出主线----确定角度、方向和大小;
(2)再画出与图相关的比例、结构及透视;
(3)刻画细部,结合形体结构、构图、色调画出线条的节奏变化;
(4)最后进行整理,使画面完整统一。
2、色块画法
除要求造型准确外,还须善于处理色块的搭配和变化关系,而这些关系的处理要从对象的需要出发,使版面色彩丰富。作画时,可先画铅笔稿(力求造型准确),再均匀平涂大色块;后刻画细部;最后进行修整,使之更加统一完美。
线描画法与色块画法,通常是同时使用,可以是多色亦可单色。不管是线描还是色块画法,最好不要只用铅笔去画。版面上的图形或文字不能剪贴。
三、手抄报的编绘制作的步骤
编绘制作是落实由设想到具体着手完成的重要步骤。
其步骤有二:一是准备阶段,另一是编制阶段。
1、准备阶段。
主要是各种材料、工具的准备。具体包括:拟定本期手抄报的报名;准备好一张白棒纸(大小视需要而定,有半开,四开,八开等,本次政教处举办的手抄报比赛是要求为《江西日报》大小,即半开);编辑、撰写有关的文字材料(文章宜多准备些);书写、绘图工具等。
2、编制阶段。
这个阶段是手抄报制作的主要过程。 大致为:版面设计、抄写过程、美化过程。
(1)版面设计:根据文章的长短进行排版,并画好格子或格线(一般用铅笔轻轻描出,手抄报制作完毕后可擦可不擦)。
(2)抄写过程:指的是文章的书写。手抄报的用纸多半是白色,故文字的书写宜用碳素墨水;字体宜用行书和楷书,少用草书和篆书;字的个头大小要适中(符合通常的阅读习惯)。字写得不是很漂亮不要怕,关键在于书写一定要工整。另外,文章或标题中不能出现错别字。
(3)美化过程:文章抄写完毕后,即可进行插图、尾花、花边的绘制(不宜先插图后抄写),将整个版面美化。这个过程是手抄报版面出效果的关键过程。
手抄报可以是黑白的,也可是彩色的。可以是综合性的,也可以专题性的。手抄报的制作设计与黑板报制作设计要求和步骤大体是相同的。
简单又漂亮的数学小报鉴赏
简单又漂亮的数学小报一
简单又漂亮的数学小报二
简单又漂亮的数学小报三
简单又漂亮的数学小报四
简单又漂亮的数学小报五
简单又漂亮的数学小报内容一:为什么要重视数学思想方法的学习一、在认知心理学里,思想方法属于元认知范畴,数学思想对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题的关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的`数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
二、 数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会需要大量具有较强数学意识和数学素质的人才。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
三、 小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到结论,许多例题的解法也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括和探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。教师如果在教学中仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
四、小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,而且必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破。
五、 小学数学中蕴含的数学思想方法很多,最基本的数学思想方法有转化思想、类比思想、统计思想、符号思想、模型化思想、对应思想等,突出这些基本思想方法,就相当于抓住了小学数学知识的精髓。
简单又漂亮的数学小报内容二:趣味数学小故事门打开了,进来的是一个年轻的小伙子。刘建明先生请他坐下,小伙子自我介绍说:“我是内地的导游,叫于江,这次我带领了个旅游团到香港来旅游,听说您的大酒店环境舒适,服务周到,我们想住你们酒店。”刘建明先生连忙热情地说:“欢迎,欢迎,欢迎光临,不知贵团一共有多少人”
