为什么合成钻石(人造钻石)不值钱?

为什么合成钻石(人造钻石)不值钱?,第1张

首先,最初人造钻石的出现适用于工业用途,只是这几年商家们看准了宝石市场,开始生产宝石级别的人造钻石,其实人造钻石从本质来说就是“假钻”,根本不值钱,也根本不存在什么保值的说法。因为从价格方面来说,人造钻石是实验室产物或工厂产物,如今的科学技术大背景下,许多工厂已经进入批量生产,导致人造钻石在市面上越来越普遍,因此价格趋势也在逐年下降;而反观天然钻石,因为稀有、罕见而越来越珍贵,物以稀为贵,天然钻石的高价也就有理可循了。

化学沉淀法主要包括化学气相沉淀法和化学液相沉淀法。用化学液相沉淀法合成欧泊、绿松石、青金石和孔雀石等多晶宝石材料的方法及鉴别在本书宝石各论中已进行了介绍,本节主要介绍用化学气相沉淀法(简称CVD法)合成多晶金刚石薄膜、大颗粒钻石和碳硅石单晶材料的工艺过程。

一、CVD法合成金刚石薄膜

早在20世纪50年代和60年代,美国和前苏联的科学家们先后在低压条件下实现了金刚石多晶薄膜的化学气相沉淀(CVD)开发研究,虽然当时的沉淀速率非常低,但无疑是奠基性的创举。进入80年代以来,科学家们又成功地发展了多种CVD金刚石多晶薄膜的制备方法,如热丝CVD方法、微波等离子体CVD方法、直流等离子体CVD方法、激光等离子体CVD方法、等离子增强PECVD方法等。随着合成技术的日趋成熟,金刚石薄膜的生长速率、沉积面积和结构性质已经逐步达到了可应用的程度。

1CVD法合成多晶金刚石膜的原理

化学气相沉淀法是以低分子碳氢化合物(甲烷CH4、乙炔C2H2、苯C6H6等)为原料所产生的气体与氢气混合(有的还加入氧气),在一定的温压条件下使碳氢化合物离解,在等离子态时生成碳离子,然后在电场的引导下,碳离子在金刚石或非金刚石(Si、SiO2、Al2O3、Si C、Cu等)衬底上生长出多晶金刚石薄膜层的方法。以金刚石为衬底生长金刚石薄膜的CVD方法也叫做外延生长法。有人曾利用微波等离子体CVD方法,以CH4和H2为原料在金刚石衬底的(100)表面成功地生长了厚度为20µm的金刚石外延层,该外延层具有平滑的外延生长表面和高的晶体质量,生长速度为06µm/h,而在金刚石(110)和(111)面的外延生长的晶体质量较差。这说明,金刚石的同质外延层的质量直接与衬底金刚石的晶面取向有关。

2等离子增强PECVD法工艺条件

等离子增强PECVD方法是目前合成金刚石薄膜采用最多的方法之一,其反应装置见图4-1-28。

图4-1-28 PECVD法合成金刚石薄膜示意图

等离子增强化学沉积法(PECVD)工艺需要使用能源装置,将输入的气体电离,产生出富含碳的等离子气体带电粒子。碳氢化合物气体通常采用甲烷和氢气,其体积比为(01~1)∶(09~9);反应过程中需要的温度为700~1000℃,压力为(07~2)×104Pa。在上述工艺条件下,碳氢化合物气体粒子分解,碳原子沉积在基体材料上,形成合成金刚石薄膜。

3CVD方法合成金刚石薄膜的应用

据介绍,化学气相沉淀法合成的金刚石薄膜在工业上的用途极广,例如可做机械零件上的镀膜以增加耐磨性和润滑性;使用在电子产品上可提高散热效果;可以用来制作超级计算机的芯片、最好的滤波器;用在光学产品上可增强透视效果、保护镜片;在医学上可做人工关节的界面、人工心脏的阀片、最好的抗酸碱和辐射的保护膜;军事上可做导弹的雷达罩;日常生活上可用于不粘锅、音响振动膜、剃刀片护膜、条码机护膜等。

目前,CVD方法合成金刚石薄膜在宝石业方面的应用,主要有下列几种:

1)在各种仿制钻石刻面上镀合成金刚石薄膜,以使其具有天然钻石的部分性质。

2)在天然钻石表面镀彩色金刚石薄膜用来改变刻面钻石的外观颜色,模仿彩色钻石。

3)在切磨好的钻石表面镀金刚石薄膜,可以增加成品钻石的重量。

4)在硬度低的宝石表面上镀金刚石薄膜以增强其耐磨性等,例如在德国已有人对鱼眼石或蓝晶石进行金刚石薄膜处理并获得专利。

5)合成金刚石薄膜技术可用于欧泊表面镀膜处理,防止其失水和产生龟裂现象。

二、CVD法合成钻石单晶体

近十几年来,化学气相沉淀法合成技术得到了飞速发展,尤其是2003年,CVD技术取得了新的突破,可以以相对低廉的成本生长出大颗粒的单晶体钻石,颜色、净度都可以达到较高的等级,甚至可以切磨出1ct以上的D色级、净度级别为IF的首饰用钻石。2005年5月17日美国华盛顿卡内基地球物理实验室分别在日本第十届钻石新科技国际会议和英国宝石协会的Gem-A Mailtalk网上宣布:他们通过对化学沉淀技术的改进,可以以100µm/h的速度快速生长出10ct、半英寸厚的高品质、无色的单晶钻石。但是,合成技术的细节均未透露。

