钢材在拉伸试验过程中,随着拉伸载荷的不断增加,试样的弹性变形量也不断加大。当拉仲载荷不再增加或有所降低,而试样变形量突然增加时,好象屈服于载荷而自行伸长一样,这种现象称为屈服现象。引起屈服现象的应力称为屈服点,可按下列公式计算:
σs=Ps/S0
式中 σs——屈服点,MPa;
Ps——屈服载荷,N;
S0——试样原横截面积,mm2。
屈服点的出现,象征着试样由弹性变形转变为塑性变形。因为当施加的外力达到或超过金属材料的屈服点时,如果将外力消除,试样的长度虽有部分恢复,但再也不能回复到原来的长度了,亦即有一部分变形(伸长)被地保留下来。
含碳量较高、合金含量较多和淬火回火钢的屈服现象不明显,其屈服载荷难以在试验机上读出。这时就把引起试样标距部分发生一定残余伸长量的载荷,规定为试样的屈服载荷,试样此时所承受的应力称为规定残余伸长应力。一般把标距内的残余伸长量定为拉伸试样原标距长度的02%,故规定残余伸长应力常用σr02表示。其计算公式为:
σr02=P02/S0
式中 σr02——规定残余伸长应力,MPa;
P02——残余伸长量为02%时的载荷,N;
S0——试样原横截面积,mm2。
对要求较严格的产品,也有的把残余变形量为005%和01%的应力规定为规定残余伸长应力,以σr005、σr01表示。
在GB228—87标准中,把原来使用的“屈服强度”改称为“规定残余伸长应力”,用σr表示。如σr02表示规定残余伸长率为02%时的应力,用此代替原σr02 。
上屈服强度:试样发生屈服而力首次下降前的最大应力。下屈服强度:当不计初始瞬时效应时屈服阶段中的最小应力。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(02%)时的应力作为该钢材的屈服强度,称为条件屈服强度。
材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。
扩展资料
无明显屈服现象的金属材料需测量其规定非比例延伸强度或规定残余伸长应力,而有明显屈服现象的金属材料,则可以测量其屈服强度、上屈服强度、下屈服强度。一般而言,只测定下屈服强度。
通常测定上屈服强度及下屈服强度的方法有两种:图示法和指针法。
屈服强度、上屈服强度、下屈服强度可以按以下公式来计算:
屈服强度计算公式:Re=Fe/So;Fe为屈服时的恒定力。
上屈服强度计算公式:Reh=Feh/So;Feh为屈服阶段中力首次下降前的最大力。
下屈服强度计算公式:ReL=FeL/So;FeL为不到初始瞬时效应的最小力FeL。
-屈服强度
建筑钢材的力学性能有:抗拉性能、冲击韧性、耐疲劳性
建筑钢材的工艺性能有:冷弯性能、可焊性能
1 抗拉性能
低碳钢拉伸时的应力-应变图 硬钢应力-应变图
抗拉性能是建筑钢材最重要的力学性能。钢材受拉时,在产生应力的同时,相应地产生应变。应力和应变的关系反映出钢材的主要力学特征。从低碳钢(软钢)的应力-应变关系中可看出,低碳钢从受拉到拉断,经历了四个阶段:弹性阶段(OA)、屈服阶段(AB)、强化阶段(BC)和颈缩阶段(CD)。
⑴ 弹性阶段
在图中OA段,应力较低,应力与应变成正比例关系,卸去外力,试件恢复原状,无残余形变,这一阶段称为弹性阶段。弹性阶段的最高点(A点)所对应的应力称为弹性极限,用σp表示,在弹性阶段,应力和应变的比值为常数称为弹性模量,用E表示,即E=σ/ε。
⑵ 屈服阶段
当应力超过弹性极限后,应变的增长比应力快,此时,除产生弹性变形外,还产生塑性变形。当应力达到B上点时,即使应力不再增加,塑性变形仍明显增长,钢材出现了“屈服”现象,这一阶段称为屈服阶段。在屈服阶段中,应力会有波动,出现上屈服点(B上)和下屈服点(B下)。由于下屈服点比较比较稳定且容易测定,因此,采用下屈服点对应的应力作为钢材的屈服极限(σS)或屈服强度。
钢材受力达到屈服强度后,变形迅速增长,尽管尚未断裂,已不能满足使用要求,故结构设计中以屈服强度作为容许应力取值的依据。
⑶ 强化阶段
在钢材屈服到一定程度后,由于内部晶格扭曲、晶粒破碎等原因,阻止了塑性变形的进一步发展,钢材抵抗外力的能力重新提高,在应力-应变图上,曲线从B点开始上升直至最高点C,这一过程称为强化阶段;
对应于最高点C的应力称为抗拉强度(σb)。它是钢材所承受的最大拉应力。常用低碳钢的抗拉强度为375~500MPa。
条件屈服点: 某些合金钢或含碳量高的钢材(如预应力混凝土用钢筋和钢丝)具有硬钢的特点,其抗拉强度高,无明显屈服阶段,伸长率小。
故采用产生残余变形为02%原标距长度时的应力作为屈服强度,称为条件屈服点,用δ02表示。
