CH4燃烧后的产物CO,CO2,H2O,的质量为49.6g。通入无水CaCL2,增重25.2g,为何原CO2的质量是13.2g

CH4燃烧后的产物CO,CO2,H2O,的质量为49.6g。通入无水CaCL2,增重25.2g,为何原CO2的质量是13.2g,第1张

思路分析 通过CaCl2,质量减少252g,此处为H2O的质量。n(H2O)=252/18=14mol,n(H)=28mol;n(C)=025n(H)=07mol 设CO2、CO的物质的量分别为x、y 244g=44x+28y x+y=07mol 这样就可以解得x=03mol,y=04mol 即CO2质量=0344=132g

如果是08kg/L,可以换算,1L/s等于2880kg/h。

换算方法如下:

1L/S=08kg/S=(08×3600)kg/(3600S)=2880kg/H

L表示升,S表示秒,kg表示公斤,h表示小时

在这个单位换算问题上,需要知道流体密度是多少kg/L

否则无法进行单位换算。

扩展资料:

单位换算必须是量纲相同的单位,才可以换算,如果量纲不同,不能直接换算,需要乘以或除以某个参数,才可以换算,像这个问题,就是量纲不同,需要密度这个参数,才可以换算。

单位换算,指同一性质的不同单位之间的数值换算。常用的单位换算有长度单位换算、重量单位换算、压力单位换算、面积单位换算、电容单位换算等。

国际千克原器(International prototype kilogram,简称IPK),又被称为“一千克标准物”,是指1889年经国际计量大会批准,作为千克单位标准物的砝码。

该砝码由具有较强抗氧化性的Pt-10Ir铂铱合金(90%铂与10%铱)制成,直径与高度均为3917毫米,现在同六个复制品一道被保存在法国巴黎的国际计量局总部,另有官方复制品被送往世界各国,作为千克原器使用,这些复制品每隔一段时间便需要被送回法国与国际千克原器进行比较,以修正因损耗而带来的误差。

2013年1月,德国《计量学》杂志刊载研究报告称,作为标准质量单位的国际千克原器因表面遭污染而增重50微克。据估计,未来的质量单位普朗克常量推算得出,国际千克原器也将逐渐被取代。

2018年11月16日,在新一届国际计量大会上,科学家们通过投票,正式让国际千克原器退役,改以普朗克常数(符号是 h)作为新标准来重新定义“千克”。新标准将于2019年5月20日实施。

升,容积单位。

升在国际单位制中表示为L,其次级单位为毫升(mL)。升与其他容积单位的换算关系为:

1L=1000mL=0001立方米=1立方分米=1000立方厘米

1L=1dm1dm1dm=10cm10cm10cm

1mL=1立方厘米=1cc

1立方米= 1000升

-单位换算

-国际千克原器

-升

1、加入抗氧化剂:向不饱和树脂中加入适量的抗氧化剂,如羟基苯甲酸酯、酚类化合物等,可以有效延长其使用寿命。

2、使用稳定剂:稳定剂可以在高温下稳定树脂分子,例如加入过氧化物分解阻止剂和光稳定剂等。

3、选择高性能材料:对于需要在高温环境下工作的不饱和树脂制品,可以选择与之配套的高性能材料,如具有良好耐高温性能的玻璃纤维增强材料和硬质泡沫等。

4、控制添加剂的食用量:添加剂的食用量需要控制在一定范围内,过多的添加剂会导致不饱和树脂分子的断裂和变形,从而降低整个产品的抗氧化性能。

金属的高温抗氧化性是指钢在高温条件下对氧化作用的抗力,是钢能否持久地工作在高温下的重要保证条件。

氧化是一种典型的化学腐蚀,在高温空气、燃烧废气等氧化性气氛中,金属与氧接触发生化学反应即氧化腐蚀,腐蚀产物(氧化膜)附着在金属的表面。随着氧化的进行,氧化膜厚度继续增加,金属氧化到一定程度后是否继续氧化,直接取决于金属表面氧化膜的性能。如果生成的氧化膜是致密、稳定的、与基体金属结合力高,氧化膜强度较高,就能够阻止氧原子向金属内部的扩散,降低氧化速度,否则会加速氧化,使金属表面起皮和脱落等,导致零件早期失效。

