简述钻石的化学成分及物理光学特征

简述钻石的化学成分及物理光学特征,第1张

用放大镜可观察到钻石的腰围处呈现一种很细的磨砂状并有亮晶晶的反射光钻石的这种特征是独一无二的

钻石的化学成分是碳,这在宝石中是唯一由单一元素组成的属等轴晶系晶体形态多呈八面体、菱形十二面体、四面体及它们的聚形纯净的钻石无色透明,由于微量元素的混入而呈现不同颜色强金刚光泽折光率2417,色散中等,为0044均质体热导率为035卡/厘米度用热导仪测试,反应最为灵敏硬度为10,已知最硬的矿物,绝对硬度是石英的1000倍,刚玉的150倍,怕重击,重击后会顺其解理破碎一组解理完全密度352克/立方厘米钻石具有发光性,日光照射后 ,夜晚能发出淡青色磷光X射线照射,发出天蓝色荧光钻石的化学性质很稳定,在常温下不容易溶于酸和碱,酸碱不会对其产生作用

宝石

指那种经过琢磨和抛光后,可以达到珠宝要求的石料或矿物

宝石的鉴定,一般可以分为原石和成品两大类。

对于原石的鉴定,又可以分为野外鉴定和室内鉴定。野外鉴定多数采用放大镜和小刀等简单工具,用以初步对宝石矿物进行定名。室内鉴定主要是利用各种手段和仪器,进一步测定宝石矿物的数据,为鉴别宝石提供重要依据。

对于宝石成品的鉴定,必须是在不破坏宝石完整性的前提下去鉴别所测定的宝石。

目前常用的、易于掌握的宝石鉴定仪器有以下几种:

1.笔式聚光手电:用来观察浓色宝石的透明度。聚光手电的电珠应凹于笔头面,不能凸出笔头面,否则不便于观察。

2.放大镜:是宝石放大观察的仪器之一。最常用的是10倍放大镜,还有20、30倍的几种。放大镜是宝石专家的关键工具和必备之物,便于携带。可用它来鉴定宝石的品种和真伪。用放大镜可以观察:(1)宝石的表面损伤、划痕、缺陷。(2)琢型质量。(3)抛光的质量。(4)宝石内部的缺陷、包裹体。(5)颜色的分布和生长线等。鉴定时,应将宝石置于离10倍放大镜约25厘米的强光之下,慢慢调节距离,直到看清楚为止。选择放大镜的质量也很重要,质量差者在放大时将产生图形畸变。

3.二色镜:有的宝石具有多色性,观察宝石多色性最好的仪器是二色镜。二色镜是一种结构合理、价格便宜、小巧简单的光学仪器。二色镜使用的是一块合适的透明的无色方解石(冰洲石)菱面体,由于冰洲石的双折射率较高,该仪器可以将穿过宝石的两条平面偏振光线分离开来。要求必须是有颜色透明的单晶体宝石才能够检测出多色性,玉石不能检测多色性。二色镜主要用于区别红宝石和红色尖晶石、红色紫牙乌;区别蓝色尖晶石和细小的蓝碧玺;区别蓝宝石和蓝色人工合成尖晶石等。用二色镜检测宝石时必须不断转动宝石,直到两个差异最大的颜色出现在窗口上为止。对于宝石的三色性的确定,必须认真地反复检测,从三个不同的方向观测,出现三种颜色才是三色性。检测时注意:眼睛、二色镜和宝石样品,其间距应不超过2-5毫米。

4.折光仪:折光率是透明宝石重要的光学常数,是鉴定宝石品种的主要依据。测折光率的方法主要有两种:一种是直接测量法,用折光仪测量;另一种是相对测量法,用液体浸没法。折光仪是根据光的全反射的原理制造的。目前常用的折光仪只适用于折光率为136-181范围内的宝石。宝玉石的折光率(N)的计算方法为光在空气中的传播速度(V1)与在宝石中的传播速度(V2)之比为一个常数,即N=V1 /V2 。均质体宝石,光在其中传播,传播速度不变,折光率相等,称之为单折光率。非均质体宝石,在折光仪中有两个读数,最大、最小折光率值之间的差值,称之为双折光率。折光仪是宝石学家最常使用的仪器之一,它的体积小,使用方便。他既可以测试刻面宝石的折光率,还可以用点测法测出弧面宝石的折光率。

