钻石硬不硬,如果用石头能砸得碎吗?

钻石硬不硬,如果用石头能砸得碎吗?,第1张

不会碎

硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

1布氏硬度(HB)

以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

2洛氏硬度(HR)

当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为159、318mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。

HRB:是采用100kg载荷和直径158mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。

HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。

3 维氏硬度(HV)

以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。

从上述材料看,上述硬度是针对于金属的,能不能用于非金属呢?存在疑问,应该是不能的。

摩氏硬度是针对于各种不同的矿物的。

奥国矿物学家摩氏(Frederich Mohs)创立一种硬度表,作为评判矿物硬度的标准。最软者为滑石,最硬者为金刚石,共有十种矿物,定为十级,分别为:

滑石(Talc) 1

石膏(Gypsum) 2

指甲 25

方解石(Calcite)3

铜币 35-4

萤石(Fluorite) 4

磷灰石(Apatite) 5

钢刀 55

玻璃 55 -6

正长石(Orthoclase) 6

钢锉 65

石英(Quartz) 7

黄玉(Topaz) 8

刚玉(Corundum) 9

金刚石(Diamond) 10

摩氏硬度表中所刊载的数字,并没有比例上的关系。例如正长石硬度6,并不表示他是方解石硬度的两倍,数字的大小仅表明硬度排行而已。当鉴定硬度时, 如果没有以上的摩氏硬度计, 可用其他东西代替,如小刀其硬度约为55;铜币约为35至4; 指甲约为2至3;玻璃硬度为6。

从摩氏硬度表可以知道,相对硬度最大的是金刚石,而且刚玉的硬度大于钢和铁

科学家们首先通过化学蒸发过程将富含碳13同位素的甲烷气体中的碳元素沉淀成金刚石小碎块,然后再使用非常高的压力把这些小碎块分解,并再结晶成重量最高达3克拉的块状金刚石。

没听说过有比金刚石硬的东西(知识面太窄了)

钻石(Diamond),矿物名称为金刚石,是公认的宝石之王。其最大特点是硬度最高并且具有很强的折射率,在光线下光芒四射,耀眼夺目。但其表面与玻璃,水晶及人工钻石相似,较难辩别。准确的鉴别只有靠仪器测量,而简易鉴别可采用以下几种方法:

九钻钻石

1、硬度检验

钻石是已知最硬的自然生成物质,没有什么东西可在钻石上划上痕迹,若能划上痕迹的则绝非钻石。

2、导热性试验

在待辩钻石和其它相似物品上同时呼一口气,若是钻石则其表面凝聚的水雾应比其它物品上的水雾蒸发得快,这是因为钻石具有高导热性的原因。

3、观察反射光

用放大镜可观察到钻石的腰围处呈现一种很细的磨砂状并有亮晶晶的反射光。钻石的这种特征是独一无二的。

4、看生长点

在放大镜下观察,真品钻石的晶面上常有沟纹和三角形生长点,而赝品有三类:

①加了氧化铝的普通玻璃,因折射率和色散提高,容易误入,但硬度低。

②用化学合成的蓝宝石和无色尖晶石仿制,硬度接近,但折射率低并有双折射现象,在放大镜下可见重影。

珂兰钻石

5、同类化学成分测验

铅笔的化学成分是碳和钻石一样,只是物理结构不一样,所以很多人用铅笔去检测钻石的真伪,属于一种比较实用有效的方法,在鉴定的时候,要先把钻石用水湿润,然后再用铅笔轻轻的刻划,在真钻石的晶面上,铅笔划过的地方,是不留痕迹的,而如果不是钻石,而是玻璃、水晶等材料,就会在表面上留下痕迹,一般情况下,用铅笔刻划来鉴别钻石的真假,这种方法的准确性是较高的。

6:人造氧化锆仿制,硬度较高,折射好,但在转动时会反射较多的彩光,与真品在转动时只反射出微弱的黄、蓝色彩光相比,有明显的差别。

钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。

钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。

一、钻石的化学成分和分类

1化学成分

钻石是具有立方结构的碳。主要成分是C,其质量分数可达9995%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。

2分类

钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。

1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。

表14-1-1 钻石的分类

天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。

二、钻石的结构与形态

1晶体结构

钻石属等轴晶系, ;a0=035595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为01542nm,C-C-C键角109°28′16″。

图14-1-1 钻石的晶体结构

2形态

钻石属六八面体晶类,Oh-m3m(3L44L36L29PC),常见单形:八面体o{111},菱形十二面体d{110}、立方体a{100}及其聚形(图14-1-2a和图14-1-2b)。

图14-1-2a 钻石的常见晶形

钻石晶体通常呈歪晶,由于溶蚀作用使晶面棱弯曲,晶面常发育阶梯状生长纹、生长锥或蚀象,且不同单形晶面上的蚀象不同,八面体晶面上可见倒三角形凹坑,立方体晶面上可见四边形凹坑,十二面体晶面上可见线理和显微圆盘状花纹。