钢在高温含氧介质中抵抗氧化腐蚀的能力,称为钢材的抗氧化性能。

钢的抗氧化性主要取决于钢中Cr、A1、Si等元素的含量。钢高温抗氧化性用氧化速率表示。

耐热钢按其性能可分为抗氧化钢和热强钢两类。抗氧化钢又简称不起皮钢。热强钢是指在 高温下具有良好的抗氧化性能并具有较高的高温强度的钢。耐热钢按其正火组织可分为奥氏体耐热钢、马氏体耐热钢、铁素体耐热钢及珠光体耐热钢等。

在多数情况下,金属合金都会与周围环境发生一定程度的化学反应。最常见的化学反应就是氧化:金属元素与氧气结合,生成氧化物。不锈钢通过铬元素的局部氧化使其具有抗氧化性,在铬元素局部氧化的过程中,可以形成一种非常稳定的氧化物(Cr2O3 氧化铬)。只要金属的铬含量充足,在金属表面即可形成一层连续的氧化铬绿,防止其他氧化物生成,并对金属起到保护作用。氧化率是由带点粒子的传输来控制的。当表面的锈皮越厚,氧化率就会大幅度下降,因为带点粒子传输的路径越远。这个过程叫钝化,也就是钝化膜形成的过程。

奥氏体不锈钢的抗氧化性可以通过铬含量来推算。耐高温的合金含铬量至少20%(重量百分百)。用镍成分代替铁成分也通常可以提供合金在高温下的性能。309/309S,310/310S是高合金材料,因此,具有相当好的抗氧化性。

已氧化的金属样品,其重量会有所增加,因为一定量的氧气组合到产品的氧化膜。测量金属抗氧化性的其中一种方法是:让金属在特定时间内暴露在高温环境下,然后测量其重量的变化。重量增加越多,表面氧化越严重。

氧化过程比简单的锈皮增厚要复杂得多。散裂,或者说表面皮分离,是不锈钢氧化过程中最常见的问题。散裂通常表现为急速的重量损失。其他一些因素也会引起散裂,其中主要包括热循环,机械损伤和氧化物过厚。

在氧化过程中,铬以氧化铬的形式存在于锈皮中。当氧化皮剥落时,未氧化的金属暴露出来,因为新的氧化铬的形成,材料的氧化率暂时升高。锈皮散裂到达一定程度,铬含量的损失可能引起金属的耐热性降低,从而导致铁氧化物和镍氧化物快速增加,这种情况称为破裂氧化。

高温氧化可能导致锈皮挥发。在耐热不锈钢表面形成的氧化铬,最开始是Cr2O3 ,当温度进一步升高时,会进一步氧化成具有高蒸汽压力的CrO3 。氧化物此时分成两部分:通过形成Cr2O3 使锈皮增厚,通过CrO3 的蒸发使锈皮变薄。最终的趋势是在增厚和变薄之间达到最终的平衡,从而使锈皮处于恒定的厚度。锈皮挥发在温度达到2000°F (1093°C)以上时,成为一个突出问题,在流动气体的作用下,会进一步恶化。

钽及钽合金具有高熔点、良好的耐蚀性能、优异的高温强度、良好的加工性能、可焊接性能、较低的塑/脆转变度及优异的动态力学性能等优点,使其广泛应用于电子、武器、化工、航空航天工业与空间核动力系统等行业 是在1600 ~1 800 环境下工作的理想结构材料。虽然钽及钽合金拥有优异的高温力学性能 ,但是其高温下抗氧化性能较差 ,金属钼在500 以上便会发生加速氧化生成Ta205 由于以上特性这使得钽及钽合金的应用受到严重制约。要想扩大其应用范围 提升钽及钽合金的耐高温抗氧化性能具有十分重要的意义。钽及钽合金的耐高温抗氧化保护主要有两种方法" ①表面涂层耐高温抗氧化保护 ②合金化耐高温抗氧化保护。

合金化法虽然能提升钽及钽合金的抗氧化性能 ,但前提条件是合金化元素用量须达到临界值以上才能对基体起到保护作用 ,同时 对基体的其它性能会产生较大影响 ,尤其是对基体高温机械性能的影响较大。