5.查尔斯滤色镜:滤色镜是利用吸收光的特定波长这一特征而设计的。它由两片仅让深红色和黄绿色光通过的明胶滤色镜组成的宝石鉴定仪器。滤色镜小巧轻便,便于携带,对识别一些染色宝石和人造宝石特别有效,对识别炝色翡翠非常有效。它可以鉴别祖母绿和其它仿造品,而要准确地确定,还要借助于其它方法综合考虑。在滤色镜下祖母绿呈现红色或粉红色,而其它和祖母绿相似的天然绿色宝石,在滤色镜下观察不显红色。

6.宝石显微镜:宝石放大观察的一种重要的仪器。它能够检测10倍放大镜不能清晰地确认或观测到宝石外部和内部特征。宝石显微镜可以观察宝石内部的包裹体、解理、双晶纹、生长线、色带;观察宝石的磨工、抛光度和意外损伤;鉴别拼合宝石二层石、三层石。宝石显微镜的结构合理,辅助设备齐全,放大倍数可变幅度较大,一般是10至70倍。宝石显微镜有两种光源,一般用底灯观察宝石的内部缺陷,如包裹体、裂隙等;用反射灯观察宝石的表面特征,如断口、色带、解理面等。宝石显微镜是精密仪器,要严格按操作规则使用。

7.热导仪:热导仪是根据钻石具有良好的传热性而设计制作的。绝大多数宝石不具备热导性或热导率极低,所以一般热导仪均为区别钻石与人造仿钻制品而设计的,是鉴别钻石与其它仿钻制品的专用仪器。钻石热导仪由金属针状测头与控制盒组成,当测头尖端触及钻石表面时,温度明显降低,由仪器表头信号灯或鸣叫声显示测定结果。热导仪长十多厘米,便于携带,使用极为方便。

8.偏光器:是使平面偏振光垂直相交,光线通不过的原理制造的一种简单的光学仪器。偏振器是由两个震动方向垂直的偏光片、支架和底部照明灯组成。用以检测宝石的光性(是均质体还是非均质体)和多色性。在打开照明灯的偏光器中,转动观察宝石样品的明暗变化情况。(1)如果样品明亮,没有明暗变化,可能是隐晶质或微晶集合体,如玉髓、翡翠等。(2)如果样品全黑,没有明暗变化,将样品变换一个角度继续观察,如果仍然无明暗变化,样品属均质体。属均质体的宝石有等轴晶系和非晶质宝石。(3)如果转动宝石360°时,宝石样品发生四次明暗变化,这表明样品为非均质体。属非均质体的宝石有四方、六方、三方、斜方、单斜、三斜晶系中的宝石。(4)如果样品在正交偏光下转动时,可看到灰暗的蛇纹状、网格状或不规则的现象,则可能是均质体宝石所呈现的异常干涉色,此时应十分注意。利用偏光器,还可以检测宝石的多色性,能够验证宝石的非均质性和均质性。

此外,常用的宝石鉴定仪器还有吸收光谱摄谱仪、荧光灯、X射线衍射仪、电子探针等。

一、正交偏光镜的装置与光学特点

正交偏光镜就是使上、下偏光镜的振动方向互相垂直(如图3-8-1a)。由于所用入射光波是近于平行的光束。因此可称为平行光下的正交偏光镜。一般用“PP”代表下偏光镜的振动方向,以“AA”代表上偏光镜的振动方向。(正交偏光镜即PP⊥AA,平行偏光镜则PP∥AA)。下偏光镜只允许平行于PP振动方向的光波通过,或分解后平行于PP的光波分量通过,所以自然光通过下偏光镜只有一个振动方向的光波(即PP方向)向前传播;上偏光镜只允许平行于AA振动方向的光波通过,或分解后平行于AA振动方向的光波分量通过。上下偏光镜处于正交位置,这时由于通过下偏光镜向前传播的光波,只有一个“PP”方向的振动,此振动方向的光传播到上偏光镜时,由于上偏光镜只允许平行“AA”振动方向的光波通过,可此时平行“AA”方向的光波分量等于零,所以由下偏光镜上来的光波不能通过上偏光镜,因此视域内是黑暗的。这就是正交偏光镜的特点。