钻石的双晶依(111)最普遍,可成接触双晶、星状穿插双晶或轮式双晶。其中三角薄片(macle)接触双晶具有典型的扁平三角形外观,在双晶两个平面结合处环绕钻石有明显的青鱼骨刺纹,在钻石贸易中称为结节。

三、钻石的光学性质

1颜色

钻石的颜色分两个系列:即无色—浅**系列和彩色系列。无色—浅**系列钻石的颜色为:无色至浅黄、浅褐;彩色系列钻石的颜色一般为深黄、褐、灰及浅至深的蓝、绿、橙黄、粉红、红、紫红色,偶见黑色。

图14-1-2b 钻石晶体不同聚形示意图

大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。

(1)黄至棕**钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于22eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列**、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对4772nm有弱吸收,由于人们对4772nm吸收反应灵敏,4772nm蓝光被吸收后,钻石呈现**。

(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。

(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。

(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。

2光泽

钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。

3透明度

钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。

4光性

钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。

5折射率

钻石为单折射宝石,在钠光(5893nm)中折射率为2417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。

6色散

钻石的色散强,色散值为0044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。

7发光性

(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、**、橙**、粉色等荧光,通常长波较短波的荧光强。

(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。

(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。

8吸收光谱

无色—浅**的钻石,在紫色区4155nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的**钻石可能在498nm,504nm和592nm处有吸收带。

四、钻石的力学性质

1解理

钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。

图14-1-3 钻石{111}方向解理示意图

2硬度

钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。

钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。

3密度

钻石的密度为352(±001)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。

五、钻石的内含物

钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。

六、钻石的电学性质和热学性质

1电学性质

Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(00024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。

2热学性质

(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。

根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。

(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。

(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。

3其他性质

(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。

(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。

钻石在天然矿物中的硬度最高,其脆性也相当高,用力碰撞就会碎裂。

钻石其实是一种密度相当高的碳结晶体。

钻石的化学成分是碳,这在宝石中是唯一由单一元素组成的,属等轴晶系。

常含有005%-02%的杂质元素,其中最重要的是N和B,他们的存在关系到钻石的类型和性质。晶体形态多呈八面体、菱形十二面体、四面体及它们的聚形。

钻石的产地分布:

世界各地均有钻石产出,已有30多个国家拥有钻石资源,年产量一亿克拉左右。产量前五位的国家是澳大利亚、扎伊尔、博茨瓦纳、俄罗斯、南非。

这五个国家的钻石产量占全世界钻石产量的90%左右。其它产钻石的国家有刚果(金)、巴西、圭亚那、委内瑞拉、安哥拉、中非、加纳、几内亚、象牙海岸、利比利亚、纳米比亚、塞拉利昂、坦桑尼亚、津巴布韦、印度尼西亚、印度、中国、加拿大等。

世界主要的钻石切磨中心有:比利时安特卫普,以色列特拉维夫,美国纽约,印度孟买,泰国曼谷。安特卫普有"世界钻石之都"的美誉,全世界钻石交易有一半左右在这里完成,“安特卫普切工”便是完美切工的代名词。

文化是人类独特的标志。

钻石具有独特的标志意义。

钻石的八大标志是钻石文化的重要内涵。

1、兴旺发达的标志

钻石是世界公认的珍贵的宝石,是“宝石之王”。它具有非凡的金刚光泽和强烈的火彩,在阳光下光线四射,给人以光彩夺目,灿烂辉煌的感觉,是兴旺发达的标志。它标志着顶级事业、顶级成就。

2、纯洁爱情的标志

钻石纯洁透明、经久不变,钻戒象情人炯炯有神的眼睛,深情地注视着你。它是纯洁爱情的标志,表示对爱情的永恒追求和忠贞。

3、高尚品质的标志

钻石晶莹剔透、高雅脱俗,象征着纯洁真实、忠诚勇敢、沉着冷静、安静自如、稳如泰山。人们把钻石看成是高尚品质的标志。高山仰止、景行行止,虽不能至,心向往之。

4、非凡能力的标志

钻石除其华贵的外观之外,内在的化学特性也十分稳定,它既不怕任何物质刻划,又不怕酸、碱、盐的腐蚀。钻石是硬度为10的标准石,其硬度是蓝宝石硬度(9级)的150倍,是水晶硬度(7级)的1000倍。钻石是宝石级金刚石,“金刚”的含义是:坚固、锐利、勇摧毁一切。钻石的英文名称diamond,来源于希腊文金刚adama,意为“无可征服”。

5、无穷财富的标志

钻石是唯一一种集最高硬度、强折射率和高色散于一体的宝石品种,是任何其他宝石都一可比拟的。这样的宝中之宝,理所当然地成为贵中之贵了。

6、无限权力的标志

历代帝王将名钻视为无限权力的标志,奉为至宝,深藏在宫中,世代相传。

7、艺术魅力的标志

钻石只有在琢磨良好的情况下,才能反射出内部的所有光线,并且因色散而闪现彩色光线。当琢磨欠佳时,钻石的光亮程度用彩色闪光就大为逊色。钻石以其璀璨的光线,成为地球上万众瞩目的艺术明星。