表面涂层可以同时具有较低的氧气渗透能力、良好的化学与物理相容性和稳定性、低的挥发性、良好的热膨胀系数匹配性和结合能力、高温自愈合能力及不能影响钽合金基材原有的良好机械性能等优点 是解决钽合金高温力学性能与抗氧化性能问题的最佳方法。

迄今为止 已开展研究的钽及钽合金材料的表面高温抗氧化涂层体系主要有贵金属高温抗氧化涂层、陶瓷高温抗氧化涂层以及复合抗氧化涂层,下面分别概述钽及钽合金的各类高温抗氧化涂层的研究新进展。

(一)金属高温抗氧化涂层

许多贵金属如Ir、PL、Rh、HI等都具有高熔点特性 其中 金属Ir熔点高达2410 因其高温氧渗透系数和氧扩散系数较低 所以具有优异的高温抗氧化性能 ,但其氧化物的蒸气压较高 为避免金属Ir直接暴露在高温大气环境中 需要在金属Ir外层添加其它成分涂层。国外学者VLTerentieva等2在钽合金基材上制备的Ir-Si-Al抗氧化涂层在1650 氧化气氛下工作200h后氧化增重量为69mg/cm²而Ir-Al涂层在1700 氧化气氛下工作120h 后氧化增重量仅为426mg/cm²。由于贵金属涂层的成本很高,目前仅在实验室条件下进行少量实验 尚未推广。国外学者WSWorrel等制备的Mo-Si-Hr抗氧化涂层可以承受1790 氧化气氛3h 涂层无明显变化P。该抗氧化涂层在高温氧化气流冲刷实验条件下表现出良好的抗热震和抗冲刷性能。研究结果表明 ,该抗氧化涂层为Hf。z0s MonmuoSi的耐火相结构 其周围有产生裂纹 而产生的裂纹又被MoSi、SiHI3-s及HISi;完全密封 因此 涂层能够在高温下阻挡氧化气氛的渗透 进而提高了涂层的高温抗氧化性能。在Ta-10W表面Royal公司运用熔合料浆法制备Al-Sn涂层4涂层厚度75μm 涂层1500 下防护寿命37h 在阿金纳火箭二次推进系统的73kg和907kg两种推力室被成功地应用,涂层正常累计工作时间6 250s和2000s。

贵金属材料涂层拥有良好的抗腐蚀能力和延展性能克服基体高温蠕变造成的应力变形和弹塑性变形。目前 通常采用CVD法在难熔金属表面制备贵金属抗氧化涂层但该技术目前尚存在技术瓶颈。

(二) 陶瓷高温抗氧化涂层

当前 陶瓷涂层是抗氧化涂层体系的研究热点 ,硅化物涂层因其具有良好的热稳定性(在1200 时氧扩散系数为10-"g/(cm's)2200 时氧扩散系数为10-1g/(cm's)而备受关注 高温环境中基体表面形成的SiO能有效阻止氧向涂层和基体内部扩散而且在高温下SiO,具有良好的流动性 ,可以使涂层产生的缺陷自愈合 同时 还能够承受一定程度的变形 因此 能有效地保护钽及钽合金材料避免氧化。

当下 硅化物涂层中研究的热点是MoSi、SiN;和SiC 等高温抗氧化陶瓷涂层。通常 陶瓷涂层与基体之间的热膨胀的差异,是陶瓷涂层产生微裂纹缺陷的主要原因 ,致使陶瓷涂层的抗氧化性能下降。国外学者MV Moore等为了解决钽及钽合金材料基体与MoSi之间的热膨胀匹配问题 在MoSi;涂层中添加了少量的Si 获得的涂层在1650 下经过200h氧化后 氧化增重仅为08%,氧化增重速率保持在253 10g/(cm²·s)的较低水平。学者HYiroshi研究表明 采用改良包埋法工艺制备的高致密度Si;N。涂层 ,可以在1610 下对钽及钽合金材料完成约18h有效保护81。学者VVVilasi等门采用PCVD法制备的B(Si)N陶瓷涂层可以在1670 的对钽及钽合金进行有效的抗氧化防护。学者AWRodionova等2将HfB,和Si粉混合后喷涂在钽及钽合金材料表面 制备的HIB,抗氧化涂层可在2100 环境下使用 检测数据表明 ,该涂层在1850 下经过2h氧化后 其氧化速率为128 10-g/(cm²·s)。此外 ,学者Andrew等为改善陶瓷抗氧化涂层的韧性 在钽及钽合金材料基体上采用PVD法制备Mo-W成分的涂层 再进行Si和Ge的固相渗透最终制备成( Mo ,W)(Si Ge)的抗氧化涂层。