二、平行偏光镜的装置及光学特点

使上下偏光镜的振动方向AA、PP相互平行,称为平行偏光镜。由于上、下偏光镜的振动方向是平行的(即AA∥PP),所以通过下偏光镜的光波可以直接通过上偏光镜,视域内是明亮的,这是平行偏光镜的特点。

三、上下偏光镜间加入宝石后的光学现象

(一)宝石在正交偏光镜间的光学特征

1均质体宝石(图3-8-1b)

通过下偏光镜的光波经过宝石,由于宝石是均质体,其光学切面都是圆,所以光的振动方向不会改变,在到达上偏光镜时,依然垂直上偏光镜的振动方向,光波的振动分量为零,即不能通过上偏光镜,视域是黑暗的。转动均质体宝石的一个方向,由于,所有均质体的光率体切面都是圆切面,所以这种情况下,视域中一直是黑暗的,即为全消光。这是均质体宝石在正交偏光镜间的光学特点。

图3-8-1 正交偏光镜的装置与光学特点

2非均质体宝石在正交偏光镜间的光学特点

(1)垂直光轴切面是圆切面,所以通过下偏光镜来的偏光,经过宝石后,偏光振动方向不发生改变,所以到上偏光镜不能通过,为黑暗视域,水平转动宝石360°视域也是全黑暗,即为全消光,这也是垂直光轴宝石的光性特点(无论是一轴晶,还是二轴晶,只要垂直光轴切面)。

(2)非均质宝石斜交(包括平行)光轴切面在正交偏光镜间的光学特性,斜交光轴的所有切面都是一个椭圆切面(有一个长轴、一个短轴的切面)。当椭圆切面的长、短轴平行上下偏光镜振动面时,由于下偏光镜上来的光波通过宝石后,光波的振动方向不改变,也不分解,所以到达上偏光镜时,由于光波的振动方向与上偏光镜的振动方向垂直,在上偏光镜的振动方向上没有分量,所光波不能通过上偏光镜,视域是黑暗的。此时处于消光位(视域为黑暗),这时将宝石转动一周(360°),共有4次椭圆切面的长短半径与上下偏光镜振动方向一致,所以视域出现4次黑暗,即4次消光。

当宝石椭圆切面的长短半径与上、下偏光镜振动方向斜交时,下偏光镜上来的偏光光波进入非均质宝石后,会分解成两个振动方向相互垂直的偏光,这两个偏光继续向上到达上偏光镜时,由于这两个偏光的振动方向都与上偏光镜振动方向斜交。所以它们不能直接通过上偏光,而必须分解成与上偏光镜振动方向一致的分量,才能通过上偏光镜,这时视域中就会明亮。在转动宝石360°时会有4次明亮。

以上两种现象即4次消光,4次明亮和垂直光轴的全消光。这就是非均质宝石在正交偏光镜间的光学特征。非均质体宝石除垂直光轴切面外,正交偏光镜间处在消光的位置称为消光位。当宝石处在消光位时,其光率体椭圆半径必须与上、下偏光镜振动方向(AA、PP)平行。上下偏光镜的振动方向一般是已知的(也可以测定)。根据以上原理,可以确定宝石光率体椭圆切面半径的方向。