CVD法合成单晶钻石的原理是将甲烷和氢气导入反应腔,利用电热丝、微波、火焰、直流电弧等设备,将碳从化合物分解成原子,在反应腔内形成等离子体。甲烷中的碳原子已具备四个键的结构,在氢的催化作用下,使每一个碳原子与四个碳原子结合形成钻石结构,并逐渐沉淀生长在预先制备好的“基座”上,其生长速度通常为每小时一微米至数十微米。生长基座可使用天然或高温高压合成的钻石切成平行{100}晶面的薄片,用微波加热形成等离子场,在800~1000℃、1/10大气压

1atm(标准大气压)=101325Pa。

的条件下,可按需要合成出不同厚度或粒度大小的钻石。

CVD法合成钻石如图4-1-29所示。

图4-1-29 CVD法合成钻石

三、合成碳硅石晶体

1概述

早在一个世纪以前,合成碳硅石(SiC)就被制造出来了,并作为磨料在工业上得到了广泛的应用。SiC单晶的生长也已被研究多年,生长出的SiC单晶主要有两种用途:一是作为一种半导体材料,二是在珠宝方面作为一种钻石的代用品。

1955年,莱利(Lely)采用升华法生长出了合成碳硅石晶体,奠定了合成碳硅石发展的基础。虽然用这种方法生长的晶体尺寸较小,且形状不规则,但生长的晶体质量很好,故莱利法一直是生长高质量碳硅石单晶体的方法。1980年初,俄罗斯的戴依洛夫(Tairov)等人对莱利法进行了改进,采用籽晶升华技术(又称物理气相输送技术)生长出碳硅石大晶体,且有效地避免了自发成核的产生,宣告有控制地生长合成碳硅石技术获得了成功。这种材料其刻面宝石的颜色可近似于无色。这种合成材料由北卡罗莱纳州道哈姆地区的克瑞研究公司(Cree Researchinc)生产,并由C3公司销售。

1995年创立的美国诗思有限公司(Charles&Colvard Ltd),其前身即C3公司,采用高科技成果在高温常压下解决了合成碳硅石的颜色、透明度问题,合成了大颗粒宝石级合成碳硅石晶体,并经过精密的切割后镶嵌在铂金和K金首饰上,正式推向国际市场。到2000年,生长出的合成碳硅石晶体直径已达到100mm。目前,合成碳硅石年产量可达7万多克拉。

2合成碳硅石单晶技术

图4-1-30 戴维斯专利中的合成碳硅石生长设备结构简图

1990年,戴维斯对莱利法进行了改进,其成熟的技术获得了专利。该方法的设备结构简图如图4-1-30所示。工艺中用于生长合成碳硅石单晶的原料粉末经过多孔的石墨管后加热升华成气态,直接在籽晶上结晶,生长出梨晶状的Si C单晶体。整个过程既有物态的变化,也有物质结构的变化。

戴维斯专利的工艺条件为:

1)粉料的粒径应加以控制,并使用超声波振荡法填料。

2)籽晶与粉料应属于同一多型,并且籽晶的取向应稍稍偏离轴向。

3)生长初期应抽真空,而后施以低压氩气。

4)采用耐热的石墨套管加热,其中补给区温度为2300℃,晶体生长温度低于补给区温度100℃。

5)籽晶的旋转和生长过程中生长晶体位置的调整要准确无误,该方法能生长出达宝石级的有色6H型合成碳硅石晶体,直径12mm,厚度6mm,生长周期为6h。某些生长出的合成碳硅石梨晶表面显示出与钻石表面相似的三角形凹坑。

莫桑石化学成分为SiC,近于无色,折光率256-269,色散0104,双折射率0043,硬度925,密度322克/立方厘米。

莫桑钻最初是由美国C3公司投资4500万美元开发、研究,1998年6月推出的专利产品,2013年由唯钻会引进国内市场,2016年其专利保护已到期,世界各国都在生产莫桑钻。以美国莫桑石与cvd合成钻石相对比,两者水平是相差无几的,甚至美国莫桑钻水平更高。美国莫桑钻技术水平达到DF色,EXCELLENT切工,FL/IF净度等级。

人造钻石成本不高的,每克拉零售价差不多800美元的样子,其价值和天然钻石根本没法比的,像天然钻石不仅有见证爱情、陪伴等情感、精神层面上的意义,而且因为是天然形成的,非常珍贵和稀有。钻石在地球深处经过数十亿年自然形成,埋在地球深处,只是一些机缘巧合的机会才被岩浆带到了地表。且多数被带到地表的钻石只能作为工业用途,宝石级别的钻石极为罕见。此外,天然钻石的开采也十分困难,钻石大多深埋地下,必须采用地下开采的方式,从勘探到计划再到开采需要非常久的时间,而钻石矿周边因此发展其了相应的社区,许多地方因为钻石而变得繁盛起来。再说回人造钻石,其实这并不是一个新的东西,早在几十年前就已经有了,但主要用于工业用途。人造钻石只需要很短时间就可以在实验室诞生。由此看来,人造钻石和天然钻石没有任何的可比性,且天然钻石才具有投资价值。况且天然钻石从古至今一直在情感上有着特殊的涵义,以亿万年的历史见证人的一生,陪伴人们度过每一个重要时刻。因此还是比较推荐天然钻石,不过买的时候要注意,毕竟人造和天然仅凭肉眼是难以判断的,最好送到专业的鉴定机构进行检验。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/8540892.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-21
下一篇2023-09-21

发表评论

登录后才能评论

评论列表(0条)

    保存