“人嘛,还可以,是个大团。”刘建明先生心里一阵惊喜:一个大团,又一笔大生意,真是太好了。作为一名导游,于江看出刘建明先生的心思,他记上心来,慢条斯理的说:“先生,如果你能算出我们团的人数,我们就住您们大酒店了。”
“您请说吧。”刘建明先生自信的说。“如果我把我的团平均分成四组,结果多出一个人,再把每小组平均分成四份,结果又多出一个人,再把分成的四个小组平均分成四份,结果又多出一个人,当然,也包括我,请问我们至少有多少人”
“一共多少呢”刘建明先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,应该如何下手呢”他不愧是精明的生意人,很快就知道了答案:“至少八十五人,对不对”于江先生高兴地说:“一点都不错,就是八十五个人。请说说你是怎么算的”“人数最少的情况下是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)”“好,我们今天就住这里了。”“那你们有多少男的和女的”
“有55个男的,30个女的。”“我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住”“当然是先生您给安排了,但必须男女分开,也不能有空床位。”又出了个题目,刘建明还从没碰到过这样的客人,他只好又得花一番心思了。
冥思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房间,一间5人房间;女的一间11人房间,两间7人房间,一间5人的,一共11间。于江先生看了他的安排后,非常满意,马上办理了住宿手续。一桩大生意做成了,虽然复杂了点,但刘建明先生心里还是十分高兴的。
数学手抄报需要很多精彩的内容,才能让整张手抄换发美丽,让人一看就不是和简单公式般的苦涩乏味,我收集了一些精彩的数学家的爱情故事和版面设计(高清),一定能满足你的需求,本文(初中数学手抄报版面设计图)由整理我,欢迎阅读。
初中数学手抄报版面设计图(一) 初中数学手抄报版面设计图(二) 初中数学手抄报版面设计图(三) 初中数学手抄报版面设计图(四) 初中数学手抄报版面设计图(五)初中数学手抄报版面设计图:数学家们的爱情故事
一、‘笛卡尔的故事
笛卡尔(René Descartes),17 世纪著名的法国哲学家,曾经提出“我思故我在”的哲学观点,有着“现代哲学之父”的称号。笛卡尔对数学的贡献也是功不可没,中学时大家学到的平面直角坐标系就被称为“笛卡尔坐标系”。
传闻,笛卡尔曾流落到瑞典,邂逅美丽的瑞典公主克里斯蒂娜(Christina)。笛卡尔发现克里斯蒂娜公主聪明伶俐,便做起了 公主的数学老师, 于是两人完全沉浸在了数学的世界中。国王知道了这件事后,认为笛卡尔配不上自己的女儿,不但强行拆散他们,还没收了之后笛卡尔写给公主的所有信件。后来,笛卡尔染上黑死病,在临死前给公主寄去了最后一封信,信中只有一行字:r=a(1-sinθ)。
自然,国王和大臣们都看不懂这是什么意思,只好交还给公主。公主在纸上建立了极坐标系,用笔在上面描下方程的点,终于解开了这行字的秘密——这就是美丽的心形线。看来,数学家也有自己的浪漫方式啊。
a=1时的心形线
事实上,笛卡尔和克里斯蒂娜的确有过交情。不过,笛卡尔是 1649 年 10 月 4 日应克里斯蒂娜邀请才来到的瑞典,并且当时克里斯蒂娜已经成为了瑞典女王。并且,笛卡尔与克里斯蒂娜谈论的主要是哲学问题。有资料记载,由于克里斯蒂娜女王时间安排很紧,笛卡尔只能在早晨五点与她探讨哲学。天气寒冷加上过度操劳让笛卡尔不幸患上肺炎,这才是笛卡尔真正的死因。
心形线的故事究竟几分是真几分是假,还是留给大家自己判断吧。
二、伽罗瓦的故事
伽罗瓦(Évariste Galois),19 世纪最伟大的法国数学家之一,唯一被我称为“天才数学家”的人。他 16 岁时就参加了巴黎综合理工学院的入学考试,结果面试时因为解题步骤跳跃太大,搞得考官们不知所云,最后没能通过考试。
在数学历史上,伽罗瓦毫无疑问是最富传奇色彩与浪漫色彩的数学家,没有“之一”。18 岁时,伽罗瓦漂亮地解决了当时数学界的顶级难题:为什么五次及五次以上的多项式方程没有一般的解。他把这一研究成果提交给了法国科学院,由大数学家柯西 (Augustin-Louis Cauchy)负责审稿;然而,柯西建议他回去仔细润色一下(此前一直认为柯西把论文弄丢了或者私藏起来,最近的法国科学院档案研究才让柯西平反昭雪)。后来伽罗瓦又把论文交给了科学院秘书傅立叶(Joseph Fourier),但没过几天傅立叶就去世了,于是论文被搞丢了。1831年伽罗瓦第三次投稿,当时的审稿人是泊松,他认为伽罗瓦的论文很难理解,于是拒绝发表。