(二)正交偏光镜间非均质体宝石的干涉现象

当非均质体宝石光率体的椭圆切面半径K1、K2与上、下偏光镜振动方向(AA、PP)斜交时(图3-8-2),由下偏光镜透出的振动方向平行PP的偏光,进入宝石后,发生双折射分解形成振动方向平行K1、K2的两种偏光。K1、K2的折射率不等(NK1>NK2),它们在宝石中的传播速度不同(K1为慢光,K2为快光)。K1、K2在透过宝石的过程中,必然产生光程差,以符号R表示。当K1、K2透出宝石后,二者在空气中的传播速度相同,因而它们在到达上偏光镜之前,光程差保持不变。

K1、K2两种偏光的振动方向与上偏光镜振动方向AA斜交,故当K1、K2先后进入上偏光镜时,必然再发生分解(图3-8-2b),形成K1′、K2′和K1″、K2″4 种偏光。其中K1″、K2″的振动方向垂直上偏光镜振动方向AA,不能透出上偏光镜。K1′、K2′两种偏光振动方向与上偏光镜振动方向AA平行,可以透出上偏光镜。K1′、K2′两种偏光具以下特点:

图3-8-2 正交偏光镜间非均质体宝石的干涉现象

(1)K1′、K2′由同一偏光束经过两次分解(透过宝石和上偏光镜时)而成,其频率相等。

(2)K1′、K2′之间有固定的光程差(由K1、K2继承下来的光程差)。

(3)K1′、K2′在同一平面内(平行AA)内振动。

因此,K1′、K2′两种偏光具备了光波干涉的条件,必然会发生干涉作用。干涉的结果取决于两种偏光之间的光程差R。

光干涉的条件:两光波频率即波长相等;有固定的光程差;在同一平面内振动。

如果光源为单色光,当光程差 (半波长的偶数倍)时,K1′、K2′干涉的结果是相互抵消而变黑暗。当光程差 (半波长的奇数倍)时,K1′、K2′干涉的结果是相互叠加,其亮度加强(最亮)。当光程差R介于nλ和 之间时,K1′、K2′的干涉的结果是其亮度介于黑暗与最亮之间。下面用图3-8-3说明K1′、K2′的两种偏光的干涉情况。

图3-8-3(1)、(2),表示自下偏光镜透出的振动方向平行PP的单色偏光进入宝石后,分解形成振动方向平行宝石上光率体椭圆半径K1、K2的两种偏光。它们的折射率不等(NK1>NK2),在宝石中的传播速度不同(K1为慢光,K2为快光),这两种偏光在通过宝石过程中产生了一个波长的光程差(相当于R=λ),它们先后透出宝石,在宝石顶部,振动相位相同进入空气后,这两种偏光传播速度相同,其光程差不变(图3-8-3之a3)。当它们先后到达上偏光镜时,仍保持原来的光程差(见图3-8-3 之a4)。由于K1′、K2′的振动方向与上偏光镜振动方向(AA)斜交,因而再度分解,形成平行上偏光镜振动方向(AA)的K1′、K2′和垂直上偏光镜振动方向(AA)的K1″、K2″,后者不能透出上偏光镜,故不考虑它(图中未表示出)。K1′、K2′两种偏光振幅相等,振动方向相反,干涉的结果是互相抵消而黑暗。

图3-8-3b表示K1、K2两种偏光在通过矿片过程中产生了半个波长的光程差(相当于 ,它们先后透出宝石。进入上偏光镜时,再度分解形成的K1′和K2′振幅相等,振动方向相同(图3-8-3之b4),故干涉的结果是互相叠加而亮度加强(最亮)。

此外,宝石干涉结果呈现的明亮程度,还与透出上偏光镜的两种偏光K1′、K2′的振幅大小有关,其振幅愈大度愈强。通过偏光矢量分解的平面图解可以证明,只有当宝石的光率体椭圆半径(K1、K2)与上、下偏光光镜的振动方向(AA、PP)成45°位置时,透过上偏光镜的偏光分振幅量最大。