(三)复合涂层

复合涂层是陶瓷涂层与玻璃涂层结合使用的一种耐高温抗氧化涂层 ,它不仅可以在高温环境下工作 而且还具备涂层微裂纹自愈合能力。通常选用MoSi,或Si作为抗氧化涂层的过渡层或粘接层以缓解涂层与基体间的热应力 ,外层密封层一般选用耐高温玻璃或高温氧化物。例如 国外学者RPSkowronski等研究的MoSi扩散层/CVD-MoSi阻挡层/莫来石密封层涂层 Ir-Si/致密Ir阻挡层/SrZrO;(Al0;)耐蚀层的复合涂层学者Sekigawa等制备的Si( CVD)/Ir(CVD或等离子喷涂)/Y203(等离子喷涂)复合涂层团;学者0Yamamoto等制备的Si/Y SiO;涂层 都具备了较好的高温抗氧化性能。特别是Ir阻挡层/SrZrO3(Al2O3)复合高温抗氧化涂层还具有1750 环境下长时间的抗氧化防护能力。此外 学者YSekigawa等制备的Ir-Si混合层/致密Ir阻挡层SrZrO3(Al2O3)耐蚀层的复合涂层在1950 环境下抗氧化时间仅21min。分析其原因主要是在于PVD法制备的I阻挡层与Ir-Ta层之间结合强度不良导致裂纹产生 同时 又由于SrZrO3结晶过大致使缺陷产生 导致高温抗氧化性能下降。学者THiroshi5等研制的Ti(CVD)/Ir(CVD或等离子喷涂)/Y203(等离子喷涂)复合抗氧化涂层在1960 环境下氧化25min 氧化增重为64%制备的Ir/ZrO/Y,0;涂层在1850 下氧化35 min后,氧化增重为41%。上世纪90年代初俄国复合材料科研生产联合体研制了MoSi2+HaSi复合防护涂层 其采用的制备工艺为料浆喷涂一高温熔烧—包渗硅化法 涂层高温抗氧化性能在1800 抗氧化时间达到100h具备了长时间的抗氧化防护能力。目前国内在Ta-12W合金表面首先制备出底层经烧结后在制备面层经高温烧结后,合金表面形成硅化物涂层 涂层在1800 抗氧化时间达到9h 室温到1800 热震寿命151次。

钽及钽合金材料基体与涂层材料之间存在着不可避免的热膨胀差异 ,也是导致涂层产生裂纹的主要原因。钽及钽合金材料涂层通过前述密封层和梯度涂层的制备可以消除涂层裂纹。梯度涂层可以使得涂层与基体两相浓度以及多相涂层之间组成呈连续分布 消除了各界面间的应力 ,并且表面无裂纹 ,最终达到高温抗氧化目的。

(四)钽及钽合金材料抗氧化涂层发展趋势

钽及钽合金材料作为高温结构材料应用的关键部件 在航空、航天、核工业以及武器领域的应用前景日趋明朗。因此 钽及钽合金的抗氧化涂层技术也向着耐高温、长寿命、抗冲刷等方向发展。

①添加合金元素改善钽及钽合金性能。使氧化性能和机械性能之问取得平衡 满足材料服役环境的需要。

②大力发展复合涂层制备技术。采用多种表面涂层技术相结合 ,从工艺上实现涂层的复合结构 提高对涂层制备过程中工艺参数的控制能力。

③新涂层工艺的开发 复合涂层内层与外层之间 涂层与基体之间的物理化学结合研究将是今后研究工作的重点之一。

④降低成本、简化制作工艺、缩短合成周期也将是今后抗氧化涂层的发展方向之一。

(文章来源于网络 侵权必删)

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10355365.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-04
下一篇2023-11-04

发表评论

登录后才能评论

评论列表(0条)

    保存