8、永恒存在的标志

在几千万年前,地下深处炽热的岩浆沿管子上冲,由于火山口经常被堵死,上升的岩浆在极巨大的压力下冷却。其中含的少量纯碳在这种高温的巨大压力下结晶成为金刚石。金刚石由于又硬又稳定,在漫长的地质岁月中,由“原生矿”到“残积砂矿”乃至“冲积砂矿”,本色毫无变化,且愈加璀璨。

钻石是“金刚石”

钻石(英文:Diamond),化学和工业中称为金刚石。钻石是碳元素组成的无色晶体,为目前已知存在的第二最硬物质。

金刚石的用途非常广泛,硬度极高且导热性极高,用于沙纸、钻探、研磨工具之上,可以用来切削和刻画其他物质,以及大型集成电路等散热板上。

然而,自从1955年GE通过高温高压获得人造金刚石的技术后,科学家会利用高温高压制成金刚石微粒,而现在的细小颗粒的合成钻石已经较同级天然钻石便宜,所以天然钻石的工业价值已经完全消失;目前天然钻石的主要用途已经仅限于首饰与观赏。

扩展资料:

结构性质——

金刚石结构分为;等轴晶系四面六面体立方体与六方晶系钻石,在钻石晶体中,碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。

由于钻石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。在工业上,钻石主要用于制造钻探用的探头和磨削工具,形状完整的还用于制造手饰等高档装饰品,其价格十分昂贵。

钻石的摩氏硬度为10;由于在自然界物质中硬度最高,钻石的切削和加工必须使用钻石粉来进行。钻石的密度为352g/cm3,折射率为2417,色散率为0044。

-钻石

化学组成C。其微量元素N和B是金刚石分类的主要依据:N含量大于0001%者为Ⅰ型,小于0001%者为Ⅱ型;Ⅰ型金刚石按N的赋存状态分为Ⅰa型(N原子沿{100}聚集成片状分布)和Ⅰb型(N原子置换C原子并出现一个未配对电子旋转于C—N键之间);Ⅱ型金刚石按是否含B分为Ⅱa型(不含B)和Ⅱb型(含B);N分布不均匀时构成混合型。约98%的天然金刚石属Ⅰa型。红外光谱是鉴别金刚石类型的主要方法。

晶体结构等轴晶系;金刚石型结构(图15-13);空间群 Fd3m;a0=0356nm;Z=8。

图15-13 金刚石型结构

碳原子分布于立方晶胞的8个角顶、6个面心和晶胞所分8个小立方体的4个相间的小立方体中心;碳原子以共价键与周围的另外4个碳原子相连,键角109°28′16″,形成四面体配位;平行{111}面网密度大,间距也大

图15-14 金刚石晶体

o—八面体;d—菱形十二面体;a—立方体

形态对称型m3m;多呈浑圆状八面体和菱形十二面体单晶,可见八面体、菱形十二面体与立方体、四六面体成聚形(图15-14)。

物理性质无色透明,常因含微量元素而呈不同色调:含Cr呈天蓝色,含Al呈**,还可有褐、灰、白、绿、红、紫等色调,含石墨包裹体者呈黑色;晶面金刚石光泽,断口油脂光泽;经日光暴晒后置暗室发淡青蓝色磷光。解理{111}中等、{110}不完全。硬度10(显微硬度比石英高1000倍,比刚玉高150倍),八面体晶面的硬度>菱形十二面体晶面的硬度>立方体晶面的硬度。相对密度352。性脆,抗磨性强。不导电。导热性好,室温下其热导率是铜的5倍。熔点高达4000℃,空气中燃烧温度为850~1000℃。疏水而亲油。

成因产状产于金伯利岩、钾镁煌斑岩及榴辉岩中,为高温高压产物。著名产地有南非、扎伊尔、前苏联雅库特等。我国有山东、辽宁、贵州等地。

鉴定特征浑圆粒状,金刚光泽,硬度10,暴晒后置暗室发淡青蓝色磷光。

主要用途金刚石的用途十分广泛:利用宝石级金刚石光彩诱人的色泽和极高的硬度琢磨成“钻石”;利用其高硬度制作仪表轴承、玻璃刀、表镶钻头;利用其高导热性制作微波器和激光器的散热片;利用其优良的红外线穿透性制造卫星和高功率激光器的红外窗口;利用其半导体性能制作整流器、三极管,等等。

思考题及习题

1)以自然金或自然铂为例,说明自然金属元素矿物的晶体化学特征与其形态、物性的关系。

2)为什么金刚石和石墨同为单质碳的矿物,但形态、物性截然不同?

3)从石墨的结构特点解释其物性。

4)试举几种混晶矿物并分析其组成元素的占位特点。

5)自然元素这一大类中,哪些矿物能在河流沉积物中保存并富集?它们各自有什么特点?

6)强金属钾、钠等为何不易形成自然元素矿物?

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/7620977.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存