由上可知:光程差对干涉作用结果起着主导作用。根据物理学中“光程”及“光程差”的概念可知,K1、K2两种偏光,透过宝石的“光程”应为d·N1和d·N2(d为宝石厚度,也是两种偏光透过宝石的几何路程,N1为K1的折射率,N2为K2的折射率)。此两种偏光的光程差R=d N1-d N2=d(N1-N2)。即光程差与宝石厚度和双折射率成正比。双折射率又与矿物性质和切片方向有关。因此,影响光程差的因素有:宝石性质、宝石的方向和宝石的厚度。这三方面的因素必须联系起来考虑。特别应当清楚地理解到,不同宝石的最大双折射率可以不同;同一宝石方向不同,双折率也不同,其中平行光轴或平行光轴面,双折射率最大,垂直光轴切面的双折射率为零,其他方向切面的双折射率介于最大值和零之间。

图3-8-3 两种偏光进入上偏光镜时再度分解成振幅相等振动方向相同、相反两种偏光

(三)补色法则及补色器

在正交偏光镜间,测定一些晶体光学性质时,经常须要借助于一些补色器(即试板)。应用补色器时,需遵循补色法则。

1补色法则

在正交偏光镜间,两个非均质体的任意方向(除垂直光轴以外)切面,在45°位置重叠时,光通过此两非均质体后总光程差的增减法则(光程差的增减具体表现为干涉色级序的升降变化),称为补色法则。

设一非均质体宝石的光率体椭圆半径为Ng1与Np1,光波射入此宝石后发生双折射,分解形成两种偏光,透出矿片后所产生的光程差为R1。另一补色器的光率体椭圆半径为Ng2与Np2,产生的光程差为R2。

将两个非均质体重叠于正交偏光镜间,并使两非均质体的光率体椭圆半径与上、下偏光镜的振动方向成45°夹角。光波通过两非均质体后,必然产生一个总光程差,以R 表示。总光程差,R是加大还是减小,取决于两非均质体重叠的方式(即重叠时光率体椭圆半径的相对位置)。

当两非均质体的同名半径平行时(即Ng1∥Ng2、Np1∥Np2)(图3-8-4b),光透过两非均质体后,其总光程差R=R1+R2,即两非均质体的光程差之和。由于光程差的增减表现为干涉色级序的升降,因此总光程差R反映出的干涉色,比原来两个矿片各自的干涉色级序都高,即同名半径平行时干涉色级序升高。

图3-8-4 两非均质体椭圆半径的相对重叠时相对位置

当两非均质体的异名半径相平行时(即Ng1∥Np2、Np1∥Ng2)(图3-8-4a),光透过两矿片后,总光程差R=R1-R2或R=R2-R1,即两非均质体的光程差之差。因此总光程差R所反映出的干涉色,比原来两个非均质体的干涉色级序都低,或比其中某一非均质体的干涉色级序低,即当异名半径平行时,干涉色级序降低(比原来干涉色高的矿片降低)。

由上可知:两非均质体在正交偏光镜间45°位置重叠时,当其光率体椭圆半径的同名半径平行时,总光程差R等于原来两非均质体的光程差之和。表现为干涉色级序升高;异名半径平行时,总光程差R等于原来两矿片光程差之差,其干涉色降低(比原来干涉色高的非均质体降低,比原来干涉色低的非均质体不一定降低),若R1=R2,则总光程差R=0,此时非均质体消色而变黑暗。

在两个非均质体中,如果有一个非均质体的光率体椭圆半径名称和光程差为已知,则可根据补色法则,测定另一非均质体的光率体椭圆半径名称和光程差。

偏光显微镜里所附的补色器,就是光率体椭圆半径名称和光程差已知的非均质体。

2几种常用的补色器

(1)石膏试板(图3-8-5):光程差约为550nm,在正交偏光镜间呈现一级紫红干涉色。试板上一般都标明Ng方向。在非均质体上,加入石膏试板,可以使矿片的光程差增加或减少550nm左右,使非均质体宝石的干涉色整整升高或降低一个级序。如非均质体宝石干涉色为二级**,加入石膏试板后,升高变为三级黄,降低变为一级黄。由于一级黄与三级黄不易分辨,在此情况下则不易分清干涉色的升高或降低。