强屈比:抗抗拉强度与屈服强度之比(强屈比)σb/σS,是评价钢材使用可靠性的一个参数。强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高,但是,强屈比太大,钢材强度的利用率偏低,浪费材料。钢材的强屈比一般不低于12,用于抗震结构的普通钢筋实测的强屈比应不低于125。
⑷ 颈缩阶段
在钢材达到C点后,试件薄弱处的断面将显著减小,塑性变形急剧增加,产生“颈缩”现象而断裂(图8-3)。
钢材的塑性通常用拉伸试验时的伸长率或断面收缩率来表示。
伸长率:将拉断后试件拼合起来,测量出标距长度l1,l1与试件受力前的原标距l0之差为塑性变形值,它与原标距l0之比为伸长率δ,按下式计算:
式中 δ——伸长率;
l0——试件原始标距长度,mm;
l1——断裂试件拼合后标距长度,mm;
断面收缩率:是指断口处的面积收缩量与原面积之比
试件拉伸前和断裂后标距的长度
2冷弯性能
冷弯性能是指钢材在常温下承受弯曲变形的能力,以试验时的弯曲角度α和弯心直径d为指标表示。
钢材的冷弯试验是通过直径(或厚度)为a的试件,采用标准规定的弯心直径d(d = na,n为整数),弯曲到规定的角度时(180°或90°),检查弯曲处有无裂纹、断裂及起层等现象。若没有这些现象则认为冷弯性能合格。钢材冷弯时的弯曲角度α越大,d/a越小,则表示冷弯性能越好。
3 冲击韧性
钢材的冲击韧性是处在简支梁状态的金属试样在冲击负荷作用下折断时的冲击吸收功。钢材的冲
击韧性与钢材的化学成分、组织状态,以及冶炼、加工都有关系。例如,钢材中磷、硫含量较高,存在偏析、非金属夹杂物和焊接中形成的微裂纹等都会使冲击韧性显著降低。
冲击韧性随温度的降低而下降,其规律是:开始下降缓和,当达到一定温度范围时,突然下降很多而呈脆性,这种性质称为钢材的冷脆性;
4 耐疲劳性
受交变荷载反复作用时,钢材在应力低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏。疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故。
在一定条件下,钢材疲劳破坏的应力值随应力循环次数的增加而降低。钢材在无穷次交变荷载作用下而不至引起断裂的最大循环应力值,称为疲劳强度极限,实际测量时常以2×106次应力循环为基准。一般来说,钢材的抗拉强度高,其疲劳极限也较高。
5焊接性能
焊接是把两块金属局部加热,并使其接缝部分迅速呈熔融或半熔融状态,而牢固的连接起来。它是钢结构的主要连接形式。建筑工程的钢结构中,焊接结构要占90%以上。
钢材的焊接性能是指在一定的焊接工艺条件下,在焊缝及其附近过热区不产生裂纹及硬脆倾向,焊接后钢材的力学性能,特别是强度不低于原有钢材的强度。
钢材的化学成分对钢材的可焊性有很大的影响。随钢材的含碳量、合金元素及杂质元素含量的提高,钢材的可焊性降低。钢材的含碳量超过025%时,可焊性明显降低;硫含量较多时,会使焊口处产生热裂纹,严重降低焊接质量。
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)
2屈服强度(σ02)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的02%)时的应力,称为条件屈服强度或简称屈服强度σ02 。
3抗拉强度(σb)
材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4伸长率(δs)
材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5屈强比(σs/σb)
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为06-065,低合金结构钢为065-075合金结构钢为084-086。
1、钢筋屈服点 σs=Fs/A; ( Fs屈服力; A钢筋横截面)
2、钢筋抗拉强度 σb=Fb/A;;( Fb屈服力; A钢筋横截面)
3、钢筋伸长率 δ=[(L1-L0)/L0]100% (L1钢筋拉断后标距;L0钢筋原始标距)
1、屈服点
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
2、抗拉强度
材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。
3、伸长率
材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)