因为一些极端的政治行动,伽罗瓦被捕入狱。即使在监狱里,他也不断地发展自己的数学理论。他在狱中结识了一名医生的女儿,并很快坠入爱河;但好景不长,两人的感情很快破裂。出狱后的第二个月,伽罗瓦决定替自己心爱的女孩与女孩的一个政敌进行决斗,不幸中枪,第二天便在医院里死亡。伽罗瓦死前的最后一句话是对他的哥哥艾尔弗雷德(Alfred)说的:“不要哭,我需要足够的勇气在 20 岁死去。”
仿佛是预感到了自己的死亡,在决斗的前一夜,伽罗瓦通宵达旦奋笔疾书写下了自己所有的数学思想,并把它们和三篇论文手稿一同交给 了他的好友谢瓦利埃(Chevalier)。在信的末尾,伽罗瓦留下遗嘱,希望谢瓦利埃能把论文手稿交给当时德国的两位大数学家雅可比(Carl Gustav Jacob Jacobi)和高斯(Carl Friedrich Gauss),让他们就这些数学定理公开发表意见,以便让更多的人意识到这个数学理论的重要性。
谢瓦利埃遵照伽罗瓦的遗愿,将论文手稿寄给了雅可比和高斯,不过都没有收到回音。直到 1843 年,数学家刘维尔(Joseph Liouville)才肯定了伽罗瓦的研究成果,并把它们发表在了他自己主办的《纯数学与应用数学杂志》(Journal de Mathématiques Pures et Appliquées)上。人们把伽罗瓦的整套数学思想总结为了“伽罗瓦理论”。伽罗瓦用群论的方法对代数方程的解的结构做出了独到的分析,多项式方程的 根、尺规作图的不可能性等一系列代数方程求解问题都可以用伽罗瓦理论得到一个简洁而完美的解答。伽罗瓦理论对今后代数学的发展起到了决定性的作用。
三、塞凯赖什夫妇的故事
1933 年,匈牙利数学家乔治·塞凯赖什(George Szekeres)还只有 22 岁。那时,他常常和朋友们在匈牙利的首都布达佩斯讨论数学。这群人里面还有同样生于匈牙利的数学怪才——保罗·埃尔德什(Paul Erdős)大神。不过当时,埃尔德什只有 20 岁。
在一次数学聚会上,一位叫做爱丝特·克莱恩(Esther Klein)的美女同学提出了这么一个结论:在平面上随便画五个点(其中任意三点不共线),那么一定有四个点,它们构成一个凸四边形。塞凯赖什和埃尔德什等人想了好一会儿,没想到该怎么证明。于是,美女同学得意地宣布了她的证明:这五个点的凸包(覆盖整个点集的最小凸多边形)只可能是五边形、四边形和三角形。前两种情况都已经不用再讨论了,而对于第三种情况,把三角形内的两个点连成一条直线,则三角形的三个顶点中一定有两个顶点在这条直线的同一侧,这四个点便构成了一个凸四边形。
平面上五个点的位置有三种情况
众人大呼精彩。之后,埃尔德什和塞凯赖什仍然对这个问题念念不忘,于是尝试对其进行推广。最终,他们于 1935 年发表论文,成功地证明了一个更强的结论:对于任意一个正整数 n ≥ 3,总存在一个正整数 m,使得只要平面上的点有 m 个(并且任意三点不共线),那么一定能从中找到一个凸 n 边形。埃尔德什把这个问题命名为了“幸福结局问题”(Happy Ending problem),因为这个问题让乔治·塞凯赖什和美女同学爱丝特·克莱恩之间迸出了火花,两人越走越近,最终在 1937 年 6 月 13 日结了婚。
对于一个给定的 n ,不妨把最少需要的点数记作 f(n)。求出 f(n) 的准确值是一个不小的挑战。由于平面上任意不共线三点都能确定一个三角形,因此 f(3) = 3 。爱丝特·克莱恩的结论则可以简单地表示为 f(4) = 5 。利用一些稍显复杂的方法,我们可以证明 f(5) 等于 9 。2006 年,利用计算机的帮助,人们终于证明了 f(6) = 17。对于更大的 n,f(n) 的值分别是多少 f(n) 有没有一个准确的表达式呢这是数学中悬而未解的难题之一。几十年过去了,幸福结局问题依旧活跃在数学界中。
不管怎样,最后的结局真的很幸福。结婚后的近 70 年里,他们先后到过上海和阿德莱德,最终在悉尼定居,期间从未分开过。 2005 年 8 月 28 日,乔治和爱丝特相继离开人世,相差不到一个小时。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)