图3-8-5 石膏试板

图3-8-6 云母试板

(2)云母试板(图3-8-6):光程差约为黄光波长的四分之一( ,即147nm左右,在正交偏光镜间呈现一级)灰白干涉色。其光率体椭圆半径Ng、Np的方向一般都注明在试板上。在非均质体宝石上加入云母试板后,升高变为二级蓝,降低变为一级橙色。这种试板比较适用于干涉色较高的矿片。

(3)石英楔(图3-8-7):沿石英平行光轴方向从薄至厚磨成一个楔形,用加拿大树胶粘在两块玻璃片之间,称为石英楔。其光程差一般是从0→1680nm左右,在正交偏光镜间,由薄至厚可以依次产生一级至三级的干涉色。在非均质体上由薄至厚插入石英楔,当同名半径平行时,非均质体干涉色级序逐渐升高;异名半径平行时,非均质体干涉色逐渐降低,当插至石英楔光程差与非均质体光程差相等处,非均质体消色而出现黑带。

图3-8-7 石英楔试板

光程差R=d(N1-N2)

R为光程差;d为宝石厚度;N1-N2为宝石切面的双折率。

光程差R决定干涉色的高低。当R>1700nm时干涉色为高级白。非均质体宝石的厚度一般很厚,常为几个毫米以上,因此光程差很大,可能达到几千纳米,故非均质宝石的干涉色一般为高级白。

吸收光谱

由于宝石对白光具有选择性吸收作用,当白光通过宝石后,某些波长的光波会被吸收,可以用分光镜加以观察。而宝石的选择性吸收作用,与其致色元素的种类相关。因而,分光镜是识别宝石的颜色真假最有力的手段,例如染色翡翠。此外,许多宝石具有特征的吸收光谱,观察到这种光谱,可以确定其宝石种。熟练运用分光镜可以简单快速地鉴定出例如,红宝石、铁铝榴石、红榴石、祖母绿、锆石、绿色翡翠、橄榄石、磷灰石、蓝色、绿色蓝宝石、金绿宝石等,一般实验室用的分光镜有棱镜式和光栅式两种,分光镜需要强光配合使用,冷光源是最佳的光源。

折射率

折射率是透明宝石重要的光学常数,是鉴定宝石品种的主要依据。测折射率的方法主要有两种:一种是直接测量法,用折射仪测量;另一种是相对测量法,用液体浸没法。折射仪是根据光的全反射的原理制造的。目前常用的折射仪只适用于折光率为136-181(通常和折射仪一起使用的折射油的最高折射率为181)范围内的宝石。宝玉石的折射率(N)的计算方法为光在空气中的传播速度(V1)与在宝石中的传播速度(V2)之比为一个常数,即N=V1/V2 。均质体宝石,光在其中传播,传播速度不变,折射率相等,称之为单折光率。非均质体宝石,在折射仪中有两个读数,最大、最小折射率值之间的差值,称之为双折光率。折射仪是宝石学家最常使用的仪器之一,它的体积小,使用方便。他既可以测试刻面宝石的折光率,还可以用点测法测出弧面宝石的折光率。每种宝石的折射率是非常固定的(因产地和化学成分的细微不同相同的宝石也有细微不同的折射率,但这仅是在一个很小的可预见浮动范围内),所以只要知道宝石的准确折射率基本上都可以知道是哪类宝石了。

紫外荧光

原理:紫外荧光灯是一种利用紫外线作为激发源,观察宝石的荧光效应和磷光效应的装置。发射紫外线的辐射源一般为水银蒸汽灯。它们可以发射一定波长范围的紫外线,然后通过特殊的滤波片过滤,产生365nm的长波紫外线和2537nm的短波紫外线。结构:由紫外光源,暗箱和观察窗口三部分组成。使用方法:将待测宝石置于紫外灯下,打开电源开关。根据需要选择长波波段或短波波段,从观察窗口观察宝石的发光性。

其它。。。略。。。可以看偶给你的参考资料

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/4151777.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-21
下一篇2023-08-21

发表评论

登录后才能评论

评论列表(0条)

    保存